首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract— The distribution of DBH activity between soluble and sedimentable fractions of hypotonic homogenates was examined in rat sympathetic ganglia and nerves after interruption of axonal transport. Local application of colchicine to superior cervical ganglia caused an increase mainly in particulate DBH activity, which was presumably bound to membranes. Likewise, in sciatic nerves, particulate DBH activity accumulated on both sides of a ligature and disappeared from a region well below a ligature much faster than did soluble activity. On the other hand, 18 h after simultaneous application of two ligatures to the nerve, neither total DBH activity nor subcellular distribution of this activity changed in the isolated nerve region. More detailed analysis showed that ligation affected the distribution of DBH activity within a fraction that sedimented at 140,000 g after homogenization of nerves in isotonic sucrose. Just above a ligature, osmotically releasable DBH activity was a smaller proportion of the sedimentable activity than in control nerves. However, as compared to controls, osmotically releasable DBH activity was a larger proportion of the activity in the sedimentable fraction from a region well below a ligature. A model was developed which accounts for some of these results by postulating that DBH is associated with different compartments in sciatic nerve which have different rates of transport and different proportions of soluble and bound enzyme.  相似文献   

2.
—The presence of phenylethanolamine-N-methyltransferase (EC 2.1.1.-) and dopamine-β-hydroxylase (EC 1.14.2.1) activities was demonstrated in the sciatic nerve of the toad, Bufo marinus. The rates of accumulation of phenylethanolamine-N-methyltransferase (PNMT) and dopamine-β-hydroxylase (DBH) proximal to a ligation of the sciatic nerve were studied. DBH accumulated proximal to the ligation at a more than 10-fold faster rate than PNMT. By measuring the rate of loss of enzyme activity distal to a ligation, an estimate of per cent clearance of each enzyme was made. Based on the per cent of enzyme activity free to move, the absolute transport rates for each enzyme were estimated to be: PNMT, 3.6 mm/24 h; DBH, 102 mm/24 h. PNMT activity (89 per cent) was recovered in the soluble fraction of sciatic nerve homogenates with no change occurring in the subcellular distribution of the enzyme proximal to ligations. In contrast, 43 per cent of DBH activity was found in the soluble fraction of sciatic nerve homogenates; but a disproportionate increase in paniculate DBH activity was found proximal to sciatic nerve ligations. Reduction of toad body temperature to 4°C resulted in a complete but totally reversible block of the axonal transport of both PNMT and DBH.  相似文献   

3.
Reversal of the direction (turnaround) of orthograde axonal transport of dopamine-beta-hydroxylase (DBH) activity was studied at a ligature placed on rat sciatic nerve. DBH was allowed to accumulate at a ligature in vivo for selected intervals, at which time a second ligature was placed proximal to the first and turnaround transport measured just distal to the second tie after incubation in vivo or in vitro. Orthograde accumulation of DBH activity proximal to a ligature peaked at 2 days, and then rapidly decreased as a result of turnaround transport and injury-induced reduction of orthograde transport. Destruction of postganglionic sympathetic axon terminals in vivo with 6 hydroxydopamine resulted in a decrease in orthograde transport similar to that seen after axotomy and turnaround at or proximal to the site of chemical injury. Turnaround transport of DBH in vitro was blocked by incubation in the cold and in the presence of NaCN and vinblastine. Orthograde transport of DBH appeared to reverse direction within a few millimeters of a ligature.  相似文献   

4.
Abstract— The axoplasmic transport rate and distribution of acetylcholinesterase (AChe, EC 3.1.1.7) was studied in the sciatic nerves of normal rats and those with a neuropathy due to acrylamide, by measuring the accumulation of the enzyme proximal to single and double ligatures. The single ligature experiments showed that the apparent transport rate of AChE was decreased in acrylamide neuropathy. The double ligature experiments indicated that only 8.1% of AChE was mobile in normal rat sciatic nerve. The mobility of the enzyme in acrylamide-treated rat sciatic nerves was altered to 11.8%. The absolute transport rate of AChE in normal rat sciatic nerve was 567 mm/24 h, and in acrylamide neuropathy it was decreased to 287 mm/24 h.
The amount of AChE activity transported in normal rat sciatic nerve was 2.64 μmol/24 h. The rats with acrylamide neuropathy showed a decrease in the amount of AChE activity moving in the orthograde direction (2.03 μmol/24 h).
The colchicine-binding properties of tubulin protein from sciatic nerves of normal and acrylamide-treated rats were studied. In rats with acrylamide neuropathy, a marked decrease of 75% in tubulin-colchicine binding was observed.  相似文献   

5.
The net rate of proximo-distal transport of tyrosine hydroxylase, dopamine β-hydroxylase, DOPA decarboxylase and choline acetyltransferase was determined by measuring the accumulation of these enzymes proximal to a ligature of the rat sciatic nerve. The rate of accumulation was constant for at least 12 h. For the enzymes involved in the biosynthesis of norepinephrine the rate of transport was correlated to their subcellular distribution and a close correlation between these two parameters was found. Dopamine β-hydroxylase, an enzyme mainly localized in the particulate fraction of the sciatic nerve, showed the fastest rate of transport (1·94 mm/h) whereas DOPA decarboxylase, exclusively located in the high-speed supernatant fluid, gave the slowest (0·63 mm/h) rate of transport. Tyrosine hydroxylase, predominantly located in the non-particulate fraction of the sciatic nerve was transported much slower (0·75 mm/h) than dopamine β-hydroxylase but still significantly (P < 0.005) faster than DOPA decarboxylase. The subcellular distribution of dopamine β-hydroxylase in ganglia did not differ significantly (0·45 > P > 0·40) from that in the sciatic nerve, but in nerve endings a greater proportion of dopamine β-hydroxylase was localized in particulate fractions. Tyrosine hydroxylase and DOPA decarboxylase were found exclusively in the non-particulate fractions of ganglia. In the nerve endings of the effector organs a small but consistent portion of tyrosine hydroxylase was found in particulate fractions, whereas DOPA decarboxylase was exclusively localized in the high-speed supernatant fluid.  相似文献   

6.
An apparatus was devised which utilizes local cooling to reversibly interrupt the axonal transport of dopamine-beta-hydroxylase (DBH) in rabbit sciatic nerves in vitro. Lowering the temperature of a short region of nerve to between 1 and 3 degrees C, while keeping the remainder at 37 degrees C, caused DBH activity to accumulate in and proximal to the cooled region. This accumulation was evident after 0.5 hr of cooling and increased in a nearly linear fashion with time for about 3 hr. The cooling-induced interruption in transport was rapidly reversed when nerves were rewarmed to 37 degrees C. Upon rewarming after local cooling for 1.5 hr, a peak of accumulated DBH activity migrated toward the distal end of the nerve at a velocity of 300 +/- 17 mm/day. This velocity was maintained for as long as the peak could be followed and was four times greater than the average velocity estimated from the rate of accumulation of DBH activity above a ligature at the distal end of these same nerves. It is concluded that ligation experiments grossly underestimate the true velocity of axonal transport of DBH and that the present technique offers great advantages in permitting direct study of the migration of separate axonal compartments of transported materials.  相似文献   

7.
An apparatus was devised which utilizes local cooling to reversibly interrupt the axonal transport of dopamine-β-hydroxylase (DBH) in rabbit sciatic nerves in vitro. Lowering the temperature of a short region of nerve to between 1 and 3°C, while keeping the remainder at 37°C, caused DBH activity to accumulate in and proximal to the cooled region. This accumulation was evident after 0.5 hr of cooling and increased in a nearly linear fashion with time for about 3 hr. The cooling-induced interruption in transport was rapidly reversed when nerves were rewarmed to 37°C. Upon rewarming after local cooling for 1.5 hr, a peak of accumulated DBH activity migrated toward the distal end of the nerve at a velocity of 300 ± 17 mm/day. This velocity was maintained for as long as the peak could be followed and was four times greater than the average velocity estimated from the rate of accumulation of DBH activity above a ligature at the distal end of these same nerves. It is concluded that ligation experiments grossly underestimate the true velocity of axonal transport of DBH and that the present technique offers great advantages in permitting direct study of the migration of separate axonal compartments of transported materials.  相似文献   

8.
The axonal transport and subcellular distribution of noradrenaline (NA), dopamine beta-hydroxylase (DBH) and neuropeptide Y (NPY) were determined in dog sciatic nerve using an accumulation technique. The results were compared with those obtained by application of the same procedures and methods on the splenic nerve in the same animal species. Evidence was found for the coexistence of NA and NPY in large dense-cored vesicles in dog sciatic nerve axons. After differential centrifugation and isopyenic sucrose density gradient centrifugation of 24 h ligated sciatic nerve pieces NA and NPY equilibrated around 1M sucrose. The DBH activity was dispersed broadly on the gradient. Subsequently, the accumulation of NA, DBH and NPY was studied in proximal and sital segments of 8, 12 and 24 h dog ligated sciatic nerve and inferences were made concerning the axonal transport of these compounds. NA, DBH and NPY displayed a divergent accumulation proximal to the ligation. After 12 h of ligation a transport rate was calculated of 4.8 +/- 1.8 mm/h for NA, of 5.9 +/- 1.5 mm/h for DBH and of 4.9 +/- 2.0 mm/h for NPY. With a correction for the stationary fractions, a similar fast transport rate of approximately 10 to 12 mm/h was proposed for NA, DBH and NPY. The occurrence was shown of a limited retrograde transport of DBH and possibly NPY, but not of NA.  相似文献   

9.
Abstract— The transport, distribution and turnover of choline O -acetyltransferase (ChAc, EC 2.3.1.6) and acetylcholinesterase (AChE, EC 3.1.1.7) in the vagus and hypoglossal nerves were studied in adult rabbits. The enzymes accumulated proximally and distally to single and double ligatures on both nerves and thus indicated both a proximo-distal and retrograde flow of the enzymes. Double ligature experiments indicated that only 5–20 per cent of the enzymes were mobile in the axon. The rate of accumulation of both enzymes above a single ligature corresponded to the slow rate of axonal flow provided that all the enzymes were mobile, but to an intermediate or fast flow if only a small part of the enzymes was transported. The distribution of ChAc along the hypoglossal neurons was studied and only 2 per cent of ChAc was confined to cell bodies, 42 per cent was localized to the main hypoglossal nerve trunks and 56 per cent to the preterminal axons and axon terminals in the tongue. The ratio of AChE to ChAc was about 3 in the hypoglossal nerve and 32 in the vagus nerve.
Transection of the hypoglossal nerve was followed by a decrease in the activity of ChAc in the hypoglossal nucleus and nerve and in the axons and their terminals in the tongue. The activity of AChE decreased in the hypoglossal nucleus and nerve but not in the tongue. The half-life of ChAc in preterminal axons and terminals of the hypoglossal nerve was estimated to be 16-21 days from the results obtained on transport, axotomy and distribution of the enzyme. Intracisternal injection of colchicine inhibited the cellulifugal transport of both enzymes and led to an increase in enzyme activity in the hypoglossal nucleus.  相似文献   

10.
—Administration of cycloheximide, 10 mg/kg s.c. led within 4 h to an approx 30% reduction of dopamine-β-hydroxylase (DBH) activity in the abdominal portion of rat sciatic nerves. At least two more hours elapsed before DBH activity in the distal part of these nerves began to fall. This pattern suggests reduced synthesis or delivery of DBH into axons but continued transport of previously delivered enzyme. Coinciding with the time at which DBH activity began to fall in distal segments of sciatic nerve, there was a marked reduction in the accumulation of DBH activity above a ligature in this region. Between 4 and 8 h after administration of cylcoheximide, 10 mg/kg, accumulation above a ligature was 70% less than in untreated nerves (P < 0.001), a reduction significantly greater (P < 0.05) than the accompanying 28% loss of baseline DBH activity. At the same time, the clearance of DBH activity from nerve regions distal to a ligature was greatly reduced. This pattern is consistent with the depletion of a minor but rapidly transported compartment of DBH. Six hours after administration of cylcoheximide, 10 mg/kg, the apparent subcellular distribution of DBH in distal regions of sciatic nerve was altered by a significant 36% loss in sedimentable DBH activity, with non-significant changes in othcr fractions. This suggests that rapidly transported DBH, depleted from the nerve by cycloheximide-induced inhibition of protein synthesis, is more highly associated with intraneuronal particles than is slowly transported or stationary DBH.  相似文献   

11.
—Rabbit vagus nerves and nodose ganglia were incubated in vitro for up to 24 h in two-compartment chambers. After the introduction of [3H]leucine or [3H]fucose to the ganglion compartments a rapid anterograde axonal transport of labelled proteins or glycoproteins occurred at rates of 330 ± 44 mm/day and 336 ± 30 mm/day respectively. Accumulation of [3H]leucine-labelled proteins proximal to a ligature on the nerve was unaffected by a delay of up to 6 h between removal of the nerve and labelling in vitro. Accumulation was prevented by inhibition of protein synthesis in the ganglion but not in the axon and was inhibited in a graded manner by colchicine.  相似文献   

12.
FAST AXOPLASMIC TRANSPORT OF ACETYLCHOLINESTERASE IN MAMMALIAN NERVE FIBRES   总被引:9,自引:4,他引:5  
Abstract— Acetylcholinesterase (acetylcholine acetyl-hydrolase, EC 3.1.1.7) is carried down mammalian nerve fibres by the fast axoplasmic transport system. This conclusion was derived from experiments involving the ligation of cat sciatic nerves at two sites placed 83.5 mm apart. The enzyme accumulated in segments of nerve proximal to the upper ligation in a linear fashion over a period of at least 20 h. At approximately 5 h the accumulation of enzyme ceased in the nerve segment proximal to the distal ligation within the isolated length of nerve, an observation indicating that the portion of AChE free to move within the isolated nerve had been depleted during this period of time. The freely moving fraction of AChE was estimated to be 15% of the total enzyme activity present in the nerve (10% in the proximo-distal direction and 5% in the retrograde direction). The rate of AChE downflow (as estimated from the intercept of the curve plotting accumulation with the line denoting when depletion started) was 431 mm/day within a 95% confidence interval of 357–543 mm/day. In view of the variability, our results demonstrated that AChE was being carried by the fast axoplasmic transport system, which in earlier studies was estimated to have a characteristic rate close to 410 mm/day.
An accumulation of AChE was also found on the distal side of the ligations that represented a movement of AChE in the distal-proximal direction in the fibres. This retrograde transport was smaller in amount (about one-half) than the proximo-distal rate of transport, or close to 220 mm/day. The rate of AChE transport was discussed in relation to the 'transport filament' hypothesis of fast axoplasmic transport.  相似文献   

13.
Reduced Axoplasmic Somatostatin Transport in Hypothyroid Rats   总被引:1,自引:1,他引:0  
The effect of hypothyroidism on neuronal function was studied by measuring axoplasmic transport of immunoreactive somatostatin in rat sciatic nerve by the ligation technique. Accumulation of immunoreactive somatostatin proximal to a ligature was linear up to 8 h in normal, in thyroidectomized, and in parathyroidectomized rats. The transport rate was decreased by 38% in thyroidectomized rats as compared to normal rats and was unchanged in parathyroidectomized rats. Sciatic nerve content of somatostatin in hypothyroid rats did not differ from control. Reduced accumulation of immunoreactive somatostatin in hypothyroid rats may be due to a decrease in somatostatin synthesis or in axoplasmic transport, or to an increase in the degradation rate of the peptide.  相似文献   

14.
—The redistribution of rapidly migrating [3H]leucine-labelled proteins was studied using double ligatures applied to the vagus nerve and single ligatures, applied to the hypoglossal nerves. Rapidly migrating proteins accumulating for 16 h proximal to a distal ligature of the cervical vagus redistributed to give a retrograde accumulation distal to a second ligature. Within 6 h a substantial redistribution occurred indicating a rapid retrograde transport. After 21 h there was a further accumulation with 70 per cent of the labelled material accumulating at the distal end of the isolated nerve segment and 16 per cent accumulating at the proximal end. It was shown that about a half of the retrograde accumulation was dependent on the distal accumulation zone. Rapidly migrating proteins accumulated distal to a ligature applied to the hypoglossal nerve 16 h after labelling of the nerve cell bodies indicating that a rapid retrograde transport of labelled macromolecules occurs from the peripheral parts of the nerve in the tongue. Labelled proteins accumulated proximal to ligatures and transections of both the hypoglossal and vagus nerve when applied 16 h after labelling of the nerve cell bodies, indicating the presence of axonal proteins, migrating at a rate of transport intermediate to that of rapidly and slowly migrating proteins.  相似文献   

15.
Abstract— Orthograde and retrograde axoplasmic transport of selected axonal organelles were examined by monitoring accumulation of enzyme activities residing in various types of particles proximal and distal to a ligature placed on rat sciatic nerve as a function of time after tying. Proximal to the tie, activity of acetylcholinesterase (AChE, EC 3.1.1.7; probably in small endoplasmic reticulum-like particles) accumulated for 2 days; then, during the next 5 days, the accumulation disappeared. Activities of glutamic dehydrogenase (GDH, EC 1.4.1.3) and monoamine oxidase (MAO, EC 1.4.3.4) (both located in mitochondria) accumulated steadily for 7 days. Accumulation of monoamine oxidase activity was more rapid than that of glutamic dehydrogenase during the first day or two. Acid phosphatase (acid P'tase, EC 3.1.3.2; in lysosomes) activity also accumulated throughout the week of observation. Accumulation of all four enzyme activities proximal to the ligature was blocked by nerve crush or subepineurial vinblastine injection 1 cm or more proximal to the site of the tie. Distal to the ligature, AChE activity accumulated early (14 h), and then gradually disappeared in the course of the week. MAO activity also accumulated, with a maximum at 2 days, and no further change thereafter. GDH activity, on the other hand, showed little accumulation during the first 2 days, but did appear in modest amounts at the end of the week. Distal accumulation of acid P'tase kept pace with proximal accumulation for the first day, and continued more slowly for another day, after which there was no further change. This system has been used to study the effects of axonal crush injury upon anterograde and retrograde axoplasmic transport. A tie applied at various times after injury, proximal to the site of injury, was used to show that orthograde transport of AChE was maintained for 1 day after tying, but at 2 days had fallen 50% or more, and within a week was down to 20–25% of control. At 3 days after injury retrograde transport of AChE activity was not different from the control. Orthograde transport of acid P'tase activity was depressed 35% by injury. Retrograde transport of acid P'tase was inhibited more than 50% both at 3 and at 7 days after injury. Transport of the mitochondrial enzymes was not measurably affected.  相似文献   

16.
The axonal transport of DOPA-decarboxylase (EC 4.1.1.26) was investigated in rabbit sciatic nerves by means of in vitro stop-flow techniques. Enzyme activity accumulated just proximal to a region that was locally cooled to 5°C in nerves that were elsewhere incubated at 37°C. The accumulation of enzyme activity was linear with time and corresponded to an average orthograde transport velocity of 11 mm/day. Retrograde transport was not detected. When nerves that had been locally cooled for 3 h were rewarmed, the accumulated enzyme activity moved distally along them as a wave with a narrow range of velocities. The front of this wave traveled at a rate of about 150mm/day, and the mean velocity of the wave was about 120 mm/day. These values are much lower than those previously obtained for tyrosine hydroxylase (EC 1.14.16.2), dopamine-β-hydroxylase (EC 1.14.2.1) and norepinephrine in similarly designed experiments. Thus DOPA-decarboxylase appeared to be transported at intermediate velocities, and, since the mean velocity of the moving fraction was about 11 times the average velocity, it is ljkely that only 9% of the enzyme was undergoing transport at any given moment.  相似文献   

17.
Axonal transport of the 16S Molecular form of acetylcholinesterase (16S-AChE) in doubly ligated rat sciatic nerves was studied by means of velocity sedimentation analysis on sucrose gradients. This form of AChE was selectively confined to motor, and not to sensory, fibers in the sciatic nerve, where it represented 3--4% of total AChE. Its activity increased linearly with time (4--20 hr) in nerve segments (7 mm) proximal to the central ligature (4.5 mU/24hr) and distal to the peripheral ligature (2.0 mU/24 hr). From the linear rates of accumulation of 16S-AChE, we conclude that the enzyme is conveyed by anterograde and retrograde axonal transport at velocities close to those previously defined for the movement of total AChE (410 mm/day, anterograde; 220 mm/day, retrograde). The transport of AChE molecular forms, other than the 16S form, could not be resolved presumably due to their presence in blood as well as at extraaxonal sites. The present findings are consistent with the view that in rat sciatic nerve most, if not all, of the small portion of total AChE (approximately 3%) which is transported may be accounted for by 16S-AChE.  相似文献   

18.
—We studied the axoplasmic transport of choline acetyltransferase (CAT) activity in sciatic nerves of normal mice of various ages. For at least 3 days after unilateral ligation of sciatic nerves of 6 and 30-week-old mice, the CAT activity in the ligated nerve increased as a linear function of time and the increase was confined to the 3 mm length of nerve immediately proximal to the ligature. The rate of increase of CAT activity in the ligated nerves of the 30-week-old mice was only 45 ± 6% that of the 6-week-old mice, whereas the CAT activity of non-ligated sciatic nerves of the older mice was 87 ± 6% more than that of the younger mice (n = 18, P < 0·001). The average velocity of axoplasmic transport of CAT activity was five times greater in the younger mice (1·5 ± 0·2 mm/day vs 0·3 ± 0·1 mm/day, n = 6, P < 0·01). Even greater differences were observed between still younger and older animals: the av velocity of axoplasmic transport of 2-week-old mice (3·5 ± 0·2 mm/day) was 17·5 times greater than that of 36-week-old mice (0·2 ± 0·1 mm/day). We also studied the axoplasmic transport of CAT activity in 6-week-old mice after unilateral section of the sciatic nerve. For at least 3 months after the operation, there were no differences between the sectioned nerves and the intact contralateral nerves with respect to the increase in CAT activity immediately proximal to a ligature placed at various times after neurotomy and one day before sacrifice. On the other hand, there was a reduction in the CAT activity of more proximal segments of the sectioned nerves. The reduction of CAT activity was maximal (52 ± 3%) 3 weeks after the operation when the maximum increase (2·5-fold) in the av velocity of axoplasmic transport of CAT activity was recorded (n = 6, P < 0·001). The inclusion of purified (100-fold) mouse brain CAT activity in the assays for the CAT activity of nerve segments demonstrated that the differences in content and rate of transport were not due to the presence of activators or inhibitors of CAT activity. These differences probably reflect physiologic changes in the axoplasmic transport of cholinergic neurons during development and regeneration.  相似文献   

19.
—The half-life of tryptophan 5-hydroxylase (EC 1.14.3) in rats was estimated from the return of enzyme activity after administration of p-chlorophenylalanine and from the decline of enzyme activity in spinal cord after transection or an intraspinal injection of colchicine. The half-life was 2–3 days. Axonal transport of enzyme, estimated from the reappearance of activity in consecutive portions of spinal cord after treatment with p-chlorophenylalanine, was of the order of 5–7 mm/day. This rate is characteristic of 'slow’axonal flow. Our results suggest that changes in the synthesis of new enzyme are probably not responsible for acute changes in the turnover of serotonin.  相似文献   

20.
Abstract— Anterograde and retrograde flux of axonal transported glycoproteins were examined in streptozotocin diabetic rats with 4 weeks'duration of the metabolic derangement.
[3H]Fucose and [14C]NeuNAc were injected into the fifth lumbar root ganglion and the accumulation of TCA-PTA insoluble activity proximal and distal to a sciatic nerve ligature was measured.
Accumulation of glycoproteins during 2 h collection periods was decreased distal to a ligature in diabetic animals whereas no abnormality of proximal accumulation was observed. These findings demonstrate an abnormality of the retrograde transport of glycoproteins in early experimental diabetes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号