首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study was designed to compare the compressive mechanical properties of filler materials, Wood's metal, dental stone, and polymethylmethacrylate (PMMA), which are widely used for performing structural testing of whole vertebrae. The effect of strain rate and specimen size on the mechanical properties of the filler materials was examined using standardized specimens and mechanical testing. Because Wood's metal can be reused after remelting, the effect of remelting on the mechanical properties was tested by comparing them before and after remelting. Finite element (FE) models were built to simulate the effect of filler material size and properties on the stiffness of vertebral body construct in compression. Modulus, yield strain, and yield strength were not different between batches (melt-remelt) of Wood's metal. Strain rate had no effect on the modulus of Wood's metal, however, Young's modulus decreased with increasing strain rate in dental stone whereas increased in PMMA. Both Wood's metal and dental stone were significantly stiffer than PMMA (12.7 +/- 1.8 GPa, 10.4 +/- 3.4 GPa, and 2.9 +/- 0.4 GPa, respectively). PMMA had greater yield strength than Wood's metal (62.9 +/- 8.7 MPa and 26.2 +/- 2.6 MPa). All materials exhibited size-dependent modulus values. The FE results indicated that filler materials, if not accounted for, could cause more than 9% variation in vertebral body stiffness. We conclude that Wood's metal is a superior moldable bonding material for biomechanical testing of whole bones, especially whole vertebrae, compared to the other candidate materials.  相似文献   

2.
Metal interactions with beef heart mitochondrial ATPase   总被引:1,自引:0,他引:1  
Atomic absorption and electron paramagnetic resonance spectroscopy were used to study the metal binding sites of beef heart mitochondrial ATPase (F1). Quantitative and qualitative properties of these sites are described. Two different separation techniques were able to distinguish two very tight sites from one tight (easily exchangeable) metal binding site on F1. Of these sites, two are specific for magnesium while one can be substituted with Mn2+, Co2+, or Zn2+. When MgAMP-PNP was incubated with F1, a fourth metal was bound to the enzyme. The carboxyl group modified by dicyclohexylcarbodiimide is shown not to be involved in binding of any of the tightly bound metals. Qualitative properties of the metal binding sites using the Mn2+-enzyme complex as a probe were ascertained using EPR at pH 6.8 and 8.0. CrATP and Mn2+ appear to bind to different metal sites on F1. The possible role of the metals in regulation of catalysis, and their relation to nucleotide binding is discussed.  相似文献   

3.
Flavobacterium rigense strain PR2, a broad-spectrum mercury-resistant bacterium abundantly present in soil exhibited multiple metal resistance properties. Mercury resistance was due to the sequential action of two mercury-detoxicating enzymes, organomercurial lyase and mercuric reductase. The levels of these enzyme activities were determined using different mercury compounds as inducers and substrates. Mercuric reductase was partially purified from the bacterium and the physicochemical properties of the enzyme were studied. The effect of several enzyme inhibitors and heavy metal ions on the enzyme activity was also studied.  相似文献   

4.
High-throughput 16S rRNA and 18S rRNA sequencing were performed to study the changes of soil microbial diversity and community structure under different heavy metal pollution levels in Chengxian lead–zinc mining area, Gansu Province. In this study, we characterized the main physicochemical properties, multiple heavy metal pollution, and microbial community structure of the soil in the tailings. The results show that the soil near the tailings pond was alkaline, barren and the heavy metals were seriously polluted. The microbial diversity and richness of S1 and S2 sites were significantly lower than that of CK2 site (P < 0·05), indicating that the heavy metal pollution could change the physicochemical properties and microbial community structure in soil. Among 97 identified core operating taxa of fungal communities, Ascomycota, Teguta and Basidiomycota were dominant at the phylum level, while among 1523 identified core operating taxa of bacterial communities, Actinomycota was dominant at the phylum level. In addition, the redundancy analysis and Spearman correlation analysis showed that the physicochemical properties and the heavy metal concentration had significant effects on the composition and distribution of soil microbial community. The basic characteristics of soil physicochemical properties, multiple heavy metal pollution and microbial community structure in the tailings were revealed, hoping to provide a basis for ecological rehabilitation of tailings by revealing the variance rule of microbial community diversity in the future.  相似文献   

5.
Antibacterial behavior of chitosan-bivalent metal chelates (Co and Ni) was investigated in vitro against standard bacteria, Staphylococcus aureus ATCC 4533, S. faecalis ATCC 8043 and Escherichia coli ATCC 25923. The chitosan-metal chelates were prepared by varying the molar ratio of metal ions to a fixed amount of chitosan. The metal ion contents, structural properties and morphology of the chelates were respectively determined using ICP-OES, FT-IR and SEM. All the chitosan-metal chelates showed wide spectrum of effective antibacterial activities better than free chitosan and the individual metal ions. The results indicated that inhibitory effects of the chelates were dependent not only on the property of the coordinated metal ion, but also on the molar ratio of the metal ion. Consequently, the ideal inhibitory effects could be obtained with metal ion of high charge intensity and when the molar ratio of chitosan to metal was above 1:1. These chelates are promising materials for novel antibacterial agents.  相似文献   

6.
重金属污染对生态环境和人类健康具有极大的危害,建立灵敏、快捷、高效的重金属检测方法具有非常重要的意义.现有的检测技术依赖大型仪器设备,在检测条件、时间以及成本上都有较高的要求,难以满足当前检测工作的需要.随着纳米技术的飞速发展,各种纳米材料不同于块体材料的优异特性被广泛开发,在化学和生物检测领域已有广泛的应用.本文主要综述了近几年来常用的几种纳米探针在重金属检测应用中的研究进展,并对各种纳米探针的特点及检测原理进行了阐述和总结.这些纳米探针包括半导体荧光量子点,荧光纳米粒子、金纳米颗粒等材料,由于他们独特的荧光特性、吸收特性、表面等离子共振(SPR)效应、表面能量转移(SET)效应等,在重金属离子检测领域有很大的应用前景.并且根据目前实际环境监测工作的需要,对基于纳米探针的检测手段进行了讨论和展望,旨在为重金属污染物检测研究的发展和进步提供参考.  相似文献   

7.
Small metal nanostructures, especially gold and silver nanoparticles, are known for their interesting optical properties caused by plasmonic effects. Molecular plasmonics, a combination of these optically active nanostructures with the molecular world, opens new possibilities for bioanalytics and (bio-) nanophotonics. Isotropic or anisotropic, homogeneous or heterogeneous metal nanoparticles provide a platform for different, highly defined functional units with interesting optical properties such as plasmon waveguides or molecular beacons. Nanohole arrays in metal layers are another promising component for nanophotonics. New photonic materials were realized from combinations of single metal nanoparticles with individual nanoholes in metals. Atomic force microscopic imaging was used to determine the particle location as well as the lateral dimensions and the topography of the resulting structures. Besides ultramicroscopic characterization of the nanoarrangements, such as nanoparticles positioned in nanoholes, far-field optical methods were also applied to investigate their optical properties.  相似文献   

8.
P B O'Hara  S H Koenig 《Biochemistry》1986,25(6):1445-1450
A human serum transferrin complex was prepared in which Gd(III) was substituted for Fe(III) at the two metal-binding sites. Characteristic changes upon metal binding in both the UV absorption of ligated tyrosines and the solvent proton longitudinal magnetic relaxation rates demonstrated 2/1 metal stoichiometry and pH-dependent binding constants. Binding studies were complicated both by binding of Gd(III) to nonspecific sites on transferrin at pH less than or equal to 7 and by complexation of the Gd(III) by the requisite bicarbonate anion at pH greater than or equal to 6.0. A unique Gd(III) electron spin resonance spectrum, with a prominent signal at g = 4.96, was observed for the specific Gd(III)-transferrin complex. The major features of this spectrum were fit successfully by a model Hamiltonian which utilized crystal field parameters similar to those determined for Fe(III) in transferrin [Aasa, R. (1970) J. Chem. Phys. 52, 3919-3924]. The magnetic field dependence of the solvent proton relaxation rate was measured as a function of both pH and metal ion concentration. An observed biphasic dependence of the relaxation rate on metal concentration is attributed to either sequential metal binding to the two iron-binding sites with different relaxation properties or random binding to two sites that are similar but show conformationally induced changes in relaxation properties as the second metal is bound. The increase in the solvent proton relaxation rate with pH is consistent with a model in which a proton of a second coordination sphere water molecule is hydrogen bonded to a metal ligand which becomes deprotonated at pH 8.5.  相似文献   

9.
Hydroxamic acids are regarded as potent inhibitors of histone deacetylases (HDAC), and can therefore be used to reduce malignancy growth and size in affected organisms. Although there is a substantial body of information on the structures, syntheses, and biological activities of HDAC inhibitors, several important questions regarding their physicochemical properties and metal affinities/selectivities remain answered. First, how do the conformation and ionization of the hydroxamic group depend on its chemical composition and the dielectric properties of the medium? Second, how do these factors affect the affinities and selectivities of HDAC inhibitors for essential biogenic metal cations? Third, what is the preferred deprotonation site of the hydroxamic moiety and its mode of binding to the metal cation? The present work addressed these questions by performing density functional calculations combined with polarizable continuum model computations. The geometry, deprotonation pattern, metal-binding mode, and metal affinity/selectivity of SAHA, a typical HDAC inhibitor, were examined, and key factors affecting its ligation properties were elucidated. Sulfur- and selenium-containing analogs of SAHA were also modeled for the first time, and their potential as efficient metal-binding entities (to Mg2+, Fe2+, and Zn2+ cations) was assessed. The present calculations shed light on the thermodynamics of the binding of HDAC inhibitors to metal ions, and suggest techniques for enhancing their metal-ligating properties.  相似文献   

10.
The effects of the divalent alkaline-earth metal ions (Ca2+ and Mg2+) on the substrate binding affinity, spin-state transition at the heme active site, conformational properties as well as the stability of the active form of cytochrome P450cam (CYP 101) have been investigated using various spectroscopic and kinetic methods. The divalent cations were found to have two types of effects on the enzyme. At the initial stage the alkaline-earth metal ion facilitated enhanced binding of the substrate and formation of the high-spin form of the heme active center of the enzyme compared to that in absence of any metal ion. However, analogous to many other mono-valent metal ions, the alkaline-earth metal ions were also less efficient than K+ in promoting the substrate binding and spin-transition properties of the enzyme. The auxiliary metal ions were shown to cause small but distinct change in the circular dichroism spectra of the substrate-free enzyme in the visible region, indicating that the tertiary structure around the heme was perturbed on binding of the auxiliary metal ion to the enzyme. The effect of the auxiliary metal ion was found to be more prominent in the WT enzyme compared to the Y96F mutant of P450cam suggesting that the Tyr 96 residue plays an important role in mediating the effects of the auxiliary metal ions to the active site of the enzyme. At the second stage of interaction, the alkaline-earth metal ions were found to slowly convert the enzyme into an inactive P420 form, which could be reversibly re-activated by addition of KCl. The results have been discussed in the light of understanding the mechanism of inactivation of certain mammalian P450 enzymes by these alkaline-earth metal ions.  相似文献   

11.
大气降尘是矿区土壤重金属的主要来源,而生物结皮对大气降尘重金属有显著的富集作用。为探究不同类型生物结皮对大气降尘重金属的富集规律及其影响因子,选取宁东典型火电厂周边生物结皮广布区作为试验样地,3类生物结皮作为研究对象,并以临近裸土作为对照,对比分析了生物结皮富集大气降尘过程中土壤理化性质、酶活性及重金属含量的变化,采用相关分析、冗余分析和方差分解方法探讨了不同类型生物结皮的结皮层(A层)和层下土壤(B层)重金属含量与其土壤物理、化学性质及酶活性之间的关系。结果表明:燃煤烟尘是矿区大气降尘重金属污染的主要来源,涉及重金属元素包括Cd、Cr、Hg、Pb、Zn、As。生物结皮对源自大气降尘的重金属元素均具有显著的富集作用,且在不同演替阶段生物结皮间的富集规律完全一致:藓结皮>混生结皮>藻结皮;重金属综合污染指数评价结果显示:生物结皮对重金属具有表层富集效应,表现为A层污染程度高于B层。不同类型生物结皮A、B层综合污染指数存在显著差异,排序为:藓结皮>混生结皮>藻结皮;和对照相比,三类生物结皮均能通过富集大气降尘增加其A、B层养分和细颗粒物含量并改善土壤质地。方差分解结...  相似文献   

12.
We demonstrate the use of molecular dynamics and molecular mechanics methods to calculate properties and behavior of metal-chelate complexes that can be used as MRI contrast agents. Static and dynamic properties of several known agents were calculated and compared with experiment. We calculated the static properties such as the q-values (number of inner shell waters) and binding distances of chelate atoms to the metal ion for a set of chelates with known X-ray structure. The dynamic flexibility of the chelate arms was also calculated. These computations were extended to a series of exploratory chelate structures in order to estimate their potential as MRI contrast agents. We have also calculated for the first time the NMR relaxivity of an MRI contrast agent using a long (5 nsec) molecular dynamics simulation. Our predictions are promising enough that the method should prove useful for evaluating novel candidate compounds before they are synthesized. One novel static property, the projected area of chelate atoms onto a virtual surface centered on the metal ion (gnomonic projection), was found to give an effective measure of how well the chelate atoms use the free space around the metal ion.  相似文献   

13.
In this article, we report the synthesis strategy and optical properties of a novel type of fluorescence metal nanoshell when it was used as imaging agent for fluorescence cell imaging. The metal nanoshells were made with 40 nm silica cores and 10 nm silver shells. Unlike typical fluorescence metal nanoshells which contain the organic dyes in the cores, novel metal nanoshells were composed of Cy5-labelled monoclonal anti-CK19 antibodies (mAbs) on the external surfaces of shells. Optical measurements to the single nanoparticles showed that in comparison with the metal free labelled mAbs, the mAb-Ag complexes displayed significantly enhanced emission intensity and dramatically shortened lifetime due to near-field interactions of fluorophores with metal. These metal nanoshells were found to be able to immunoreact with target cytokeratin 19 (CK19) molecules on the surfaces of LNCAP and HeLa cells. Fluorescence cell images were recorded on a time-resolved confocal microscope. The emissions from the metal nanoprobes could be clearly isolated from the cellular autofluorescence backgrounds on the cell images as either individuals or small clusters due to their stronger emission intensities and shorter lifetimes. These emission signals could also be precisely counted on single cell images. The count number may provide an approach for quantifying the target molecules in the cells.  相似文献   

14.
The fluorescence quenching of drFP583 (DsRed) protein by metal ions was investigated. CuSO4 reversibly and pH dependently quenched the red emission at 583 nm of drFP583. The copper binding constant was 15 mM. Following random mutagenesis, blue- and red-shifted mutants of drFP583 were generated, and their metal sensing properties were examined. Mutant gRF possessed properties similar to green fluorescent protein and had a 18 mM copper binding constant. Mutant Rmu162 had an extraordinary red-shifted emission peak at 620 nm. A third mutant, Rmu13, had dual emission peaks at 500 nm and 583 nm and possessed the properties of a copper sensor with a binding constant of 11 mM.  相似文献   

15.
The effect of selected 10 antibiotics and their complexes with Cu(2+) ions on the catalytic activity of the trans-acting antigenomic delta ribozyme was investigated. Sisomicin, vancomycin, and actinomycin D displayed weak inhibitory properties. However, much stronger effects were detected with complexes of these antibiotics with Cu(2+) ions. The strongest inhibition was observed with actinomycin D-Cu(2+) complex, for which the calculated K(i) value was reduced ca. 35-fold upon metal ion complexation. We postulate that the antibiotic-Cu(2+) complexes are guided to the ribozyme metal ion binding site(s) presumably displacing the catalytically important metal ion(s). Moreover, we assume that, once positioned in appropriate distances to RNA phosphate groups and bases, the coordinated Cu(2+) ions become positively charged factors that enhance the affinity of the antibiotics to the ribozyme. These observations indicate that coordination of metal ions to antibiotics substantially changes their properties which might also have a biological relevance inside the cell.  相似文献   

16.
Several divalent metal ions were used as kinetic probes of the beef heart mitochondrial adenosinetriphosphatase (F1) under a variety of conditions, and the relationship between the properties of the catalytic metal ion and the catalytic activity of the enzyme was examined. Vmax for ATP hydrolysis was largest when metal ions characterized by intermediate values of acidity of coordinated water molecules (pKa) and metal-nucleotide stability constants (Kstab) were present. As temperature increased, the peak of Vmax vs. pKa (or Kstab) shifted to lower initial values of pKa or Kstab. The solvent deuterium isotope effect on Vmax (DV) was normal and largest when the metal ion present during F1-catalyzed ATP hydrolysis was most acidic and the metal nucleotide stability constant was large. When an active site tyrosine on F1 was nitrated, Vmax was most affected when the metal ion present was least acidic and the metal nucleotide stability constant was small. The isotope effect on V/K (DV/K) was normal, small, and apparently independent of the metal ion present. ADP inhibition of F1-catalyzed ATP hydrolysis is competitive, and the Ki is independent of the metal ion present. The degree of Pi inhibition of F1 is dependent on the metal ion present. The inhibition by Pi is competitive at low temperature and becomes noncompetitive as temperature increases. These and previous results support a mechanism whereby a water molecule coordinated to the metal ion of an enzyme-bound gamma-monodentate metal-ATP complex is deprotonated to begin a series of events whereby a beta,gamma-bidentate metal-ATP complex is produced. Upon hydrolysis, the bond between the metal ion and the beta-phosphate of ADP in the Pi-metal-ADP complex is broken before products (ADP and metal-Pi) are released.  相似文献   

17.
A new family of surfactants with metal-chelating properties was synthesized in few steps from octyl d-glucopyranosiduronic acid. The complexing function was either a carboxylic acid or a hydroxamic acid function introduced after coupling with glycine, aspartic acid, or glutamic acid and finally hydroxylamine. Interfacial properties were determined. Flotation experiments on a laboratory scale have been performed with Fe(III) solutions as model contaminant metal.  相似文献   

18.
蜀葵紫红色素及其理化性质研究   总被引:2,自引:0,他引:2  
孙健  彭子模 《生物技术》2005,15(4):30-32
研究了蜀葵(Althaen rosea L.Cavan.)紫红色素的提取纯化工艺、理化性质。实验以蜀葵紫红色花瓣为材料,采用溶剂浸提法、硅胶柱层析法对色素进行提取纯化,效果较好。利用光谱扫描对该色素进行理化性质鉴定时发现:该色素属于花色苷类色素;色素耐光性好;耐氧化性、耐还原性较差;对热有一定的耐受性;防腐剂及多数金属离子对色素的稳定性无不良影响;但Fe^3+、Fe^2+、Cu^2+、Pb^2+、Sn^2+对色素具有不利影响。  相似文献   

19.
Influence of metal ions (Fe2+, Fe3+, Cu2+, Zn2+) on the protective effect of rutin, dihydroquercetin, and green tea epicatechins against in vitro asbestos-induced cell injury was studied. Metals have been found to increase the capacity of rutin and dihydroquercetin to protect peritoneal macrophages against chrysotile asbestos-induced injury. The data presented here show that this effect is due to the formation of flavonoid metal complexes, which turned out to be more effective radical scavengers than uncomplexed flavonoids. At the same time epicatechins and their metal complexes have similar antiradical properties and protective capacities against the asbestos induced injury of macrophages. Metal complexes of all flavonoids were found to be considerably more potent than parent flavonoids in protecting red blood cells against asbestos-induced injury. It was also found that the metal complexes of all flavonoids were absorbed by chrysotile asbestos fibers considerably better than uncomplexed compounds and probably for this reason flavonoid metal complexes have better protective properties against asbestos induced hemolysis. Thus, the results of the present study show that flavonoid metal complexes may be effective therapy for the inflammatory response associated with the inhalation of asbestos fiber. The advantage of their application could be the strong increase in ROS scavenging by flavonoids and finally a better cell protection under the conditions of cellular oxidative stress.  相似文献   

20.
为提高重金属污染土壤可持续修复效能,研究生物炭与细菌对重金属污染土壤的协同修复作用。基于文献计量学分析及重金属污染土壤修复背景,总结了细菌与生物炭对土壤重金属的稳定化特征及菌炭间的相互作用,分析了单一生物炭或细菌对重金属污染土壤修复的局限性,强调了细菌-生物炭协同修复技术的优势,阐述了细菌与生物炭主要通过离子交换、固定作用、氧化还原作用和迁移作用等重要机制有效修复重金属污染土壤,揭示了细菌-生物炭协同作用在重金属污染土壤修复中的巨大应用价值。文献计量学研究表明,生物炭与细菌对重金属污染土壤的协同修复已得到广泛关注。目前认为:生物炭与细菌的协同作用可有效改良土壤理化性质及提高土壤修复效率,也可促进植物生长及植物修复进程;生物炭对细菌影响具有双重性质,可促进细菌生长,也可能对细菌产生毒害;细菌可改变生物炭的理化性质,进而强化生物炭的重金属固定性能;细菌协同生物炭联合修复重金属污染土壤过程中,生物炭主导吸附和固定,细菌则发挥活化和解毒等功能;优化细菌-生物炭组合形式,发展混合细菌与多种类生物炭协同技术,是复合重金属污染土壤可持续修复亟待解决的重要问题;进一步揭示细菌与生物炭对重金属污染土壤的耦合作用及长效作用机制,规避生物炭生产和应用中的潜在生态健康风险,研发新型高效能细菌与生物炭复合体是细菌协同生物炭可持续修复重金属污染土壤应用领域面临的挑战。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号