首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ammonia assimilation by rhizobium cultures and bacteroids.   总被引:23,自引:0,他引:23  
The enzymes involved in the assimilation of ammonia by free-living cultures of Rhizobium spp. are glutamine synthetase (EC. 6.o.I.2), glutamate synthase (L-glutamine:2-oxoglutarate amino transferase) and glutamate dehydrogenase (ED I.4.I.4). Under conditions of ammonia or nitrate limitation in a chemostat the assimilation of ammonia by cultures of R. leguminosarum, R. trifolii and R. japonicum proceeded via glutamine synthetase and glutamate synthase. Under glucose limitation and with an excess of inorganic nitrogen, ammonia was assimilated via glutamate dehydrogenase, neither glutamine synthetase nor glutamate synthase activities being detected in extracts. The coenzyme specificity of glutamate synthase varied according to species, being linked to NADP for the fast-growing R. leguminosarum, R. melitoti, R. phaseoli and R. trifolii but to NAD for the slow-growing R. japonicum and R. lupini. Glutamine synthetase, glutamate synthase and glutamate dehydrogenase activities were assayed in sonicated bacteroid preparations and in the nodule supernatants of Glycine max, Vicia faba, Pisum sativum, Lupinus luteus, Medicago sativa, Phaseolus coccineus and P. vulgaris nodules. All bacteroid preparations, except those from M. sativa and P. coccineus, contained glutamate synthase but substantial activities were found only in Glycine max and Lupinus luteus. The glutamine synthetase activities of bacteroids were low, although high activities were found in all the nodule supernatants. Glutamate dehydrogenase activity was present in all bacteroid samples examined. There was no evidence for the operation of the glutamine synthetase/glutamate synthase system in ammonia assimilation in root nodules, suggesting that ammonia produced by nitrogen fixation in the bacteroid is assimilated by enzymes of the plant system.  相似文献   

2.
The effect of nitrate on symbiotic nitrogen fixation by root nodules of cowpea (Vigna unguiculata L., Walp., cv. California Blackeye) and lupine (Lupinus augustifolius L., cv. Frost) plants inoculated with nitrate reductase-expressing and nitrate reductase-nonexpressing Rhizobium strains were examined. Nitrate reductase of Rhizobium bacteroids in the nodules of cowpea and lupine reduced nitrate to nitrite. Both cowpea and lupine nodules accumulated nitrite when grown in the presence of 15 millimolar nitrate and induced by Rhizobium strains which express nitrate reductase activity (Rhizobium sp. 32H1 and 127E15). The nitrogen fixation (acetylene reduction) activities of cowpea and lupine nodules were inhibited by nitrate whether the nodules were induced by Rhizobium strains that express (Rhizobium sp. 32H1 and 127E15) or do not express (Rhizobium sp. 127E14 and R. lupini ATCC 10318) nitrate reductase activity. These findings indicate that nitrite, the product of bacteroid nitrate reductase, may not play a role in the inhibitory effect of nitrate on nitrogen fixation activities of legume root nodules. However, the degree of inhibition on the fixation activity by nitrate varied in different legume-Rhizobium combinations.  相似文献   

3.
The ability of agrobacteria to reduce Nile Blue more strongly than do rhizobia is the basis of a test for separating these two groups (Hamdi 1969). In a modified test using only 35 parts 10° of Nile Blue in the medium, 89 of 90 rhizobia ( Rhizobium japonicum, R. leguminosarum, R. lupini, R. phaseoli, R. trifolii , cowpea, groundnut and Lotus rhizobia) failed to reduce the dye whereas all 24 strains of agrobacteria ( Agrobacterium radiobacter var. radiobacter, A. r. var. tumefaciens and A. r. var. rhizogenes ) reduced it to the colourless state. Only one Rhizobium strain formed 3-ketolactose from lactose, but 13 agrobacteria produced it. Rhizobium meliloti strains (12) gave variable reactions in both tests. The Nile Blue Test detected rapidly, but not slowly growing, strains of agrobacteria present as contaminants of rhizobia cultures even when their initial numbers were small.  相似文献   

4.
Denitrification in Rhizobium   总被引:7,自引:0,他引:7  
Thirty-three strains of Rhizobium were examined for their reduction of nitrate under anoxic conditions. Three patterns of dissimilatory nitrate reduction were observed: (1) reduction to N2O and N2 (denitrification), (2) reduction to and subsequent accumulation of NO2- (nitrate respiration), (3) no reduction. Strains of R. japonicum and the cowpea miscellany displayed all three types, while strains of R. leguminosarum, R. phaseoli, and R. trifolii did not reduce nitrate by dissimilatory means. The production and subsequent metabolism of N2O was considerably different among the denitrifying strains: in some instances, N2O was a transient intermediate, while in others, it continued to accumulate during the incubation period.  相似文献   

5.
The physiological properties of Rhizobium trifolii strain T1 were studied in detail, since this strain has many useful characteristics and appears ideal for development as a reference strain for R. trifolii. Some tricarboxylic acid cycle intermediates and related compounds were found to stimulate growth in the presence of sucrose and arabinose, while others inhibited growth partially or completely. Other R. trifolii strains behaved likewise. Moreover, similar responses were also observed with other Rhizobium species, both fast-growing and slow-growing. On the basis of these growth responses, the various species of fast-growing and slow-growing rhizobia could be differentiated. Of the fast-growers tested, R. trifolii and R. leguminosarum are much more closely related to each other than either is to R. meliloti. Similarly, the slow-growing cowpea rhizobia are more closely related to R. japonicum than either group is to R. lupini. It is proposed that strain T1 should be developed as the reference strain for Rhizobium trifolii.  相似文献   

6.
This investigation revealed that the ribonucleotide reductases in extracts of Rhizobium leguminosarum, R. trifolii, R. phaseoli, R. japonicum, and R. meliloti 3DOal (ineffective in nitrogen fixation) are dependent upon B(12) coenzyme for activity. Rhizobium and certain Lactobacillus species are the only two groups of organisms known to contain B(12) coenzyme-dependent ribonucleotide reductases. Extracts of cobalt-deficient R. meliloti cells assayed in the presence of optimum B(12) coenzyme showed a 5- to 10-fold greater ribonucleotide reductase activity than comparable extracts from cells grown on a complete medium. Furthermore, cobalt-deficient cells were abnormally elongated and contained reduced contents of deoxyribonucleic acid. The addition of purified deoxyribonucleosides to cobalt-deficient cultures of R. meliloti failed to alleviate deficiency symptoms.  相似文献   

7.
FDP aldolase was found to be present in the cell-free extracts of Rhizobium leguminosarum, Rhizobium phaseoli, Rhizobium trifolii, Rhizobium meliloti, Rhizobium lupini, Rhizobium japonicum and Rhizobium species from Arachis hypogaea and Sesbania cannabina. The enzyme in 3 representative species has optimal activity at pH 8.4 in 0.2M veronal buffer. The enzyme activity was completely lost by treatment at 60 degrees C for 15 min. The Km values were in the range from 2.38 to 4.55 X 10(-6)M FDP. Metal chelating agents inhibited enzyme activity, but monovalent or bivalent metal ions failed to stimulate the activity. Bivalent metal ions in general were rather inhibitory.  相似文献   

8.
S ummary : Numbers of Rhizobium meliloti, R. trifolii, R. leguminosarum and R. lupini in different fields near Wye, Kent, were determined by the 'plant dilution'method. R. trifolii was most abundant, followed by R. leguminosarum , with R. meliloti and R. lupini less abundant and more restricted in their distribution. Isolates were made from nodules taken from the highest dilutions of soil that produced nodules and were tested for effectiveness in fixing nitrogen in agar tube culture. In general, isolates were effective or fairly effective. Highly effective isolates of R. trifolii were found in a very calcareous soil which had grown barley for 9 years. A permanent pasture which received higher doses of N fertilizer than other fields, contained strains of R. trifolii with a wider range of effectiveness, some giving only 50% of the dry matter production of the standard strain. The survival of R. meliloti 2001 in fields in which lucerne had not been grown for 9—14 years was studied, using a serological technique. No isolate was identified with certainty as strain 2001, but 55 of the 110 isolates tested showed some common features with this strain.  相似文献   

9.
Anomalous nodulation of Trifolium subterraneum (subterranean clover) roots by Rhizobium leguminosarum 1020 was examined as a model of modified host-specificity in a Rhizobium-legume symbiosis. Consistent with previous reports, these nodules (i) appeared most often at sites of secondary root emergence, (ii) were ineffective in nitrogen fixation and (iii) were as numerous as nodules formed by an effective Rhizobium trifolii strain. R. leguminosarum 1020, grown on agar plates or in the clover root environment, did not bind the white clover lectin, trifoliin A. This strain did not attach in high numbers, and did not induce shepherd's crooks or infection threads, in subterranean clover root hairs. However, R. leguminosarum 1020 did cause branching, moderate curling and other deformations of root hairs. The bacteria probably entered the clover root through breaks in the epidermis at sites of lateral root emergence. The anomalous nodulation was inhibited by nitrate. Only trace amounts of leghaemoglobin were detected in the nodules by Western blot analysis. The nodules were of the meristematic type and initially contained well-developed infection, bacteroid and senescent zones. Infection threads were readily found in the infection zone of the nodule. However, the bacteroid-containing tissue senesced more rapidly than in the effective symbiosis between subterranean clover and R. trifolii 0403. This anomalous nodulation of subterranean clover by R. leguminosarum 1020 suggests a naturally-occurring alternative route of infection that allows Rhizobium to enlarge its host range.  相似文献   

10.
Fluorescent-Antibody Approach to Study of Rhizobia in Soil   总被引:62,自引:2,他引:60  
Application of fluorescent-antibody (FA) techniques to the study of rhizobia as free-living soil bacteria was explored. Antiserum to a particular strain of Rhizobium japonicum proved specific in both agglutination and FA tests. Within the R. japonicum group, 2 of 12 strains were stained by the conjugate and these fluoresced brightly; all others were entirely negative. FA tests were negative for 7 strains of R. meliloti, 9 strains of R. leguminosarum, 9 strains of R. trifolii, 6 strains of R. phaseoli, and 65 unidentified bacteria isolated from 12 soils. R. japonicum grew in autoclaved soil and was readily detectable by FA examination of contact slides. The FA technique also detected antibody-reacting bacteria in a field soil whose rhizobial content was unknown. Fluorescent cells were probably R. japonicum, since nodules developed on soybean plants grown in the same soil sample and FA preparations of the crushed nodules proved positive. Autofluorescence was not a problem, but nonspecific adsorption of conjugate restricted observations to microscopic fields free from soil particles. Nonspecific adsorption was substantial, irrespective of the soil used.  相似文献   

11.
Abstract A combined subtraction hybridization and polymerase chain reaction/amplification technique was used to develop a DNA probe which was specific for the Rhizobium leguminosarum biovar phaseoli and the Rhizobium tropici group. Total genomic DNA preparations from Rhizobium leguminosarum biovar viciae, Rhizobium leguminosarum biovar trifolii, Rhizobium sp., Agrobacterium tumefaciens, Rhizobium fredii, Bradyrhizobium japonicum, Bradyrhizobium ssp. and Rhizobium meliloti were pooled and used as subtracter DNA against total genomic DNA from the Rhizobium leguminosarum biovar phaseolo strain KIM5s. Only one round of subtraction hybridization at 65°C was necessary to remove all cross-hybridizing sequences. Dot blot hybridizations with total genomic DNA of the eight subtracter organisms and 29 bacteria of different groups confirmed the high specificity of the isolated DNA sequences. Dot blot hybridizations and total genomic DNA from ten different R. Leguminosarum biovar phaseoli and R. tropici strains resulted in strong hybridization signals for all strains tested. The DNA probe for the R. tropici and R. leguminosarum biovar phaseoli group was used for dot blot hybridization with DNA extracts from three tropical and one boreal soil. When correlated with data from Most Probable Number analyses the probe was capable of detecting as low as 3 × 104 homologous indigenous rhizobia per g soil. The technique offers great benefits for the development of DNA probes for monitoring bacterial populations in environmental samples.  相似文献   

12.
Salt tolerance of five rhizobia strains was examined in broth cultures. Five levels of NaCl concentration were used and the optical density was taken as a measure for the vigour of bacterial growth. Rhizobium leguminosarum and R. meliloti were tolerant to high levels of salinity and growth curves in saline broth showed a similar pattern to the control level. Rhizobium japonicum, cowpea Rhizobium, and R. trifolii were intolerant to salt and showed a strong growth retardation with increasing salt concentration. Growth was inhibited at high levels of salinity. It is suggested that rhizobia sensitivity to salts may be partly responsible to the inhibition of nitrogen fixation by legumes growing under salt stress.  相似文献   

13.
The potential of using fatty acid methyl ester (FAME) profiles of Rhizobium leguminosarum bv. viceae , phaseoli and trifolii , and Rhizobium sp. ( Cicer ) strains, for the identification of unknown isolates was assessed. This was achieved by developing a Rhizobium FAME library using 16 different Rhizobium strains of Rh. leguminosarum bv. viceae ( n  = 5), Rh. leguminosarum bv. phaseoli ( n  = 5), Rh. leguminosarum bv. trifolii ( n  = 1) and Rhizobium sp. ( Cicer ) ( n  = 5). Although there were considerable differences between Rh. leguminosarum biovars and strains and Rhizobium sp. ( Cicer ) strains, the variation within a particular biovar of Rh. leguminosarum was not high. Nevertheless, the feature FAME profiles of the various groups in the library allowed 75 putative rhizobia obtained from surface-sterilized nodules of field-grown lentil and pea plants to be identified.  相似文献   

14.
Legume root-nodules, dried at oven temperature (70°C for 48 h) were suitable for Rhizobium strain identification by immunofluorescence and agglutination. The fluorescence of bacteroids of R. japonicum, R. leguminosarum, R. meliloti, R. phaseoli , and Rhizobium spp. from oven-dried nodules was the same as those from frozen, desiccated, or nodules dried at room temperature (28°C). Oven-dried nodules did not require further steaming for agglutination. Bacteroid agglutinations gave 2–16 fold lower titres than those of the cultured cells. Fresh and oven-dried soybean rhizobia from a mixed inoculation gave exactly the same results when identified by immunofluorescence or agglutination.  相似文献   

15.
Strain Identification in Rhizobium Using Intrinsic Antibiotic Resistance   总被引:8,自引:3,他引:5  
The variation in intrinsic resistance to low levels of eight antibiotics was used as an identifying characteristic for 26 Rhizobium leguminosarum strains. The pattern of antibiotic resistance of each strain was a stable property by which rhizobia isolated from root nodules of inoculated Pisum sativum could be recognized. The antibiotic tests for strain identification with R. leguminosarum were applied to R. phaseoli . It was necessary to include reference cultures in tests with this species, as the tests most suitable for the R. leguminosarum strains showed some variability with R. phaseoli .  相似文献   

16.
A single large plasmid was isolated from multiplasmid-harboring strains Rhizobium leguminosarum 1001 and R. trifolii 5. These single plasmids, as well as the largest plasmid detectable in R. phaseoli 3622, hybridized with part of the nif structural genes of Klebsiella pneumoniae. In contrast, the plasmids of R. meliloti strains V7 and L5-30 did not show hybridization with the nif genes of K. pneumoniae, indicating that these genes might be located either on the chromosome or on a much larger plasmid which as yet has not been isolated. Studies of the homology between plasmids of fast-growing Rhizobium species showed that a specific deoxyribonucleic acid sequence, which carries the structural genes for nitrogenase, is highly conserved on a plasmid in R. leguminosarum, R. trifolii, and R. phaseoli. Furthermore, it was found that this type of plasmid in the different species shares extensive deoxyribonucleic acid homology, suggesting that strains in the R. leguminosarum cluster have preserved a nif plasmid.  相似文献   

17.
Deoxyribonucleic acid (DNA) was isolated from 20 strains of Rhizobium and Agrobacterium and from one strain of Serratia marcescens; the guanine plus cytosine content of each DNA sample was determined by thermal denaturation. Radioactive DNA was isolated from three reference strains following the uptake of [2-(14)C]thymidine in the presence of deoxyadenosine. Ribonucleic acid (RNA) polymerase was used to synthesize radioactive RNA on DNA templates from the three reference strains. Radioactive DNA and RNA from the three reference strains were each hybridized with filter-bound DNA from all of the 21 test strains in 6 x SSC (standard saline citrate) and 50% formamide at 43 C for 40 hr. DNA/DNA relatedness was also determined by spectrophotometric measurement of the rates of association of single-stranded DNA. The order of relatedness between strains was similar by each method. Overall standard deviations for the DNA/DNA and DNA/RNA membrane filter techniques were +/-0.87 and +/-1.03%, respectively; that for the spectrophotometric technique was +/-4.11%. The DNA/DNA membrane technique gave higher absolute values of hybridization than did the DNA/RNA technique. R. leguminosarum and R. trifolii could not be distinguished from each other by these techniques. These results also indicated close relationships between R. lupini and R. japonicum, and (with less certainty) between R. meliloti and R. phaseoli. Of all the rhizobia tested against the A. tumefaciens 371 reference strain, the R. japonicum strains were the most unrelated. The three Agrobacterium strains used were as related to the R. lupini and R. leguminosarum references as were several rhizobium strains.  相似文献   

18.
Identification of the Sym plasmid in Rhizobium phaseoli strain RCC3622 is described. Introduction of this plasmid into R. trifolii or Agrobacterium tumefaciens strains resulted in bacteria capable of forming characteristic spherical root nodules on beans. This Sym plasmid, designated pSym9, was characterized as 275 MDa and nonconjugative. pSym9 was incompatible with the R. trifolii Sym plasmid pSym5, and carries genes determining a melanin-like black pigment. A second plasmid of 135 MDa, pRph3622a, was also transferred from R. phaseoli to R. trifolii and A. tumefaciens. Transconjugants carrying this plasmid did not form root nodules on beans. In contrast to other Rhizobium plasmids, pRph3622a was unstable in A. tumefaciens.  相似文献   

19.
A low concentration of yeast extract (0·1%) in liquid media favoured rapid growth and high percentage of viable cells in cultures of Rhizobium japonicum (CB 1809), R. lupini (WU 425), R. meliloti (SU 47), R. trifolii (TA1) and a cowpea strain (CB 756). Concentrations of yeast extract > 0·35% depressed viability and produced distorted cells in all strains except SU 47: TA1 was especially sensitive. When used at 0·5–1% (w/v), each yeast extract (Difco, Oxoid, Vegemite) or casein hydrolysate produced greatly enlarged abnormal cells of TA1, each containing several granules of poly-β-hydroxybutyrate and whorls of intracytoplasmic membranes, and showing greater internal disorganisation than that seen in root nodule bacteroids. Lysogenic and non-lysogenic cultures of R. trifolii were all sensitive to yeast extract, and such sensitivity, for strains of several species, was unrelated to effectiveness in nodulating host plants. Glycine inhibited growth of all strains tested. Several other amino acids occurring in casein hydrolysate inhibited TA1 strongly and induced formation of distorted cells and spheroplasts; this distortion was partly counteracted by adding salts of calcium or magnesium. In media with 0·1% yeast extract the use of mannitol, sucrose, lactose or galactose as alternative carbon sources, each at a concentration of 0·02–1%, did not affect numbers of viable rhizobia or cell shape in all strains tested.  相似文献   

20.
Most rhizobial hemA mutants induce root nodules on their respective legume hosts that lack nitrogen fixation activity and leghemoglobin expression. However, a Bradyrhizobium japonicum hemA mutant elicits effective nodules on soybean, and we proposed previously that synthesis and uptake of the heme precursor [delta]-aminolevulinic acid (ALA) by the plant and bacterial symbiont, respectively, allow mutant rescue (I. Sangwan, M.R. O'Brian [1991] Science 251: 1220-1222). In the present work, the B. japonicum hemA mutant MLG1 elicited normal nodules on three hosts, including cowpea, a plant that is not effectively nodulated by a hemA mutant of Rhizobium sp. These data indicate that B. japonicum rather than soybean possesses the unique trait that allows normal nodule development by a hemA mutant. Cowpea expressed glutamate-dependent ALA formation activity in nodules induced by B. japonicum strains I110 or MLG1 and by Rhizobium sp. ANU240. Exogenous ALA was taken up by B. japonicum bacteroids isolated from soybean or cowpea nodules, and the kinetics of uptake were biphasic. By comparison, Rhizobium sp. ANU240 had very low ALA uptake activity. In addition, ALA uptake was observed in cultured cells of B. japonicum but not in cultured cells of three other rhizobial species tested. We suggest that the differential success of legume-rhizobial hemA symbioses is due to an ALA uptake activity in B. japonicum that is deficient in other rhizobia, thereby further validating the ALA rescue hypothesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号