首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It was shown recently that individual cells of an isogenic Saccharomyces cerevisiae population show variability in acetic acid tolerance, and this variability affects the quantitative manifestation of the trait at the population level. In the current study, we investigated whether cell-to-cell variability in acetic acid tolerance could be explained by the observed differences in the cytosolic pHs of individual cells immediately before exposure to the acid. Results obtained with cells of the strain CEN.PK113-7D in synthetic medium containing 96 mM acetic acid (pH 4.5) showed a direct correlation between the initial cytosolic pH and the cytosolic pH drop after exposure to the acid. Moreover, only cells with a low initial cytosolic pH, which experienced a less severe drop in cytosolic pH, were able to proliferate. A similar correlation between initial cytosolic pH and cytosolic pH drop was also observed in the more acid-tolerant strain MUCL 11987-9. Interestingly, a fraction of cells in the MUCL 11987-9 population showed initial cytosolic pH values below the minimal cytosolic pH detected in cells of the strain CEN.PK113-7D; consequently, these cells experienced less severe drops in cytosolic pH. Although this might explain in part the difference between the two strains with regard to the number of cells that resumed proliferation, it was observed that all cells from strain MUCL 11987-9 were able to proliferate, independently of their initial cytosolic pH. Therefore, other factors must also be involved in the greater ability of MUCL 11987-9 cells to endure strong drops in cytosolic pH.  相似文献   

2.
The killing of Listeria monocytogenes following exposure to low pH, organic acids, and osmotic stress was enhanced by the addition of 5% (vol/vol) ethanol. At pH 3, for example, the presence of this agent stimulated killing by more than 3 log units in 40 min of exposure. The rate of cell death at pH 3.0 was dependent on the concentration of ethanol. Thus, while the presence 10% (vol/vol) ethanol at pH 3.0 stimulated killing by more than 3 log units in just 5 min, addition of 1.25% (vol/vol) ethanol resulted in less than 1 log unit of killing in 10 min. The ability of 5% (vol/vol) ethanol to stimulate killing at low pH and at elevated osmolarity was also dependent on the amplitude of the imposed stress, and an increase in the pH from 3.0 to 4.0 or a decrease in the sodium chloride concentration from 25 to 2.5% led to a marked reduction in the effectiveness of 5% (vol/vol) ethanol as an augmentative agent. Combinations of organic acids, low pH, and ethanol proved to be particularly effective bactericidal treatments; the most potent combination was pH 3.0, 50 mM formate, and 5 % (vol/vol) ethanol, which resulted in 5 log units of killing in just 4 min. Ethanol-enhanced killing correlated with damage to the bacterial cytoplasmic membrane.  相似文献   

3.
The killing of Listeria monocytogenes following exposure to low pH, organic acids, and osmotic stress was enhanced by the addition of 5% (vol/vol) ethanol. At pH 3, for example, the presence of this agent stimulated killing by more than 3 log units in 40 min of exposure. The rate of cell death at pH 3.0 was dependent on the concentration of ethanol. Thus, while the presence 10% (vol/vol) ethanol at pH 3.0 stimulated killing by more than 3 log units in just 5 min, addition of 1.25% (vol/vol) ethanol resulted in less than 1 log unit of killing in 10 min. The ability of 5% (vol/vol) ethanol to stimulate killing at low pH and at elevated osmolarity was also dependent on the amplitude of the imposed stress, and an increase in the pH from 3.0 to 4.0 or a decrease in the sodium chloride concentration from 25 to 2.5% led to a marked reduction in the effectiveness of 5% (vol/vol) ethanol as an augmentative agent. Combinations of organic acids, low pH, and ethanol proved to be particularly effective bactericidal treatments; the most potent combination was pH 3.0, 50 mM formate, and 5 % (vol/vol) ethanol, which resulted in 5 log units of killing in just 4 min. Ethanol-enhanced killing correlated with damage to the bacterial cytoplasmic membrane.  相似文献   

4.
The effect of fatty acids on Mycobacterium smegmatis was examined in vitro at pH 5.0 to 7.0 to determine the role of fatty acids in the intracellular killing of mycobacteria. Unsaturated fatty acids showed strong bactericidal activity in low concentrations (0.005 to 0.02 mM), whereas saturated fatty acids, except for lauric and myristic acids, were not very effective even at a concentration of 0.2 mM. Addition of a saturated fatty acid (palmitic or stearic acid) to an unsaturated fatty acid (oleic or linoleic acid) did not strongly interfere with the bactericidal effect of the unsaturated fatty acid at pH 5.0 and 6.0. Ca2+ (3.0 mM), Mg2+ (1.0 mM), and gamma-globulin (0.4%) showed weak reversal effects on the bactericidal activity of unsaturated fatty acids at pH 5.0 and 6.0. Serum albumin and serum showed strong reversal effects. The concentrations of each fatty acid in a mixture (molar ratio, 1:1:1:1) of oleic, linoleic, palmitic, and stearic acids required for the killing of M. smegmatis in the presence of 2% serum (bovine, rabbit, or human) were 0.05 to 0.10 mM at pH 5.0 and 6.0 and 0.05 to 0.20 mM at pH 7.0, depending on the serum used. The susceptibilities of M. kansasii, M. bovis strain BCG, and M. tuberculosis to the mixture of the four fatty acids in the presence of 2% bovine serum were similar to that of M. smegmatis, although M. fortuitum was more resistant.  相似文献   

5.
Streptococcus mutans GS-5 and IB1600 adapted to growth in acidic environments in continuous culture at slow (generation time = 8.3 h) or fast (generation time = 2.4 h) rates of growth in complex medium with a restricted glucose supply. The extent of adaptation was indicated by changes in minimum pH values attained by harvested cells suspended in dense suspensions with excess glucose and by increased levels of ATPase activity assayed in permeabilized cells. Also, adapted cells better withstood potentially lethal acidification. Cells harvested from cultures growing at pH values close to 5 reduced suspension pH to lower values than cells from cultures maintained at pH 7. Cells from pH 6 cultures were intermediate. The IB1600 strain had a higher level of constitutive acid resistance than the GS-5 strain and also was better able to adapt to growth in acidified media. Both had less adaptive capacity than Enterococcus hirae ATCC 9790. Adaptation occurred rapidly, mainly within a single generation in continuous culture, while deadaptation occurred more slowly over multiple generations. The capacity of S. mutans to adapt to acid conditions is likely to be important in the ecology of dental plaque and also for the cariogenicity of the organism.  相似文献   

6.
Streptococcus mutans GS-5 and IB1600 adapted to growth in acidic environments in continuous culture at slow (generation time = 8.3 h) or fast (generation time = 2.4 h) rates of growth in complex medium with a restricted glucose supply. The extent of adaptation was indicated by changes in minimum pH values attained by harvested cells suspended in dense suspensions with excess glucose and by increased levels of ATPase activity assayed in permeabilized cells. Also, adapted cells better withstood potentially lethal acidification. Cells harvested from cultures growing at pH values close to 5 reduced suspension pH to lower values than cells from cultures maintained at pH 7. Cells from pH 6 cultures were intermediate. The IB1600 strain had a higher level of constitutive acid resistance than the GS-5 strain and also was better able to adapt to growth in acidified media. Both had less adaptive capacity than Enterococcus hirae ATCC 9790. Adaptation occurred rapidly, mainly within a single generation in continuous culture, while deadaptation occurred more slowly over multiple generations. The capacity of S. mutans to adapt to acid conditions is likely to be important in the ecology of dental plaque and also for the cariogenicity of the organism.  相似文献   

7.
A protein of about 20 kDa was extracted by sodium cholate (1%, w/v) from outer membranes of a strain of Neisseria gonorrhoeae, BS4 (agar), which is resistant to killing by human phagocytes. When the protein was purified by repeated fractionation on Sephadex G75, contamination with other outer-membrane proteins and lipopolysaccharide was negligible. The protein contained a full complement of amino acids, with high levels of glutamic acid. Carbohydrate, detected by the anthrone method and by sugar and hexosamine analysis, was present, but at very low levels. There was a significant content of fatty acids (about 5.7% of the protein), indicating a lipoprotein. The 20 kDa lipoprotein: (1) neutralized the ability of antiserum against whole organisms of BS4 (agar) to reduce the resistance of this strain to phagocyte killing; (2) evoked in mice an antiserum which reduced this resistance and immunoblotted only with 20 kDa lipoprotein in the cholate extract of outer membranes; and (3) promoted resistance to intracellular killing of an otherwise phagocyte susceptible gonococcal strain (BSSH). This is strong evidence that it is a determinant of gonococcal resistance to phagocyte killing.  相似文献   

8.
【目的】通过构建的人工耐酸系统,筛选耐受低pH值、乳酸及琥珀酸的菌株。【方法】构建人工耐酸系统长期驯化菌株,利用不同p H的酸性平板进行筛选,从环境中筛选出一株对低p H值、高浓度乳酸以及琥珀酸有很好耐受性的菌株。通过形态学特征、生理生化特征研究,并结合18S rDNA基因序列分析及分子系统发育树的构建结果,确定菌株的种类。【结果】经过酸性人工系统的长期驯化,筛选分离出一株耐受低pH值、高浓度乳酸以及琥珀酸的菌株WJ-2,经鉴定该菌株为酿酒酵母(Saccharomyces cerevisiae),其最适生长温度为30°C。酸性平板实验显示该菌株能够耐受pH2.5的酸性环境,同时对9%的乳酸及8%的琥珀酸也有很好的耐受性。另外,耐酸菌株WJ-2在pH 2.5、9%乳酸和8%琥珀酸的培养环境中仍能保持相对中性的细胞内pH值。【结论】通过构建人工酸性系统,成功筛选出一株对低pH值、高浓度乳酸以及琥珀酸具有耐受性的菌株——酿酒酵母菌WJ-2,该方法可为筛选具有特定耐受能力菌株提供一个新思路。  相似文献   

9.
The arginine deiminase system was found to function in protecting bacterial cells against the damaging effects of acid environments. For example, as little as 2.9 mM arginine added to acidified suspensions of Streptococcus sanguis at a pH of 4.0 resulted in ammonia production and protection against killing. The arginine deiminase system was found to have unusual acid tolerance in a variety of lactic acid bacteria. For example, for Streptococcus rattus FA-1, the pH at which arginolysis was reduced to 10% of the maximum was between 2.1 and 2.6, or more than 1 full pH unit below the minimum for glycolysis (pH 3.7), and more than 2 units below the minimum for growth in complex medium (pH 4.7). The acid tolerance of the arginine deiminase system appeared to be primarily molecular and to depend on the tolerance of individual enzymes rather than on the membrane physiology of the bacteria; pH profiles for the activities of arginine deiminase, ornithine carbamoyltransferase, and carbamate kinase in permeabilized cells showed that the enzymes were active at pHs of 3.1 or somewhat lower. Overall, it appeared that ammonia could be produced from arginine at low pH values, even by cells with damaged membranes, and that the ammonia could then protect the cells against acid damage until the environmental pH value rose sufficiently to allow for the reestablishment of a difference in pH (delta pH) across the cell membrane.  相似文献   

10.
The arginine deiminase system was found to function in protecting bacterial cells against the damaging effects of acid environments. For example, as little as 2.9 mM arginine added to acidified suspensions of Streptococcus sanguis at a pH of 4.0 resulted in ammonia production and protection against killing. The arginine deiminase system was found to have unusual acid tolerance in a variety of lactic acid bacteria. For example, for Streptococcus rattus FA-1, the pH at which arginolysis was reduced to 10% of the maximum was between 2.1 and 2.6, or more than 1 full pH unit below the minimum for glycolysis (pH 3.7), and more than 2 units below the minimum for growth in complex medium (pH 4.7). The acid tolerance of the arginine deiminase system appeared to be primarily molecular and to depend on the tolerance of individual enzymes rather than on the membrane physiology of the bacteria; pH profiles for the activities of arginine deiminase, ornithine carbamoyltransferase, and carbamate kinase in permeabilized cells showed that the enzymes were active at pHs of 3.1 or somewhat lower. Overall, it appeared that ammonia could be produced from arginine at low pH values, even by cells with damaged membranes, and that the ammonia could then protect the cells against acid damage until the environmental pH value rose sufficiently to allow for the reestablishment of a difference in pH (delta pH) across the cell membrane.  相似文献   

11.
In the cariogenic organism, Streptococcus mutans, low pH induces an acid tolerance response (ATR). To identify acid-regulated proteins comprising the ATR, transposon mutagenesis with the thermosensitive plasmid pGh9:ISS1 was used to produce clones that were able to grow at neutral pH, but not in medium at pH 5.0. Sequence analysis of one mutant (IS1A) indicated that transposition had created a 6.3-kb deletion, one end of which was in dltB of the dlt operon encoding four proteins (DltA-DltD) involved in the synthesis of D-alanyl-lipoteichoic acid. Inactivation of the dltC gene, encoding the D-alanyl carrier protein (Dcp), resulted in the generation of the acid-sensitive mutant, BH97LC. Compared to the wild-type strain, LT11, the mutant exhibited a threefold-longer doubling time and a 33% lower growth yield. In addition, it was unable to initiate growth below pH 6.5 and unadapted cells were unable to survive a 3-h exposure in medium buffered at pH 3.5, while a pH of 3.0 was required to kill the wild type in the same time period. Also, induction of the ATR in BH97LC, as measured by the number of survivors at a pH killing unadapted cells, was 3 to 4 orders of magnitude lower than that exhibited by the wild type. While the LTA of both strains contained a similar average number of glycerolphosphate residues, permeabilized cells of BH97LC did not incorporate D-[(14)C]alanine into this amphiphile. This defect was correlated with the deficiency of Dcp. Chemical analysis of the LTA purified from the mutant confirmed the absence of D-alanine-esters. Electron micrographs showed that BH97LC is characterized by unequal polar caps and is devoid of a fibrous extracellular matrix present on the surface of the wild-type cells. Proton permeability assays revealed that the mutant was more permeable to protons than the wild type. This observation suggests a mechanism for the loss of the characteristic acid tolerance response in S. mutans.  相似文献   

12.
Fourteen killer yeasts were assayed for their ability to kill species of yeast that are commonly associated with fermenting grape must and wine. A total of 147 of a possible 364 killer-sensitive interactions were observed at pH 4.5. Of the killer yeasts studied, Pichia anomala NCYC 434 displayed the broadest killing range. At a pH value comparable with those of wine ferments, pH 3.5, the incidence of killer-sensitive interactions was reduced by 700% across all the yeasts. Williopsis saturnus var. mrakii CBS 1707 exhibited the broadest killing range at the lower pH, killing more than half of the tester strains. Intraspecific variation in sensitivity to killer yeasts was observed in all species where more than one strain was tested. Also, in strains of Pichia anomala, Kluyveromyces lactis and Pichia membranifaciens, the three species in which more than one killer yeast was analysed, intraspecific variation in killer activity was observed.  相似文献   

13.
代谢工程改造野生耐酸酵母生产L-乳酸   总被引:1,自引:1,他引:1  
以选育低pH条件下高产L-乳酸的酵母菌为目的,从自然样品中筛选分离得到一株能在pH 2.5 (乳酸调节) 的培养基中生长且不利用乳酸的酵母 (初步鉴定为木兰假丝酵母Candida magnolia);进一步将来源于米根霉As3.819的乳酸脱氢酶编码基因 (ldhA) 插入含有G418抗性基因的酵母穿梭载体,构建了重组质粒pYX212-kanMX-ldhA,电转化入野生型C. magnolia中,筛选获得了一株具有产L-乳酸能力的重组菌株C. magnolia-2;通过发酵实验表明,该重组菌产L-乳酸的最  相似文献   

14.
Low‐temperature fermentations produce wines with greater aromatic complexity, but the success of these fermentations greatly depends on the adaptation of yeast cells to cold. Tryptophan has been previously reported to be a limiting amino acid during Saccharomyces cerevisiae growth at low temperature. The objective of this study was to determine the influence of the tryptophan metabolism on growth and fermentation performance during low‐temperature wine fermentation. To this end, we constructed the deletion mutants of the TRP1 and TAT2 genes in a derivative haploid of a commercial wine strain, and the TAT2 gene was overexpressed in the prototroph and auxotroph (Δtrp1) backgrounds. Then we characterized growth and fermentation activity during wine fermentation at low and optimum temperatures. Our results partially support the role of this amino acid in cold yeast growth. Although deletion of TRP1 impaired amino acid uptake and the growth rate at low temperature in synthetic must, this growth impairment did not affect the fermentation rate. Deletion of TAT2 endorsed this strain with the highest nitrogen consumption capacity and the greatest fermentation activity at low temperature. Our results also evidenced reduced ammonium consumption in all the strains at low temperature. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 30:776–783, 2014  相似文献   

15.
16.
Soil acidity constraints grain legume production in tropical soils, both limiting Rhizobium survival and reducing nodulation. Strains of rhizobia with greater tolerance to hydrogen-ion concentration have been identified, but the basis for strain differences in pH tolerance has yet to be determined. In this study, strains of Rhizobium leguminosarum by phaseoli which differed in their tolerance to acidity were exposed to acid pH, then cell levels of potassium and calcium determined, and specific ‘acid-shock’ proteins identified. Lowering the external pH to 4.6–4.7 resulted in an immediate efflux of calcium from the cell of both acid tolerant and sensitive bean strains. Change in cell potassium levels on exposure to acidity varied with the strain. Strain UMR 1899 and an acid-sensitive mutant derived from it maintained high cytoplasmic potassium at acid pH, whereas an acid-sensitive strain UMR 1632 underwent a marked decline in cell potassium at pH 4.6. Exposure of these strains to pH 4.5 in the presence of [35S]-labeled methionine enhanced production of a number of proteins, while synthesis of other proteins at this pH was significantly reduced. Differences in banding pattern were also evident between UMR1899 and the Tn5-induced pH-sensitive mutant UMR5005 derived from it, and between cells grown in the presence and absence of calcium and phosphorus.  相似文献   

17.
Thioalkalivibrio denitrificans is the first example of an alkaliphilic, obligately autotrophic, sulfur-oxidizing bacterium able to grow anaerobically by denitrification. It was isolated from a Kenyan soda lake with thiosulfate as electron donor and N2O as electron acceptor at pH 10. The bacterium can use nitrite and N2O, but not nitrate, as electron acceptors during anaerobic growth on reduced sulfur compounds. Nitrate is only utilized as nitrogen source. In batch culture at pH 10, rapid growth was observed on N2O as electron acceptor and thiosulfate as electron donor. Growth on nitrite was only possible after prolonged adaptation of the culture to increasing nitrite concentrations. In aerobic thiosulfate-limited chemostats, Thioalkalivibrio denitrificans strain ALJD was able to grow between pH values of 7.5 and 10.5 with an optimum at pH 9.0. Growth of the organism in continuous culture on N2O was more stable and faster than in aerobic cultures. The pH limit for growth on N2O was 10.6. In nitrite-limited chemostat culture, growth was possible on thiosulfate at pH 10. Despite the observed inhibition of N2O reduction by sulfide, the bacterium was able to grow in sulfide-limited continuous culture with N2O as electron acceptor at pH 10. The highest anaerobic growth rate with N2O in continuous culture at pH 10 was observed with polysulfide (S8(2-)) as electron donor. Polysulfide was also the best substrate for oxygen-respiring cells. Washed cells at pH 10 oxidized polysulfide to sulfate via elemental sulfur in the presence of N2O or O2. In the absence of the electron acceptors, elemental sulfur was slowly reduced which resulted in regeneration of polysulfide. Cells of strain ALJD grown under anoxic conditions contained a soluble cd1-like cytochrome and a cytochrome-aa3-like component in the membranes.  相似文献   

18.
To quantitatively relate heat killing and heat radiosensitization, asynchronous or G1 Chinese hamster ovary (CHO) cells at pH 7.1 or 6.75 were heated and/or X-irradiated 10 min later. Since no progression of G1 cells into S phase occurred during the heat and radiation treatments, cell cycle artifacts were minimized. However, results obtained for asynchronous and G1 cells were similar. Hyperthermic radiosensitization was expressed as the thermal enhancement factor (TEF), defined as the ratio of the D0 of the radiation survival curve to that of the D0 of the radiation survival curve for heat plus radiation. The TEF increased continuously with increased heat killing at 45.5 degrees C, and for a given amount of heat killing, the amount of heat radiosensitization was the same for both pH's. When cells were heated chronically at 42.4 degrees C at pH 7.4, the TEF increased initially to 2.0-2.5 and then returned to near 1.0 during continued heating as thermal tolerance developed for both heat killing and heat radiosensitization. However, the shoulder (Dq) of the radiation survival curve for heat plus radiation did not manifest thermal tolerance; i.e., it decreased continuously with increased heat killing, independent of temperature, pH, or the development of thermotolerance. These results suggest that heat killing and heat radiosensitization have a target(s) in common (TEF results), along with either a different target(s) or a difference in the manifestation of heat damage (Dq results). For clinical considerations, the interaction between heat and radiation was expressed as (1) the thermal enhancement ratio (TER), which is the dose of X rays alone divided by the dose of X rays combined with heat to obtain an isosurvival, e.g., 10(-4), and (2) the thermal gain factor (TGF), the ratio of the TER at pH 6.75 to the TER at pH 7.4. Since low pH reduced the rate of development of thermal tolerance during heating at low temperatures, low pH enhanced heat killing more at 42-42.5 degrees C than at 45.5 degrees C where thermal tolerance did not develop. Therefore, the increase in the TGF after chronic heating at 42-42.5 degrees C was greater than after acute heating at 45.5 degrees C, due primarily to the increase in heat killing causing an even greater increase in heat radiosensitization. These findings agree with animal experiments suggesting that in the clinic, a therapeutic gain for tumor cells at low pH may be greater for temperatures of 42-42.5 degrees C than of 45.5 degrees C.  相似文献   

19.
After five serial passages of Candida albicans SC5314 through murine spleens by intravenous inoculation, we recovered a respiratory mutant (strain P5) that exhibited reduced colony size, stunted growth in glucose-deficient media, increased oxygen consumption and defective carbohydrate assimilation. Strain P5 was indistinguishable from SC5314 by DNA typing methods, but had a greater concentration of mitochondria by SYTO18 staining. Treatment with various inhibitors demonstrated that strain P5's electron transport chain was intact and oxidative phosphorylation was uncoupled. During disseminated candidiasis, the mutant did not kill mice or cause extensive damage to kidneys. The burden of strain P5 within kidneys on the first 3 days of disseminated candidiasis was significantly reduced. By days 28 and 60, it was similar to that at the time of death among mice infected with SC5314, suggesting that the mutant persisted and proliferated without killing mice. Strain P5 was resistant to phagocytosis by neutrophils and macrophages. It was also significantly more resistant to paraquat, suggesting that it is able to neutralize reactive oxygen species. Our findings indicate that regulation of respiration influences the interaction between C. albicans and the host. Uncoupling of oxidative phosphorylation might be a mechanism by which the organism adapts to stressful host environments.  相似文献   

20.
Physical and biological properties of highly oncogenic human adenovirus type 12 were compared with a low oncogenic mutant (cyt mutant). Parental and cyt mutant virions had very similar density and DNA size. However, the parental strain virion preparations contained a much higher proportion of defective virions (capable of cell killing, but not able to induce T- or V-antigen) than cyt mutant stock. It was also found that cyt mutant had a reduced virus yield in several human cell lines compared with the parental strain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号