首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Myocyte-specific necrosis in the heart and soleus muscle of adult male Wistar rats was investigated in response to a single subcutaneous injection of the anabolic beta(2)-adrenergic receptor agonist clenbuterol. Necrosis was immunohistochemically detected by administration of a myosin antibody 1 h before the clenbuterol challenge and quantified by using image analysis. Clenbuterol-induced myocyte necrosis occurred against a background of zero damage in control muscles. In the heart, the clenbuterol-induced necrosis was not uniform, being more abundant in the left subendocardium and peaking 2.4 mm from the apex. After position (2.4 mm from the apex), dose (5 mg clenbuterol/kg), and sampling time (12 h) were optimized, maximum cardiomyocyte necrosis was found to be 1.0 +/- 0.2%. In response to the same parameters (i.e., 5 mg of clenbuterol and sampled at 12 h), skeletal myocyte necrosis was 4.4 +/- 0.8% in the soleus. These data show significant myocyte-specific necrosis in the heart and skeletal muscle of the rat. Such irreversible damage in the heart suggests that clenbuterol may be damaging to long-term health.  相似文献   

2.
Dietary administration of the anabolic agent, clenbuterol, has already been shown to inhibit or reverse denervation-induced atrophy in rat soleus muscles. We now show that the ameliorative effects of clenbuterol in denervated rat muscles are due principally to a large increase in protein synthesis. This results from both an increase in protein synthetic capacity and a normalised translational efficiency. The responses of innervated and denervated muscles are therefore fundamentally different, the changes in denervated muscles being reminiscent of the classical pleiotypic response of cells to growth factors.  相似文献   

3.
4.
The hypothesis was tested that mechanical loading, induced by hindlimb suspension and subsequent reloading, affects expression of the basement membrane components tenascin-C and fibronectin in the belly portion of rat soleus muscle. One day of reloading, but not the previous 14 days of hindlimb suspension, led to ectopic accumulation of tenascin-C and an increase of fibronectin in the endomysium of a proportion (8 and 15%) of muscle fibers. Large increases of tenascin-C (40-fold) and fibronectin (7-fold) mRNA within 1 day of reloading indicates the involvement of pretranslational mechanisms in tenascin-C and fibronectin accumulation. The endomysial accumulation of tenascin-C was maintained up to 14 days of reloading and was strongly associated with centrally nucleated fibers. The observations demonstrate that an unaccustomed increase of rat soleus muscle loading causes modification of the basement membrane of damaged muscle fibers through ectopic endomysial expression of tenascin-C.  相似文献   

5.
Previous research on overtraining due to excessive use of maximal resistance exercise loads [100% 1 repetition maximum (1 RM)] indicates that peripheral muscle maladaptation contributes to overtraining-induced performance decrements. This study examined the cellular and molecular responses of skeletal muscle to performance decrements due to high-relative-intensity (%1 RM) resistance exercise overtraining. Weight-trained men were divided into overtrained (OT, n = 8) and control (Con, n = 8) groups. The OT group performed 10 x 1 at 100% 1 RM daily for 2 wk, whereas the Con group performed normal training 2 days/wk. Muscle biopsies from the vastus lateralis muscle, voluntary static and dynamic muscle performances, and nocturnal urinary epinephrine were assessed before (pre) and after (post) overtraining. Overtraining occurred as indicated by a decrease in 1-RM strength for the OT group (mean +/- SE; OT pre = 159.3 +/- 10.1 kg, OT post = 151.4 +/- 9.9 kg, Con pre = 146.0 +/- 12.9 kg, Con post = 144.9 +/- 13.3 kg), as well as a 36.3% decrease in mean power at 100% 1-RM loads. Normal training could be resumed only after 2-8 wk of training cessation. Muscle beta(2)-adrenergic receptor (beta(2)-AR; fmol/mg protein) density significantly decreased by 37.0% for the OT group and was unchanged for the Con group (-1.8%). Nocturnal urinary epinephrine for the OT group increased by 49%, although this was not significant (effect size = 0.42). The ratio of nocturnal urinary epinephrine to beta(2)-AR density suggested a decreased beta(2)-AR sensitivity for the OT group (2.4-fold increase). Overtraining occurred based on decreased muscular force and power. Desensitization of the beta(2)-AR system suggests that this may be an important contributor to performance decrements due to excessive use of maximal resistance exercise loads.  相似文献   

6.
To determine whether hindlimb unloading (HU) alters the extracellular matrix of skeletal muscle, male Sprague-Dawley rats were subjected to 0 (n = 11), 1 (n = 11), 14 (n = 13), or 28 (n = 11) days of unloading. Remodeling of the soleus and plantaris muscles was examined biochemically for collagen abundance via measurement of hydroxyproline, and the percentage of cross-sectional area of collagen was determined histologically with picrosirius red staining. Total hydroxyproline content in the soleus and plantaris muscles was unaltered by HU at any time point. However, the relative proportions of type I collagen in the soleus muscle decreased relative to control (Con) with 14 and 28 days HU (Con 68 +/- 5%; 14 days HU 53 +/- 4%; 28 days HU 53 +/- 7%). Correspondingly, type III collagen increased in soleus muscle with 14 and 28 days HU (Con 32 +/- 5%; 14 days HU 47 +/- 4%; 28 days HU 48 +/- 7%). The proportion of type I muscle fibers in soleus muscle was diminished with HU (Con 96 +/- 2%; 14 days HU 86 +/- 1%; 28 days HU 83 +/- 1%), and the proportion of hybrid type I/IIB fibers increased (Con 0%; 14 days HU 8 +/- 2%; 28 days HU 14 +/- 2%). HU had no effect on the proportion of type I and III collagen or muscle fiber composition in plantaris muscle. The data demonstrate that HU induces a shift in the relative proportion of collagen isoform (type I to III) in the antigravity soleus muscle, which occurs concomitantly with a slow-to-fast myofiber transformation.  相似文献   

7.
We previously reported that alpha(2)-adrenergic receptor (alpha(2)-AR) stimulation in Purkinje fibers in vitro prolongs action potential duration and suppresses beta-adrenergic-induced delayed afterdepolarizations and sustained triggered activities. We examined the effects of alpha(2)-AR stimulation on reperfusion-induced ventricular arrhythmias [ventricular tachycardia/ventricular fibrillation (VT/VF)] in vivo. Arterial blood pressure, heart rate, surface electrocardiogram, and renal sympathetic nerve activities were recorded simultaneously in Sprague-Dawley rats. The incidence of VT/VF was 87.5% for controls, 50% for the beta-blocker group, 72% for the alpha(1)-blocker group, and 12.5% for the alpha(1) + beta-blockers group (unopposed alpha(2)-adrenergic activation). Direct alpha(2)-AR stimulation with UK-14304 also prevented VT/VF. These effects were reversed by the alpha(2)-adrenergic antagonist yohimbine. Increases in renal sympathetic nerve activity were associated with left anterior descending coronary artery ligation and reperfusion (33 +/- 1.5 and 62 +/- 1.7% over baseline, respectively) in controls. Similar patterns were observed among all experimental groups irrespective of the incidence of VT/VF on reperfusion. We conclude that alpha(2)-AR stimulation has a potent antiarrhythmic effect on ischemia-reperfusion-induced VT/VF in vivo and that this effect is not centrally mediated.  相似文献   

8.
The calcium-sensing receptor (CaSR) exists in many tissues, and its expression has been identified in rat cardiac tissue. However, the physiological importance and pathophysiological involvement of CaSR in homeostatic regulation of cardiac function are unclear. To investigate the relation of CaSR and apoptosis in cardiomyocytes, we examined the role of the CaSR activator gadolinium chloride (GdCl(3)) in rat neonatal ventricular cardiomyocytes. Expression of the CaSR protein was observed by Western blot. The apoptotic ratio of rat neonatal ventricular cardiomyocytes was measured with flow cytometry and immunofluorescence techniques. A laser scan confocal microscope was used to detect the intracellular concentration of calcium ([Ca(2+)](i)) in rat neonatal ventricular cardiomyocytes using the acetoxymethyl ester of fluo-3 (fluo-3/(AM)) as a fluorescent dye. The results showed that GdCl(3) increased the phosphorylation of extracellular signal-regulated protein kinase (ERK), c-Jun NH(2)-terminal protein kinases (JNK), and p38. GdCl(3) also activated caspase 9 and increased apoptosis in myocyte by increasing [Ca(2+)](i). In conclusion, these results suggest that CaSR promotes cardiomyocyte apoptosis in rat neonatal ventricular cardiomyocytes through activation of mitogen-activated protein kinases and caspase 9 signaling pathways.  相似文献   

9.
10.
Abstract: The rate of fatty acid uptake, oxidation, and deposition in skeletal muscles in relation to total and unbound to albumin fatty acids concentration in the medium were investigated in the incubated rat soleus muscle. An immunohistochemical technique was applied to demonstrate whether the albumin-bound fatty acid complex from the medium penetrates well within all areas of the muscle strips. It was found that the percentage of incorporation of palmitic acid into intramuscular lipids was fairly constant, independently of the fatty acid concentration in the medium, and amounted to 63-72% for triacylglycerols, 7-12% for diacylglycerols-monoacylglycerols, and 19-26% for phospholipids. Both palmitic acid incorporation into the muscle triacylglycerol stores and its oxidation to CO2 closely correlated with an increase in both total and unbound to albumin fatty acid concentrations in the incubation medium. Under conditions of increased total but constant unbound to albumin palmitic acid concentrations, the incorporation of palmitic acid into triacylglycerols and its oxidation to CO2 were also increased, but to a lower extent. This supports the hypothesis that the cellular fatty acid metabolism depends not only on the availability of fatty acids unbound to albumin, but also on the availability of fatty acids complexed to albumin.  相似文献   

11.
Development of the cardiac beta adrenergic receptor in fetal rat heart   总被引:2,自引:0,他引:2  
Hearts from 13-day-old rat fetuses were shown to specifically bind 7-3H D, L-norepinephrine. In addition, norepinephrine activated adenylate cyclase in homogenates from the same hearts. The activation of the enzyme was abolished by D, L-propranolol. These data demonstrate the existence of a functionally intact cardiac beta adrenergic receptor at a period of time in fetal life prior to the development of inotropic and chronotropic responses to the catecholamines.  相似文献   

12.
D Goldman  J Staple 《Neuron》1989,3(2):219-228
In adult vertebrate skeletal muscle acetylcholine receptors are localized to the neuromuscular junction. Upon denervation, this distribution changes, with new receptors appearing in extrajunctional regions of the muscle fiber. The location of acetylcholine receptors in innervated or denervated muscle may result, in part, from the distribution of their RNAs. This was tested by assaying for receptor RNAs in junctional and extrajunctional regions of innervated and denervated rat soleus muscle using in situ hybridization and RNAase protection assays. These experiments showed alpha, beta, and delta subunit RNAs concentrated beneath the endplates of innervated muscle fibers. Following denervation, there was an unequal distribution of receptor RNAs along the muscle fiber, with highest levels occurring in extrajunctional regions near the endplate. These data are consistent with a nonuniform pattern of gene expression in adult skeletal muscle fibers.  相似文献   

13.
14.
We have studied the in vivo response of the Na+/H+ antiporter in skeletal muscle to beta 2-adrenoceptor stimulation with isoprenaline and the effect of blocking L-type calcium channels with nifedipine. Na+/H+ antiporter activity in skeletal muscle in vivo increased after beta 2-adrenoceptor stimulation with isoprenaline; nifedipine attenuated that effect. This suggests that opening of L-type calcium channels is necessary for full activation of the Na+/H+ antiporter in skeletal muscle. Bleeding also increased Na/H+ antiporter activity, which we believe could be explained by an increase in sympathetic nervous system activity as a result of hypotension. This may be one of the mechanisms by which animals under stress prepare their skeletal muscle for exercise as part of the 'fright and flight' reaction.  相似文献   

15.
16.
cAMP controls many cellular processes mainly through the activation of protein kinase A (PKA). However, more recently PKA-independent pathways have been established through the exchange protein directly activated by cAMP (Epac), a guanine nucleotide exchange factor for the small GTPases Rap1 and Rap2. In this report, we show that cAMP can induce integrin-mediated cell adhesion through Epac and Rap1. Indeed, when Ovcar3 cells were treated with cAMP, cells adhered more rapidly to fibronectin. This cAMP effect was insensitive to the PKA inhibitor H-89. A similar increase was observed when the cells were transfected with Epac. Both the cAMP effect and the Epac effect on cell adhesion were abolished by the expression of Rap1-GTPase-activating protein, indicating the involvement of Rap1 in the signaling pathway. Importantly, a recently characterized cAMP analogue, 8-(4-chloro-phenylthio)-2'-O-methyladenosine-3',5'-cyclic monophosphate, which specifically activates Epac but not PKA, induced Rap-dependent cell adhesion. Finally, we demonstrate that external stimuli of cAMP signaling, i.e., isoproterenol, which activates the G alpha s-coupled beta 2-adrenergic receptor can induce integrin-mediated cell adhesion through the Epac-Rap1 pathway. From these results we conclude that cAMP mediates receptor-induced integrin-mediated cell adhesion to fibronectin through the Epac-Rap1 signaling pathway.  相似文献   

17.
18.
The neuronal mechanisms underlying whole body vibration (WBV)-induced muscular reflex (WBV-IMR) are not well understood. To define a possible pathway for WBV-IMR, this study investigated the effects of WBV amplitude on WBV-IMR latency by surface electromyography analysis of the soleus muscle in human adult volunteers. The tendon (T) reflex was also induced to evaluate the level of presynaptic Ia inhibition during WBV. WBV-IMR latency was shorter when induced by low- as compared to medium- or high-amplitude WBV (33.9 ± 5.3 ms vs. 43.8 ± 3.6 and 44.1 ± 4.2 ms, respectively). There was no difference in latencies between T-reflex elicited before WBV (33.8 ± 2.4 ms) and WBV-IMR induced by low-amplitude WBV. Presynaptic Ia inhibition was absent during low-amplitude WBV but was present during medium- and high-amplitude WBV. Consequently, WBV induces short- or long-latency reflexes depending on the vibration amplitude. During low-amplitude WBV, muscle spindle activation may induce the short- but not the long-latency WBV-IMR. Furthermore, unlike the higher amplitude WBV, low-amplitude WBV does not induce presynaptic inhibition at the Ia synaptic terminals.  相似文献   

19.
The role of trans-sarcolemma membrane electron efflux in the α-adrenergic control of Ca2+ influx in perfused rat heart was examined. Electron efflux was measured by monitoring the rate of reduction of extracellular ferricyanide and compared with changes in contractility, as an indirect assessment of changes in cytoplasmic Ca2+ concentration. Methoxamine and phenylephrine each increased the rate of ferricyanide reduction from 80 to approx. 114 nmol/min per g wet wt. of heart, with half-maximal activation occurring at 10 μM for each agonist. Activation of the rate of ferricyanide reduction by both 10 μM methoxamine and 10 μM phenylephrine was blocked by the α-adrenergic antagonist, phenoxybenzamine, but not by the β-antagonist, propranolol. Stimulation of the rate of ferricyanide reduction by the α-agonist coincided with the increase in contractility, each reaching maximum values at approx. 80 s. Removal of the α-agonists led to parallel decreases in contractility and the rate of reduction, each returning to pre-stimulation values in approx. 400 s. In addition, the relationship between Ca2+ and ferricyanide reduction was examined. Perfusion of the heart with medium containing 6 mM CaCl2 significantly increased contractility and the rate of ferricyanide reduction. Perfusion of the heart with low Ca2+ diminished contractility, did not affect the rate of ferricyanide reduction, but amplified the stimulatory effect of methoxamine on this rate. The increase in ferricyanide reduction by α-adrenergic agonists resulted from a change in the apparent Vmax, indicative of an increase in electron efflux sites in the plasma membrane. It is concluded that α-adrenergic control of electron efflux closely parallels changes in contractility and therefore changes in the cytoplasmic concentration of Ca2+. The data suggest that α-agonist-mediated changes in electron efflux may lead to Ca2+ influx.  相似文献   

20.
To clarify whether apoptosis is involved in the injury processes induced by autoantibodyagainst cardiac β_1-adrenoceptor,we investigated the biological and apoptotic effects of antibodies on culturedneonatal rat cardiomyocytes.Wistar rats were immunized with peptides corresponding to the second extra-cellular loop of the β_1-adrenoceptor to induce the production of anti-β_1-adrenoceptor antibodies in the sera.Immunoglobulin(Ig)G in the sera was detected using synthetic antigen enzyme-linked immunosorbentassay and purified using the diethylaminoethyl cellulose ion exchange technique.Apoptosis of cardiomyo-cytes was evaluated using agarose gel electrophoresis and flow cytometry.Our results showed that thepositive serum IgG greatly increased the beating rates of cardiomyocytes and showed an"agonist-like"activity.Furthermore,positive serum IgG induced cardiomyocyte apoptosis after treatment with β_1-adrenoceptor overstimulation for 48h.The effects of monoclonal antibody against β_-adrenoceptor werealso found to be similar to those of positive serum IgG.It was suggested that the autoantibody could inducecardiomyocyte apoptosis by excessive stimulation of β_1-adrenoceptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号