首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recent studies with model peptides and statistical analyses of the crystal structures of membrane proteins have shown that buried polar interactions contribute significantly to the stabilization of the three-dimensional structures of membrane proteins. Here, we probe how the location of these polar groups along the transmembrane helices affect their free energies of interaction. Asn residues were placed singly and in pairs at three positions within a model transmembrane helix, which had previously been shown to support the formation of trimers in micelles. The model helix was designed to form a transmembrane coiled coil, with Val side chains at the "a" positions of the heptad repeat. Variants of this peptide were prepared in which an Asn residue was introduced at one or more of the "a" positions, and their free energies of association were determined by analytical ultracentrifugation. When placed near the middle of the transmembrane helix, the formation of trimers was stabilized by at least -2.0 kcal/mol per Asn side chain. When the Asn was placed at the interface between the hydrophobic and polar regions of the peptide, the substitution was neither stabilizing nor destabilizing (0.0 +/- 0.5 kcal/mol of monomer). Finally, it has previously been shown that a Val-for-Asn mutation in a water-soluble coiled coil destabilizes the structure by approximately 1.5 kcal/mol of monomer [Acharya, A., et al. (2002) Biochemistry 41, 14122-14131]. Thus, the headgroup region of a micelle appears to have a conformational impact intermediate between that of bulk water and the apolar region of micelle. A similarly large dependence on the location of the polar residues was found in a statistical survey of helical transmembrane proteins. The tendency of different types of residues to be buried in the interiors versus being exposed to lipids was analyzed. Asn and Gln show a very strong tendency to be buried when they are located near the middle of a transmembrane helix. However, when placed near the ends of transmembrane helices, they show little preference for the surface versus the interior of the protein. These data show that Asn side chains within the apolar region of the transmembrane helix provide a significantly larger driving force for association than Asn residues near the apolar/polar interface. Thus, although polar interactions are able to strongly stabilize the folding of membrane proteins, the energetics of association depend on their location within the hydrophobic region of a transmembrane helix.  相似文献   

2.
Membrane-spanning proteins contain both aqueous and membrane-spanning regions, both of which contribute to folding and stability. To explore the interplay between these two domains we have designed and studied the assembly of coiled-coil peptides that span from the membrane into the aqueous phase. The membrane-spanning segment is based on MS1, a transmembrane coiled coil that contains a single Asn at a buried a position of a central heptad in its sequence. This Asn has been shown to drive assembly of the monomeric peptide in a membrane environment to a mixture of dimers and trimers. The coiled coil has now been extended into the aqueous phase by addition of water-soluble helical extensions. Although too short to fold in isolation, these helical extensions were expected to interact synergistically with the transmembrane domain and modulate its stability as well as its conformational specificity for forming dimers versus trimers. One design contains Asn at a position of the aqueous helical extension, which was expected to specify a dimeric state; a second peptide, which contains Val at this position, was expected to form trimers. The thermodynamics of assembly of the hybrid peptides were studied in micelles by sedimentation equilibrium ultracentrifugation. The aqueous helical extensions indeed conferred additional stability and conformational specificity to MS1 in the expected manner. These studies highlight the delicate interplay between membrane-spanning and water-soluble regions of proteins, and demonstrate how these different environments define the thermodynamics of a given specific interaction. In this case, an Asn in the transmembrane domain provided a strong driving force for folding but failed to specify a unique oligomerization state, while an Asn in the water-soluble domain was able to define specificity for a specific aggregation state as well as modulate stability.  相似文献   

3.
The dimeric interface of the leucine zipper coiled coil from GCN4 has been used to probe the contributions of hydrophobic and hydrogen bonding interactions to protein stability. We have determined the energetics of placing Ile or Asn residues at four buried positions in a two-stranded coiled coil. As expected, Ile is favored over Asn at these buried positions, but not as much as predicted by considering only the hydrophobic effect. It appears that interstrand hydrogen bonds form between the side-chains of the buried Asn residues and these contribute to the conformational stability of the coiled-coil peptides. However, these contributions are highly dependent on the locations of the Asn pairs. The effect of an Ile to Asn mutation is greatest at the N terminus of the peptide and decreases almost twofold as we move the substitution from the N to C-terminal heptads.  相似文献   

4.
The final, structure-determining step in the folding of membrane proteins involves the coalescence of preformed transmembrane helices to form the native tertiary structure. Here, we review recent studies on small peptide and protein systems that are providing quantitative data on the interactions that drive this process. Gel electrophoresis, analytical ultracentrifugation, and fluorescence resonance energy transfer (FRET) are useful methods for examining the assembly of homo-oligomeric transmembrane helical proteins. These methods have been used to study the assembly of the M2 proton channel from influenza A virus, glycophorin, phospholamban, and several designed membrane proteins-all of which have a single transmembrane helix that is sufficient for association into a transmembrane helical bundle. These systems are being studied to determine the relative thermodynamic contributions of van der Waals interactions, conformational entropy, and polar interactions in the stabilization of membrane proteins. Although the database of thermodynamic information is not yet large, a few generalities are beginning to emerge concerning the energetic differences between membrane and water-soluble proteins: the packing of apolar side chains in the interior of helical membrane proteins plays a smaller, but nevertheless significant, role in stabilizing their structure. Polar, hydrogen-bonded interactions occur less frequently, but, nevertheless, they often provide a strong driving force for folding helix-helix pairs in membrane proteins. These studies are laying the groundwork for the design of sequence motifs that dictate the association of membrane helices.  相似文献   

5.
Examination of 80 alpha-helical proteins and domains demonstrates that they contain from 1 to more than 20 completely buried (water-inaccessible) polar side chains. As a rule the latter have partners for H-bonding but the resulting H-bond system is often not exhaustive. Basing on statistical analysis, we determined the optimal number of H-bonds for every type of polar side chain, and discuss the structural role of vacant donors and acceptors. About half of the H-bonds formed by buried side chains pertain to interhelix contacts of the (side chain)-(side chain) and (side chain)-(main chain) types. Such interactions appear to be a most important factor determining the mutual arrangement of alpha-helices in proteins. Analysis of the frequency of occurrence of various interacting pairs reveals that these interactions are selective.  相似文献   

6.
X-ray structures of proteins bound to ligand molecules containing a nucleic acid base were systematically searched for cation-pi interactions between the base and a positively charged or partially charged side chain group located above it, using geometric criteria. Such interactions were found in 38% of the complexes and are thus even more frequent than pi-pi stacking interactions. They are moreover well conserved in families of related proteins. The overwhelming majority of cation-pi contacts involve Ade bases, as these constitute by far the most frequent ligand building block; Arg-Ade is the most frequent cation-pi pair. Ab initio energy calculations at MP2 level were performed on all recorded pairs. Though cation-pi interactions involving the net positive charge carried by Arg or Lys side chains are the most favorable energetically, those involving the partial positive charge of Asn and Gln side chain amino groups (sometimes referred to as amino-pi interactions) are favorable too, owing to the electron correlation energy contribution. Chains of cation-pi interactions with a nucleobase bound simultaneously to two charged groups or a charged group sandwiched between two aromatic moieties are found in several complexes. The systematic association of these motifs with specific ligand molecules in unrelated protein sequences raises the question of their role in protein-ligand structure, stability, and recognition.  相似文献   

7.
Qualitative and quantitative analysis of polar side chains inaccessible to water molecules, as well as their interactions in 100 globular β-sheet proteins, was performed. It was shown that completely buried polar side chains are widespread in β-proteins, with their vast majority being involved in side chain-side chain or side chain-main chain interactions. An analysis of frequency of occurrence of different side chain-partner pairs demonstrated that these interactions are selective. The results were compared with similar data obtained earlier for α-helical proteins.  相似文献   

8.
9.
Pace CN 《Biochemistry》2001,40(2):310-313
On the basis of studies of Asn to Ala mutants, the gain in stability from burying amide groups that are hydrogen bonded to peptide groups is 80 cal/(mol A(3)). On the basis of similar studies of Leu to Ala and Ile to Val mutants, the gain in stability from burying -CH(2)- groups is 50 cal/(mol A(3)). Thus, the burial of an amide group contributes more to protein stability than the burial of an equivalent volume of -CH(2)- groups. Applying these results to folded proteins leads to the surprising conclusion that peptide group burial makes a larger contribution to protein stability than nonpolar side chain burial. Several studies have shown that the desolvation penalty for burying peptide groups is considerably smaller than generally thought. This suggests that the hydrogen bonding and van der Waals interactions of peptide groups in the tightly packed interior of folded protein are more favorable than similar interactions with water in the unfolded protein.  相似文献   

10.
Thermodynamics studies aimed at quantitatively characterizing free energy effects of amino acid substitutions are not restricted to two state systems, but do require knowing the number of states involved in the equilibrium under consideration. Using analytical ultracentrifugation and NMR methods, we show here that a membrane-soluble peptide, MS1, designed by modifying the sequence of the water-soluble coiled-coil GCN4-P1, exhibits a reversible monomer-dimer-trimer association in detergent micelles with a greater degree of cooperativity in C14-betaine than in dodecyl phosphocholine detergents.  相似文献   

11.
The LAP (leucine-rich repeat and PDZ-containing) family of proteins play a role in maintaining epithelial and neuronal cell size, and mutation of these proteins can have oncogenic consequences. The LAP protein Erbin has been implicated previously in a number of cellular activities by virtue of its PDZ domain-dependent association with the C termini of both ERB-B2 and the p120-catenins. The present work describes the NMR structure of Erbin PDZ in complex with a high affinity peptide ligand and includes a comprehensive energetic analysis of both the ligand and PDZ domain side chains responsible for binding. C-terminal phage display has been used to identify preferred ligands, whereas binding affinity measurements provide precise details of the energetic importance of each ligand side chain to binding. Alanine and homolog scanning mutagenesis (in a combinatorial phage display format) identifies Erbin side chains that make energetically important contacts with the ligand. The structure of a phage-optimized peptide (Ac-TGW(-4)ETW(-1)V; IC(50) = approximately 0.15 microm) in complex with Erbin PDZ provides a structural context to understand the binding energetics. In particular, the very favorable interactions with Trp(-1) are not Erbin side chain-mediated (and therefore may be generally applicable to many PDZ domains), whereas the beta2-beta3 loop provides a binding site for the Trp(-4) side chain (specific to Erbin because it has an unusually long loop). These results contribute to a growing appreciation for the importance of at least five ligand C-terminal side chains in determining PDZ domain binding energy and highlight the mechanisms of ligand discrimination among the several hundred PDZ domains present in the human genome.  相似文献   

12.
When tryptophyl side chains are hidden within relatively inflexible domains of globular proteins, the lifetime of the phosphorescence from these residues provides a measure of the local conformational flexibility. The phosphorescence decay from the tryptophan buried at the base of the nucleotide-binding domain in liver alcohol dehydrogenase (alcohol:NAD+ oxidoreductase, EC 1.1.1.1) was monitored between 1 and 40 degrees C to determine the energetics associated with the rate of local unfolding. The slow rate at which this process takes place is found to result from a high entropic barrier rather than from the disruption of strong intramolecular interactions. This observation along with the response of the system to solvent perturbations points to the significance of solvent-protein interactions in determining conformational flexibility.  相似文献   

13.
It was shown in qualitative and quantitative analyses of polar side chains inaccessible for water molecules as well as their interactions in 100 globular beta-structural proteins that completely buried polar side chains are widespread in beta-proteins, their vast majority being involved in "side chain-side chain" or "side chain-main chain" interactions. The analysis of the occurrence of different "side chain-partner" pairs permitted us to demonstrate that such interactions are selective. The results were compared with similar data obtained previously for alpha-helical proteins.  相似文献   

14.
To gain insight into how the N-terminal three-stranded beta-sheet-like domain in pediocin-like antimicrobial peptides positions itself on membranes, residues in the well-conserved (Y)YGNGV-motif in the domain were substituted and the effect of the substitutions on antimicrobial activity and binding of peptides to liposomes was determined. Peptide-liposome interactions were detected by measuring tryptophan-fluorescence upon exposing liposomes to peptides in which a tryptophan residue had been introduced in the N-terminal domain. The results revealed that the N-terminal domain associates readily with anionic liposomes, but not with neutral liposomes. The electrostatic interactions between peptides and liposomes facilitated the penetration of some of the peptide residues into the liposomes. Measuring the antimicrobial activity of the mutated peptides revealed that the Tyr2Leu and Tyr3Leu mutations resulted in about a 10-fold reduction in activity, whereas the Tyr2Trp, Tyr2Phe, Tyr3Trp and Tyr3Phe mutations were tolerated fairly well, especially the mutations in position 3. The Val7Ile mutation did not have a marked detrimental effect on the activity. The Gly6Ala mutation was highly detrimental, consistent with Gly6 being in one of the turns in the beta-sheet-like N-terminal domain, whereas the Gly4Ala mutation was tolerated fairly well. All mutations involving Asn5, including the conservative mutations Asn5Gln and Asn5Asp, were very deleterious. Thus, both the polar amide group on the side chain of Asn5 and its exact position in space were crucial for the peptides to be fully active. Taken together, the results are consistent with Val7 positioning itself in the hydrophobic core of target membranes, thus forcing most of the other residues in the N-terminal domain into the membrane interface region: Tyr3 and Asn5 in the lower half with their side chains pointing downward and approaching the hydrophobic core, Tyr2, Gly4 and His8 and 12 in the upper half, Lys1 near the middle of the interface region, and the side chain of Lys11 pointing out toward the membrane surface.  相似文献   

15.
Membrane topology of penicillin-binding protein 3 of Escherichia coli   总被引:12,自引:4,他引:8  
The beta-lactamase fusion vector, pJBS633, has been used to analyse the organization of penicillin-binding protein 3 (PBP3) in the cytoplasmic membrane of Escherichia coli. The fusion junctions in 84 in-frame fusions of the coding region of mature TEM beta-lactamase to random positions within the PBP3 gene were determined. Fusions of beta-lactamase to 61 different positions in PBP3 were obtained. Fusions to positions within the first 31 residues of PBP3 resulted in enzymatically active fusion proteins which could not protect single cells of E. coli from killing by ampicillin, indicating that the beta-lactamase moieties of these fusion proteins were not translocated to the periplasm. However, all fusions that contained greater than or equal to 36 residues of PBP3 provided single cells of E. coli with substantial levels of resistance to ampicillin, indicating that the beta-lactamase moieties of these fusion proteins were translocated to the periplasm. PBP3 therefore appeared to have a simple membrane topology with residues 36 to the carboxy-terminus exposed on the periplasmic side of the cytoplasmic membrane. This topology was confirmed by showing that PBP3 was protected from proteolytic digestion at the cytoplasmic side of the inner membrane but was completely digested by proteolytic attack from the periplasmic side. PBP3 was only inserted in the cytoplasmic membrane at its amino terminus since replacement of its putative lipoprotein signal peptide with a normal signal peptide resulted in a water-soluble, periplasmic form of the enzyme. The periplasmic form of PBP3 retained its penicillin-binding activity and appeared to be truly water-soluble since it fractionated, in the absence of detergents, with the expected molecular weight on Sephadex G-100 and was not retarded by hydrophobic interaction chromatography on Phenyl-Superose.  相似文献   

16.
We present a computational model of the interaction between hydrophobic cations, such as the antimicrobial peptide, Magainin2, and membranes that include anionic lipids. The peptide's amino acids were represented as two interaction sites: one corresponds to the backbone alpha-carbon and the other to the side chain. The membrane was represented as a hydrophobic profile, and its anionic nature was represented by a surface of smeared charges. Thus, the Coulombic interactions between the peptide and the membrane were calculated using the Gouy-Chapman theory that describes the electrostatic potential in the aqueous phase near the membrane. Peptide conformations and locations near the membrane, and changes in the membrane width, were sampled at random, using the Metropolis criterion, taking into account the underlying energetics. Simulations of the interactions of heptalysine and the hydrophobic-cationic peptide, Magainin2, with acidic membranes were used to calibrate the model. The calibrated model reproduced structural data and the membrane-association free energies that were measured also for other basic and hydrophobic-cationic peptides. Interestingly, amphipathic peptides, such as Magainin2, were found to adopt two main membrane-associated states. In the first, the peptide resided mostly outside the polar headgroups region. In the second, which was energetically more favorable, the peptide assumed an amphipathic-helix conformation, where its hydrophobic face was immersed in the hydrocarbon region of the membrane and the charged residues were in contact with the surface of smeared charges. This dual behavior provides a molecular interpretation of the available experimental data.  相似文献   

17.
Kondratova  M. S.  Efimov  A. V. 《Molecular Biology》2002,36(1):117-123
Examination of 80 -helical proteins and domains demonstrates that they contain from 1 to more than 20 completely buried (water-inaccessible) polar side chains. As a rule the latter have partners for H-bonding but the resulting H-bond system is often not saturating. Basing on statistical analysis, we determined the optimal number of H-bonds for every type of polar side chain, and discuss the structural role of vacant donors and acceptors. About half of the H-bonds formed by buried side chains pertain to interhelix contacts of the (side chain)–(side chain) and (side chain)–(main chain) types. Such interactions appear to be a most important factor determining the mutual arrangement of -helices in proteins. Analysis of the frequency of occurrence of various interacting pairs reveals that these interactions are selective.  相似文献   

18.
19.
Computational prediction of side‐chain conformation is an important component of protein structure prediction. Accurate side‐chain prediction is crucial for practical applications of protein structure models that need atomic‐detailed resolution such as protein and ligand design. We evaluated the accuracy of eight side‐chain prediction methods in reproducing the side‐chain conformations of experimentally solved structures deposited to the Protein Data Bank. Prediction accuracy was evaluated for a total of four different structural environments (buried, surface, interface, and membrane‐spanning) in three different protein types (monomeric, multimeric, and membrane). Overall, the highest accuracy was observed for buried residues in monomeric and multimeric proteins. Notably, side‐chains at protein interfaces and membrane‐spanning regions were better predicted than surface residues even though the methods did not all use multimeric and membrane proteins for training. Thus, we conclude that the current methods are as practically useful for modeling protein docking interfaces and membrane‐spanning regions as for modeling monomers. Proteins 2014; 82:1971–1984. © 2014 Wiley Periodicals, Inc.  相似文献   

20.
Electrostatic interactions are among the key factors determining the structure and function of proteins. Here we report experimental results that illuminate the functional importance of local dipoles to these interactions. The refined 1.7-A X-ray structure of the liganded form of the sulfate-binding protein, a primary sulfate active transport receptor of Salmonella typhimurium, shows that the sulfate dianion is completely buried and bound by hydrogen bonds (mostly main-chain peptide NH groups) and van der Waals forces. The sulfate is also closely linked, via one of these peptide units, to a His residue. It is also adjacent to the N-termini of three alpha-helices, of which the two shortest have their C-termini "capped" by Arg residues. Site-directed mutagenesis of the recombinant Escherichia coli sulfate receptor had no effect on sulfate-binding activity when an Asn residue was substituted for the positively charged His and the two Arg (changed singly and together) residues. These results, combined with other observations, further solidify the idea that stabilization of uncompensated charges in a protein is a highly localized process that involves a collection of local dipoles, including those of peptide units confined to the first turns of helices. The contribution of helix macrodipoles appears insignificant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号