首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
When growing on a mixture of ammonia and l-glutamate as nitrogen sources, Rhizobium leguminosarum biovar trifolii MNF1000 utilizes ammonia exclusively, while cowpea Rhizobium MNF2030 utilizes both compounds at similar rates. l-Glutamate transport in both strain MNF1000 and MNF2030 is active, giving rise to a 60-fold concentration gradient across the membrane of cells of strain MNF2030. Both strains produce two kinetically distinguishable glutamate transport systems under all conditions of growth — a high affinity system with an apparent K m of 0.06–0.17 M but of relatively low V max, and a low affinity system with a K m of 1.2–6.7\ M, but of higher overall capacity. l-Glutamate transport activity in cells of MNF2030 was relatively insensitive to the presence of ammonia in the growth medium. By contrast, ammonia in the growth medium resulted in low activities of glutamate transport in cells of MNF1000 which were provided with a carbon source, offering one explanation for the failure of this strain to use glutamate in the presence of ammonia. However, in cells of MNF1000 growing on glutamate as sole source of carbon and nitrogen, the glutamate transport system is synthesized, even in the presence of accumulated or added ammonia. This suggests that the regulation of the glutamate permease also depends on availability of carbon source.Abbreviations CCCP carbonyl cyanide m-chlorophenyl hydrazone - HEPES N-hydroxyethylpiperazine-N-2-ethanesulphonic acid  相似文献   

2.
Summary Alanine was the best amino donor among various amino acids and NH4Cl for the phenylalanine production of Micrococus luteus. l-Alanine was regenerated at the rate of 9.2 moles/min/g dry cells from NH4Cl and pyruvate by immobilized Clostridium butyricum-alanine dehydrogenase. l-Phenylalanine was continuously produced from hydrogen, NH4Cl and phenylpyruvate by coupling immobilized C. butyricum, alanine dehydrogenase and M. luteus. The rate of phenylalanine production was 1.74 moles/min/g dry cells.  相似文献   

3.
Studies were conducted to elucidate the mechanism of action of 2-chloro-6-(trichloromethyl)pyridine or Technical N-SERVE on the nitrification process brought about byNitrosomonas europaea. The growth ofNitrosomonas was completely inhibited in the presence of 0.2 ppm N-SERVE while 1.0 ppm of the chemical was effective in the complete inhibition of ammonia oxidation by fresh cell suspensions. Cells stored at 4 C for a period of three days required somewhat higher concentrations (1.5 ppm) of N-SERVE for the complete inhibition of their ammonia oxidizing ability while the cytochrome oxidase of these cells was inhibited to the extent of 65 to 70 percent in the presence of a corresponding amount of N-SERVE. A 45 – 70 percent reversal of the inhibition of ammonia oxidation caused by N-SERVE was obtained by the addition of 6×10–4 M Cu++. An equivalent concentration of Cu++ was also effective for the complete reversal of the inhibition of cytochrome oxidase present in whole cells.Hydroxylamine oxidation by intactNitrosomonas cells was not affected by levels of N-SERVE ranging from 1 – 3 ppm. The cytochrome oxidase effective in hydroxylamine oxidation and present in cell-free extracts was not inhibited by even 100 ppm N-SERVE. Likewise, the hydroxylamine activating enzyme hydroxylamine cytochromec reductase was also not inhibited by such levels of the chemical. Raising the concentration to 170 ppm N-SERVE, however, caused a 90 percent inhibition of the enzyme.Although a 5×10–6 M concentration of allylthiourea completely inhibited ammonia oxidation byNitrosomonas cells, concentrations up to 10–3 M of this compound did not affect the cytochrome oxidase activity of whole cells or cell-free extracts. The inhibition of ammonia oxidation caused by 5×10–6 M allythiourea, unlike the inhibition by N-SERVE, could not be reversed by the addition of 6×10–4 M Cu++.Evidence is presented that the action of N-SERVE is on that component of cytochrome oxidase which is involved in ammonia oxidation.  相似文献   

4.
Summary The kinetics of methane uptake by Methylococcus capsulatus (Bath) and its inhibition by ammonia were studied by stopped-flow membrane-inlet mass spectrometry. Measurements were done on suspensions of cells grown in high- and low-copper media. With both types of cells the kinetics of methane uptake are hyperbolic when oxygen is in excess. The apparent K m and K max for methane uptake are both higher in low-copper cells than in high-copper cells. Ammonia is a simple competitive inhibitor of methane uptake in high-copper cells when the oxygen concentration is above a few M. The findings agree with the assumption that ammonia is a week alternative substrate for particulate methane monooxygenase. In low-copper cells the effect of ammonia is complicated and cannot be explained in terms of current assumptions on the mechanism of soluble methane monooxygenase. Our data indicate that ammonia inhibition is likely to be a more serious problem in connection with cultivation in low-copper medium than in high-copper medium. Offprint requests to: H. N. Carlsen  相似文献   

5.
Anacystis nidulans R-2 produced ammonia from endogenous sources for at least 6 h when illuminated without external nitrogen source but with CO2 in the presence of 50 M methionine sulfoximine. The onset of ammonia release coinciding with complete inhibition of glutamine synthetase. The total quantity of ammonia which could be released exceeded the nitrogen content of small molecule pools, and suggested protein degradation as the most likely source of the nitrogen. Ammonia release was not accompanied by leakage of carbon compounds from the cells. Methionine sulfoximine-induced ammonia release was energy requiring, and was barely detectable under dark anaerobic conditions, or in the presence of 10 M carbonyl cyanide m-chlorophenylhydrazone in light. Phenyl methyl sulfonylfluoride, an inhibitor of serine proteases, eliminated ammonia release, and the rate of release was reduced to one-third of control values, after a lag, in the presence of 50–75 g/ml chloramphenicol. The rate of NH + 4 release was maximal (1.4 nmol·min-1·mg-1 protein) if suspensions were bubbled with 100% O2, but could not be reduced below 0.6 nmol·min-1·mg-1 protein in air: CO2, suggesting that release was at most only partly due to photorespiration.Abbreviations used MSX L-methionine D,L-sulfoximine - PMSF phenylmethylsulfonylfluoride - CAP chloramphenicol - CCCP carbonyl cyanide-m-chlorophenyl hydrazone  相似文献   

6.
When N2-grown cells ofAnabaena cylindrica were exposed to ammonia (50 M to 5 mM) in the dark, the size of the ATP pool was reduced by 40% within 1 min, but restored after 5 or 6 min. The decrease in ATP was accompanied by increases in ADP and AMP, while the total adenylate content remained unaltered. The ammonia-induced change in the ATP pool was completely eliminated when algal cells were treated withl-methionine-dl-sulfoximine, an inhibitor of glutamine synthesis. These results suggest that ammonia is rapidly assimilated through the pathway mediated by glutamine synthetase accompanied by reduction of the ATP pool.Abbreviations GS Glutamine synthetase - MSX l-methionine-dl-sulfoximine - CCCP carbonyl cyanidem-chlorophenyl-hydrazone  相似文献   

7.
In the presnet studies with whole cells and extracts of the photosynthetic bacterium Rhodopseudomonas capsulata the rapid inhibition of nitrogenase dependent activities (i.e. N2-fixation acetylene reduction, or photoproduction of H2) by ammonia was investigated. The results suggest, that the regulation of the nitrogenase activity by NH 4 + in R. capsulata is mediated by glutamine synthetase (GS). (i) The glutamate analogue methionine sulfoximine (MSX) inhibited GS in situ and in vitro, and simultaneously prevented nitrogenase activity in vivo. (ii) When added to growing cultures ammonia caused rapid adenylylation of GS whereas MSX abolished the activity of both the adenylylated and unadenylylated form of the enzyme. (iii) Recommencement of H2 production due to an exhaustion of ammonia coincided with the deadenylylation of GS. (iv) In extracts, the nitrogenase was found to be inactive only when NH 4 + or MSX were added to intact cells. Subsequently the cells had to be treated with cetyltrimethylammonium bromide (CTAB). (v) In extracts the nitrogenase activity declined linearily with an increase of the ration of adenylylated vs. deadenylylated GS. A mechanism for inhibition of nitrogenase activity by ammonia and MSX is discussed.Abbreviations BSA bovin serum albumine - CTAB cetyltrimethylammonium bromide - GOGAT l-glutamine: 2-oxoglutarate amino transferase - GS glutamine synthetase - HEPES N-2-hydroxyethylpiperazine-N-2-ethane sulfonic acid - MSX l-methionine-d,l-sulfoximine  相似文献   

8.
Glutamine auxotrophic (Gln -) and l-methionine d,l-sulfoximine (MSX) resistant (MSX r) mutants of N. muscorum were isolated and characterized for nitrogen nutrition, nitrogenase activity, glutamine synthetase (GS) activity and glutamine amide, -keto-glutarate amido transferase (GOGAT) activity. The glutamine auxotroph was found to the GOGAT-containing GS-defective, incapable of growth with N2 or NH 4 + but capable of growth with glutamine as nitrogen source, thus, suggesting GS to be the primary enzyme of both ammonia assimilation and glutamine formation in the cyanobacterium. The results of transformation and reversion studies suggests that glutamine auxotrophy is the result of a mutation in the gln A gene and that gln A gene can be transferred from one strain to another by transformation.  相似文献   

9.
The internal pool of ammonia in strains of unicellular and filamentous cyanobacteria was found to be 6–12 nmol·mg-1 protein. In nitrate grown Anacystis nidulans R-2 the pool size averaged 12 nmol·mg-1 protein, which corresponds to 2.3 mM, and was little affected by N-source or medium pH during growth. Cells from NH 4 + -limited continuous culture contained comparable pools, and cell yield was independent of medium pH (7.2–8.5). The internal pool was not bound to macromolecules. The pool fell transiently to about one-third within 2 h on shifting cells to N-free medium, but was slowly regenerated over 24 h.Added ammonia was removed from solution by illuminated cell suspensions at a linear rate, adequate to supply biosynthetic needs, to residual concentrations less than 5 M. An apparent K m of less than 1 M can be inferred. Uptake rates were independent of N-source during growth, and of assay pH over the range 6.2–8.7. Bicarbonate was needed for uptake, but the rate of uptake was not influenced by the simultaneous presence of NaNO3 (10 mM) or CH3NH3Cl (0.15 mM). Uptake was energydependent, and was eliminated in dark, anaerobic conditions or by the addition of protonophores. Uptake was also strongly inhibited by dicyclohexylearbodiimide, an ATPase inhibitor, by — SH reagents and methionine sulfoximine, suggesting that interference with energy supply or with ammonia metabolism prevented further entry into the cells.Non-standard abbreviations CCCP carbonyl cyanide m-chlorophenylhydrazone - DCCD dicyclohexylcarbodiimide - DCMU dichlorophenyl dimethylurea - NEM N-ethylmaleimide - pCMB p-chloromercuribenzoate - MSX L-methionine Dl-sulfoximine  相似文献   

10.
The mechanism of ammonia assimilation in nitrogen fixing bacteria   总被引:1,自引:0,他引:1  
Summary Enzymatic and genetic evidence are presented for a new pathway of ammonia assimilation in nitrogen fixing bacteria: ammonium glutamine glutamate. This route to the important glutamate-glutamine family of amino acids differs from the conventional pathway, ammonium glutamate glutamine, in several respects. Glutamate synthetase [(glutamine amide-2-oxoglutarate aminotransferase) (oxidoreductase)], which is clearly distinct from glutamate dehydrogenase, catalyzes the reduced pyridine nucleotide dependent amination of -ketoglutarate with glutamine as amino donor yielding two molecules of glutamate as product. The enzyme is completely inhibited by the glutamine analogue DON, whereas glutamate dehydrogenase is not affected by this inhibitor; the glutamate synthetase reaction is irreversible. Glutamate synthetase is widely distributed in bacteria; the pyridine nucleotide coenzyme specificity of the enzyme varies in many of these species.The activities of key enzymes are modulated by environmental nitrogenous sources; for example, extracts of N2-grown cells of Klebsiella pneumoniae form glutamate almost exclusively by this new route and contain only trace amounts of glutamate dehydrogenase activity whereas NH3-grown cells possess both pathways. Also, the biosynthetically active form of glutamine synthetase with a low K m for ammonium predominates in the N2-grown cell.Several mutant strains of K. pneumoniae have been isolated which fail to fix nitrogen or to grow in an ammonium limited environment. Extracts of these strains prepared from cells grown on higher levels of ammonium have low levels of glutamate synthetase activity and contain the biosynthetically inactive species of glutamine synthetase along with high levels of glutamate dehydrogenase. These mutants missing the new assimilatory pathway have serious defects in their metabolism of many inorganic and organic nitrogen sources; utilization of at least 20 different compounds is effected. We conclude that the new ammonia assimilatory route plays an important role in nitrogenous metabolism and is essential for nitrogen fixation.Abbreviation DON 6-diazo-5-oxo-l-norleucine  相似文献   

11.
Summary Corynebacterium glutamicum ATCC 13 032 produces 13 g/l l-isoleucine from 200 mM -ketobutyrate as a synthetic precursor. In fed batch cultures up to 19 g/l l-isoleucine is formed. For optimal conversion the addition of 0.3 mM l-valine plus 0.3 mM l-leucine to the fermentation medium is required. The affinity constants for the acetohydroxy acid synthase (AHAS) were determined. (This enzyme directs the flow of -ketobutyrate plus pyruvate towards l-isoleucine and that of two moles of pyruvate to l-valine and l-leucine, respectively.) For -ketobutyrate the K m is 4.8×10-3 M, and V max 0.58 U/mg, for pyruvate the K m is 8.4×10-3 M, and V max 0.37 U/mg. Due to these characteristics the presence of high -ketobutyrate concentrations apparently results in a l-valine, l-leucine deficiency. This in turn leads to a derepression of the AHAS synthesis from 0.03 U/mg to 0.29 U/mg and high l-isoleucine production is favoured. The derepression of the AHAS synthesis induced by the l-valine, l-leucine shortage was directly proven with a l-valine, l-leucine, l-isoleucine auxotrophic mutant where the starvation of each amino acid resulted in an increased AHAS level. This is in accordance with the fact that only one AHAS enzyme could be verified by chromatographic and electrophoretic separations as being responsible for the synthesis of all three branched-chain amino-acids.  相似文献   

12.
Nitrogenase activity in the obligate methaneoxidizing bacterium Methylococcus capsulatus (Bath) was added ammonia. This observation was extended to include other ammonia. This observation was extended to include other representative N2-fixing species of methanotrophs. The ammonia switch-off of nitrogenase in M. capsulatus (Bath) was reversed on washing cells to remove excess ammonia, in the presence of chloramphenicol, suggesting that a form of covalent modification of nitrogenase may occur. Replacing the oxidizable substrate methanol with formaldehyde, formate, ethanol or hydrogen had no effect on nitrogenase switch-off. A number of potential nitrogen sources or intermediates of nitrogen metabolism such as glutamine, asparagine, glutamate and alanine when tested, did not effect switch-off. However, the rapid inhibition of nitrogenase activity of M. capsulatus (Bath) could be achieved by adding the uncoupler carbonylcyanide m-chlorophenylhydrazone or nitrite. The glutamine synthetase inhibitor methionine sulphoximine blocked the switch-off effect of ammonia, indicating that the metabolism of ammonia may be essential for switch-off to occur. Inhibitors of glutamate synthase did not alleviate the ammonia switch-off response. Methionine sulphoximine did not alleviate the rapid inhibition of nitrogenase by carbonylcyanide m-chlorophenylhydrazone indicating that the shortterm regulation of nitrogenase by uncouplers and ammonia proceed via different mechanisms.Abbreviations MSX methionine-DL-sulphoximine - DON 6-diazo-5-oxo-L-norleucine - GS glutamine synthetase - GOGAT glutamine 2-oxoglutarate aminotransferase (glutamate synthase) - CCCP carbonylcyanide m-chlorophenyl hydrazone  相似文献   

13.
NH 4 + excretion was undetectable in N2-fixing cultures ofRhodospirillum rubrum (S-1) and nitrogenase activity in these cultures was repressed by the addition of 10 mM NH 4 + to the medium. The glutamate analog,l-methionine-dl-sulfoximine (MSX), derepressed N2 fixation even in the presence of 10 mM extracellular NH 4 + . When 10 mg MSX/ml was added to cultures just prior to nitrogenase induction they developed nitrogenase activity (20% of the control activities) and excreted most of their fixed N2 as NH 4 + . Nitrogenase activities and NH 4 + production from fixed N2 were increased considerably when a combined nitrogen source, NH 4 + (>40 moles NH 4 + /mg cell protein in 6 days) orl-glutamate (>60 moles NH 4 + /mg cell protein in 6 days) was added to the cultures together with MSX.Biochemical analysis revealed thatR. rubrum produced glutamine synthetase and glutamate synthase (NADP-dependent) but no detectable NADP-dependent glutamate dehydrogenase. The specific activity of glutamine synthetase was observed to be maximal when nitrogenase activity was also maximal. Nitrogenase and glutamine synthetase activities were repressed by NH 4 + as well as by glutamate.The results demonstrate that utilization of solar energy to photoproduce large quantities of NH 4 + from N2 is possible with photosynthetic bacteria by interfering with their regulatory control of N2 fixation.  相似文献   

14.
Summary Chlorate resistant mutants of the cyanobacterium Nostoc muscorum isolated after N-methyl-N-nitro-N-nitrosoguanidine (MNNG) mutagenesis were found to be defective/blocked in nitrate reductase (NR).The parent strain possessed active NR in the presence of nitrogen as nitrate and only basal levels of activity in ammonia and N-free grown cultures. Addition of ammonia suppressed the NR activity in the parent strain whereas addition of L-methionine DL-sulphoximine (MSX) restored NR activity. A similar repression by ammonia, glutamine and derepression with MSX were also observed for nitrogenase synthesis.One class of mutants lacked NR activity (nar -) whereas the specific activity of NR was low in another class of mutants (nar def). Unlike the parent, the mutants synthesized nitrogenase and differentiated heterocysts in the presence of nitrate nitrogen. Uptake studies of nitrite and ammonia in mutants revealed that they possessed both nitrite reductase and glutamine synthetases (GS) at low levels, and the same level respectively in comparison with the parent.  相似文献   

15.
Summary Unidirectional fluxes of35SO4 across and into rabbit ileal epithelium were measured under short-circuit conditions, mostly at a medium SO4 concentration of 2.4mm. Unidirectional mucosa (m)-to-serosa (s) ands-to-m fluxes (J ms,J sm) were 0.456 and 0.067 moles hr–1 cm–2, respectively.J ms was 2.7 times higher in distal ileum than in mid-jejunum. Ouabain abolished net SO4 transport (J net) by reducingJ ms. Epinephrine, a stimulus of Cl absorption, had no effect on SO4 fluxes. Theophylline, a stimulus of Cl secretion, reducedJ ms without affectingJ sm, causing a 33% reduction inJ net. Other secretory stimuli (8-Br-cAMP, heat-stable enterotoxin, Ca-ionophore A23187) had similar effects. Replacement of all Cl with gluconate markedly reducedJ net through both a decrease inJ ms and an increase inJ sm. The anion-exchange inhibitor, 4-acetoamido-4-isothiocyano-2,2-sulfonic acid stilbene (SITS), when added to the serosal side, reducedJ ms by 94%, nearly abolishingJ net. SITS also decreasedJ sm by 75%. Mucosal SITS (50 m) was ineffective. 4,4-diisothiocyano-2,2-sulfonic acid stilbene (DIDS) had effects similar to SITS but was less potent. Measurements of initial rates of epithelial uptake from the luminal side (J me) revealed the following: (1)J me is a saturable function of medium concentration with aV max of 0.94 moles hr–1 cm–2 and aK 1/2 of 1.3mm; (2) replacing all Na with choline abolishedJ me; (3) replacing all Cl with gluconate increasedJ me by 40%; (4) serosal SITS had no effect onJ me; and (5) stimuli of Cl secretion had no effect onJ me or increased it slightly. Determination of cell SO4 with35SO4 indicated that, at steady-state, the average mucosal concentration is 1.1 mmoles per liter cell water, less than half the medium concentration. Cell SO4 was increased to 3.0mm by adding SITS to the serosal side. Despite net transport rates greater than 1.4 Eq hr–1 cm–2, neither addition of SO4 to the SO4-free medium nor addition of SITS to SO4-containing medium altered short-circuit current. The results suggest that (1) ileal SO4 absorption consists of Na-coupled influx (symport) across the brush border and Cl-coupled efflux (antiport) across the basolateral membrane; (2) the overall process is electrically neutral; (3) the medium-to-cell Cl concentration difference may provide part of the driving force for net SO4 absorption; and (4) since agents affecting Cl fluxes (both absorptive and secretory) have little effect on SO4 fluxes, the mechanisms for their transcellular transports are under separate regulation.  相似文献   

16.
Free-living Rhizobium trifolii MNF 1001 and cowpea Rhizobium MNF 2030 grown in chemostat culture under nitrogen limitation had high activities of an ammonium permease. In phosphate-limited, nitrogen-excess conditions, strains MNF 1001 and MNF 2030 retained 20% and 50%, respectively, of the ammonium uptake activity found in nitrogen-limited cells. Uptake in both strains was sensitive to azide, cyanide, carbonyl cyanide m-chlorophenyl hydrazone and 2,4-dinitrophenol. A gradient of ammonium concentration greater than 150-fold developed across the membrane within 20 min in cells of strain MNF 1001 grown under ammonia limitation. The pH optimum for ammonium uptake by N-limited cells of both MNF 1001 and MNF 2030 was around pH 7. The apparent K m values for the ammonium permease in strains MNF 2030 and MNF 1001 were 3.9±1.6 M and 2.0±1.6 M respectively, and the V max was 47±2.6 nmol min-1 (mg protein)-1 for MNF 2030 and 101±5.1 nmol min-1 (mg protein)-1 for MNF 1001. Isolated snake bean bacteroids of strain MNF 2030 capable of transporting succinate and l-glutamate had no detectable ammonium uptake activity. It therefore appears that the ammonium permeases in cells of these two strains are not as tightly regulated as in R. leguminosarum MNF 3841.Abbreviations CCCP Carbonyl cyanide m-chlorophenyl hydrzone - HEPES N-Hydroxyethylpiperazine-N-2-ethanesulphonic acid  相似文献   

17.
Methanosarcina barkeri was able to grow on L-alanine and L-glutamate as sole nitrogen sources. Cell yields were 0.5 g/l and 0.7 g/l (wet wt), respectively. The mechanism of ammonia assimilation inMethanosarcina barkeri strain MS was studied by analysis of enzyme activities. Activity levels of nitrogen-assimilating enzymes in extracts of cells grown on different nitrogen sources (ammonia, 0.05–100 mM; L-alanine, 10 mM; L-glutamate, 10 mM) were compared. Activities of glutamate dehydrogenase, glutamate synthase, glutamine synthetase, glutamate oxaloacetate transaminase and glutamate pyruvate transaminase could be measured in cells grown on these three nitrogen sources. Alanine dehydrogenase was not detected under the growth conditions used. None of the measured enzyme activities varied significantly in response to the NH4 + concentration. The length of the poly--glutamyl side chain of F420 derivatives turned out to be independent of the concentration of ammonia in the culture medium.Abbreviations ADH alanine dehydrogenase - FO 7,8-didemethyl-8-hydroxy-5-deazariboflavin - GDH glutamate dehydrogenase - GOGAT glutamate synthase - GOT glutamate oxaloacetate transaminase - GPT glutamate pyruvate transaminase - GS glutamine synthetase - H4MPT tetrahydromethanopterin  相似文献   

18.
The l-alanine dehydrogenase (ADH) of Anabaena cylindrica has been purified 700-fold. It has a molecular weight of approximately 270000, has 6 sub-units, each of molecular weight approximately 43000, and shows activity both in the aminating and deaminating directions. The enzyme is NADH/NAD+ specific and oxaloacetate can partially substitute for pyruvate. The K m app for NAD+ is 14 M and 60 M at low and high NAD+ concentrations, respectively. The K m app for l-alanine is 0.4 mM, that for pyruvate is 0.11 mM, and that for oxaloacetate is 3.0 mM. The K m app for NH 4 + varies from 8–133 mM depending on the pH, being lowest at high pH levels (pH 8.7 or above). Alanine, serine and glycine inhibit ADH activity in the aminating direction. The enzyme is active both in heterocysts and vegetative cells and activity is higher in nitrogen-starved cultures than in N2-fixing cultures. The data suggest that although alanine is formed by the aminating activity of ADH, entry of newly fixed ammonia into organic combination does not occur primarily via ADH in N2-fixing cultures of A. cylindrica. Ammonia assimilation via ADH may be important in cultures with an excess of available nitrogen. The deaminating activity of the enzyme may be important under conditions of nitrogen-deficiency.Abbreviations ADH alanine dehydrogenase - DEAE diethylamino ethyl cellulose - EDTA ethylenediamine tetraacetic acid - GDH glutamic dehydrogenase - GS glutamine synthetase - GOT aspartate-glutamate aminotransferase - NAD+ nicotinamide adenine dinucleotide - NADH reduced nicotinamide adenine dinucleotide - NADP+ nicotinamide adenine dinucleotide phosphate - NADPH reduced nicotinamide adenine dinucleotide phosphate - SDS sodium dodecyl sulphate - Tris tris(hydroxymethyl) aminomethane  相似文献   

19.
We have studied the changes in the activities of both nitrogenase (switch off) and glutamine synthetase in Rhodospirillum rubrum upon addition of ammonium ions or glutamine to nitrogen fixing cultures. Both activities decrease drastically and return in a parallel manner when added ammonia is metabolized. The decrease in glutamine synthetase activity does not seem to be primarily due to adenylylation of the enzyme. Addition of glutamine to cells starved for nitrogen results in inactivation of glutamine synthetase but nitrogenase is only partially switched off.Abbreviations CeMe3NBr Cetyltrimethylammonium bromide - Hepes N-2-hydroxyethyl-piperazine-N-2 sulfonic acid - MSO methionine-D,L-sulfoximine - Tea-Dmg triethanol amine-3,3-dimethylglutaric acid  相似文献   

20.
The ammonium uptake system of Rhodobacter capsulatus B100 was examined using the ammonium analog methylammonium. This analog was not transported when cells were grown aerobically on ammonium. When cultured on glutamate as a nitrogen source, or when nitrogen-starved, cells would take up methylammonium. Therefore, in cells grown under nitrogen-limiting conditions, a second system of ammonium uptake (or a modified form of the first) is present which is distinguished by its capacity for transporting the analog in addition to ammonium. The methylammonium uptake system exhibited saturation kinetics with a K m of 22 M and a V max of about 3 nmol per min · mg protein. Ammonium completely inhibited analog transport with a K i in the range of 1 M. Once inside the cell methylammonium was rapidly converted to -N-methylglutamine; however, a small concentration gradient of methylammonium could still be observed. Kinetic parameters reflect the effects of assimilation.The methylammonium uptake system was temperature and pH dependent, and inhibition studies indicated that energy was required for the system to be operative. A glutamine auxotroph (G29) lacking the structural gene for glutanime synthetase did not accumulate the analog, even when nitrogen starved. The Nif- mutant J61, which is unable to express nitrogenase structural genes, also did not transport methylammonium, regardless of the nitrogen source for growth. However, the mutant exhibited wild-type ammonium uptake and glutamine synthetase activity. These data suggest that transport of ammonium is required for growth on limited nitrogen and is under the control of the Ntr system in R. capsulatus.Abbreviations CCCP carbonyl cyanide-m-chlorophenyl hydrazone - CHES cyclohexylaminoethanesulfonic acid - DMSO dimethyl sulfoxide - GMAD -N-methylglutamine - GS glutamine synthetase - MES 2-(N-morpholino) ethanesulfonic acid - MSX methionine-Dl-sulfoximine - pCMB p-chloromercuribenzoate - Tricine N-tris(hydroxymethyl)methylglycine  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号