首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We examined the effects of brassinolide (BL) and/or an auxin (indole-3-acetic acid) on ethylene production and elongation in the primary roots of maize (Zea mays). When these two hormones were applied exogenously, both increased ethylene production. Before the tenth hour after treatment began, the influence of IAA was more evident than that of BL; the reverse was found beyond 10 h. When these hormones were treated simultaneously, the increase in level of ethylene was greater than the sum of effects by each hormone. Such a positive interaction was also recorded for changes in the activity of ACC synthase and the expression of its gene. For ACC oxidase, however, the two hormones had no apparent influence. When applied separately, neither affected root elongation nor proton extrusion. However, when given in combination, both phenomena occurred. Our results suggest that BL interacts with IAA to promote ethylene biosynthesis and elongation in roots. Therefore, it is possible that brassinolide acts by inducing auxin, which then stimulates both ethylene production (at the early stage) and root development.  相似文献   

2.
Mitochondria isolated from root tissue of maize plants grown on a modified Knop solution containing 10.9 mM nitrate ± 7.2 mM ammonium were purified on the discontinuous Percoll density gradient with polyvinylpyrrolidone (PVP) added. The presence of PVP allowed separation of several mitochondrial fractions of a different density. Contrary to mitochondria isolated from plants grown in the presence of nitrate alone, revealing only two fractions, the mitochondria from NH4 +/NO3 -plants were distributed in four fractions. Total amount of mitochondria, as well as specific activities of some nitrogen metabolism enzymes and tricarboxylic acid (TCA) cycle enzymes of all mitochondrial fractions, and respiratory activities of two lower density fractions isolated from plants grown on mixed nitrogen were higher in comparison to mitochondria from nitrate-grown plants.  相似文献   

3.
The effect of maize root exudates on the toxicity of lead and manganese to arbuscular mycorrhizal fungus (AMF) Glomus intraradices was studied in vitro by observation of intraradical hyphae regrowth from colonised root segments. Higher heavy metal (HM) concentrations strongly reduced the hyphal growth, however, the inhibitory effect was to a large extent eliminated by the addition of maize root exudates to the media. However, the capacity of exudates to ameliorate HM toxicity was limited and did not operate when a threshold HM concentration was reached. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

4.
Auxin has a central role in the establishment and elaboration of pattern in root meristems. Regulation of root development by auxin begins early in embryogenesis, perhaps even as early as the establishment of polarity in the zygote, and persists throughout the lifetime of a root. Auxin-regulated development depends on a balance of synthesis/import and metabolism/export/sequestration. The overall result of these processes is to establish a state of auxin homeostasis which we hypothesize is required for normal root meristem patterning and development.  相似文献   

5.
We evaluated the egg parasitoid Trichogramma ostriniae (Hymenoptera: Trichogrammatidae) to control European corn borer [Lepidoptera: Crambidae: Ostrinia nubilalis (Hübner)] in field corn in 2001 and 2002. Inoculative releases of 75,000 T. ostriniae/ha occurred in New York and Virginia in 5–10 cornfields per state when corn was at mid-whorl. Incidence of egg mass parasitism, number of stalk tunnels, incidence of ear damage, and whole-plant yield were evaluated. Parasitism of European corn borer egg masses ranged from 0 to 75% in release plots and was greater in release plots than in control plots. Individual comparisons between paired release and control plots showed no reductions in either stalk or ear damage. However, when data were combined across both years and fields, stalk and ear damage were significantly reduced in New York. In Virginia, no significant differences were detected using data obtained from one year. There were no differences in yield between release and control plots. Low densities of European corn borer, drought conditions in 1 year, and a larger plant canopy in field corn are possible reasons why T. ostriniae releases provided less control than has been observed in previous trials in sweet corn. Additional research focused on improved timing and frequency and number of releases is warranted.  相似文献   

6.
The addition of 10 mM KNO3 to the solution bathing the roots of young nitrogen-starved seedlings of Zea mays L. enhanced root water transfer within 15 h, compared with 10 mM KCl addition. The free exudation flux was 2.2–3.9 times higher in excised KNO3-treated roots than in KCl-treated ones. Cryo-osmometry data for xylem sap suggested that, compared with chloride, nitrate treatment increased the steady solute flux into the xylem, but did not modify the osmotic concentration of sap. Root growth was not significantly modified by nitrate within 15 h. Root hydraulic conductances were measured by using either hydrostatic-pressure or osmotic-gradient methods. During hydrostatic experiments, the conductance (kp), which is thought to refer mainly to the apoplasmic pathway, was 1.6 times larger in KNO3-than in KCl-treated plants. From experiments in which polyethylene glycol (PEG) 8000 was used as external osmolyte, osmotic conductances (ks) were found to be smaller by 5–20 times than kp for the two kinds of plants. The KCl-treated roots were characterized by a low ks which was the same for influx or efflux of water. By contrast, KNO3-treated roots exhibited two distinct conductances ks1 and ks2, indicating that influx of water was easier than efflux when the water flow was driven by the osmotic pressure gradient. Infiltration of roots with KNO3 solution supported the idea that nitrate might enhance the efficiency of the cell-to-cell pathway. The low ks value of KCl-treated roots and the existence of two contrasting ks values (ks1 and ks2) for KNO3-treated roots are discussed in terms of reversible closing of water channels.  相似文献   

7.
Effect of low (5 mmol·dm−3) and high (10 or 20 mmol·dm−3) doses of 1.10-phenanthroline (Phe), a photodynamic herbicide, on the development of chloroplasts in etiolated and subsequently illuminated maize seedlings and on the structure of already developed chloroplasts of green maize seedlings was examined. Etiolated and then irradiated plants were resistant to 5 mmol·dm−3 of Phe with respect to morphology, however Phe caused inhibition of greening and of grana formation. Higher Phe concentrations followed by exposure to light caused not only total inhibition of greening but also dilation of thylakoids, swelling of chloroplasts, and finally total destruction of chloroplast structure. Application of Phe in the same concentrations to green plants revealed that they were resistant to low dose of Phe with respect to morphology and structure of chloroplasts, however 10 and 20 mmol·dm−3 Phe and illumination caused the loss of turgor of treated plants and other photooxidative damages seen at the ultrastructural level. We concluded that maize, as representant of monocotyledonous plants, is resistant to low (5 mmol·dm−3) Phe concentration. Higher (10 or 20 mmol·dm−3) concentrations, used to determine the site of damage and mode of action of Phe on the level of cell revealed that action of photodynamic herbicides is based on standard photoinhibition mechanism and also probably on their chelating properties.  相似文献   

8.
Response of root system architecture to nutrient availability in soils is an essential way for plants to adapt to soil environments. Nitrate can affect root development either as a result of changes in the external concentration, or through changes in the internal nutrient status of the plant. Nevertheless, less is known about the physiological mechanisms. In the present study, two maize (Zea mays L.) inbred lines (478 and Wu312) were used to study a possible role of cytokinin in nitrate-mediated root growth in nutrient solutions. Root elongation of 478 was more sensitive to high nitrate supply than that of Wu312. Medium high nitrate (5 mM) inhibited root elongation in 478, while, root elongation in Wu312 was only inhibited at high NO 3 supply (20 mM). Under high nitrate supply, the root elongation zone in 478 became swollen and the site of lateral root elongation was close towards the root tip. Both of the phenomena are typical of root growth induced by exogenous cytokinin treatments. Correspondingly, zeatin and zeatin nucleotide (Z + ZR) concentrations were increased at higher nitrate supply in 478, whereas they were constant in Wu312. Furthermore, exogenous cytokinin 6-benzylaminopurine (6-BA) completely reversed the stimulatory effect of low nitrate on root elongation. Therefore, it is supposed that the inhibitory effect of high concentration of nitrate on root elongation is, at least in part, mediated by increased cytokinin level in roots. High nitrate supply may have negative influences on root apex activity by affecting cytokinin metabolism so that root apical dominance is weakened and, therefore, root elongation is suppressed and lateral roots grow closer to the root apex. Nitrate suppressed lateral root elongation in Wu312 at concentration higher than 5 mM. In 478, however, this phenomenon was not significant even at 20 mM nitrate. Although exogenous 6-BA (20 nM) could suppress lateral root elongation as well, the inhibitory effect of high NO 3 concentration of nitrate on lateral root growth cannot be explained by changes in endogenous cytokinin alone.  相似文献   

9.
10.
The influence of nitrogen deprivation on leaf development and the biomechanics of leaf growth were studied using maize (Zea mays L.) seedlings grown under low irradiance. Although the nitrogen deprivation had no significant effect on photosynthesis, the leaf length, the leaf area, and the total assimilation area of plants decreased. The mature size of the epidermal cells was not altered, while the cells of nitrogen-deprived plants reached their final length closer to the leaf base than the epidermal cells of control plants. Decreases in the length of the growing zone (from 50 to 30 mm) and in the maximum value of relative elemental growth rate (from 0.08 to 0.06 mm mm–1 h–1) were observed in the nitrogen deprived plants. The maximal value of growth velocity in the control treatment was higher along the elongation zone, except for the basal 20 mm, where there was no significant difference between the control and the N-deprived plants. The net deposition rates of water and dry matter were also affected by nitrogen deprivation: the values of these features decreased and the spatial position of the maximum of the deposition rates shifted towards the leaf base.  相似文献   

11.
Previously, we characterized 92 Arabidopsis genes (AtSFLs) similar to the S-locus F-box genes involved in S-RNase-based self-incompatibility and found that they likely play diverse roles in Arabidopsis. In this study, we investigated the role of one of these genes, CEGENDUO (CEG, AtSFL61), in the lateral root formation. A T-DNA insertion in CEG led to an increased lateral root production, which was complemented by transformation of the wild-type gene. Its downregulation by RNAi also produced more lateral roots in transformed Arabidopsis plants whereas its overexpression generated less lateral roots compared to wild-type, indicating that CEG acts as a negative regulator for the lateral root formation. It was found that CEG was expressed abundantly in vascular tissues of the primary root, but not in newly formed lateral root primordia and the root meristem, and induced by exogenous auxin NAA (α-naphthalene acetic acid). In addition, the ceg mutant was hyposensitive to NAA, IAA (indole-3-acetic acid) and 2,4-D (2,4-dichlorophenoxyacetic acid), as well as the auxin transport inhibitor TIBA (3,3,5-triiodobenzoic acid), showing that CEG is an auxin-inducible gene. Taken together, our results show that CEG is a novel F-box protein negatively regulating the auxin-mediated lateral root formation in Arabidopsis. Electronic supplementary material Electronic supplementary material is available for this article at and accessible for authorised users.  相似文献   

12.
Lootens  P.  Vandecasteele  P. 《Photosynthetica》2000,38(1):53-56
A cheap chlorophyll (Chl) a fluorescence imaging system was developed for measuring leaf areas of 30×45 cm. Uniform saturating irradiances were created using CuSO4 filtered radiation from stroboscopes. The system was tested using maize leaves treated with diuron. Comparison was made with a small-area-measuring pulse amplified modulation Chl fluorometer.  相似文献   

13.
Jin  Ming-Xian  Li  De-Yao  Mi  Hualing 《Photosynthetica》2002,40(4):581-586
Temperature dependence (25–50 °C) of chlorophyll (Chl) fluorescence induction, far-red radiation (FR)-induced relaxation of the post-irradiation transient increase in apparent F0, and the trans-thylakoid proton gradients (pH) was examined in maize leaves. Temperatures above 30 °C caused an elevation of F0 level and an enhancement of F0 quenching during actinic irradiation. Millisecond delayed light emission (ms-DLE), which reflects the magnitude of pH, decreased strikingly above 35 °C, and almost disappeared at 50 °C. It indicates that the heat-enhanced quenching of F0 under actinic irradiation could not be attributed mainly to the mechanism of pH-dependent quenching. The relaxation of the post-irradiation transient increase in apparent F0 upon FR irradiation could be decomposed into two exponential components (1 = 0.7–1.8 s, 2 = 2.0–9.9 s). Decay times of both components increased with temperature increasing from 25 to 40–45 °C. The bi-phasic kinetics of FR-induced relaxation of the post-irradiation transient increase in apparent F0 and its temperature dependence may be related to plastoquinone (PQ) compartmentation in the thylakoid membranes and its re-organisation at elevated temperature.  相似文献   

14.
The cytokinins in certain fractions prepared from extracts of immature sweet-corn (Zea mays L.) kernels using polystyrene ion-exchange resins have been further investigated. Cytokinins active in the radish cotyledon bioassay were purified from these fractions and identified as 9--D-glucopyranosylzeatin, 9--D-glucopyranosyldihydrozeatin, O--D-glucopyranosylzeatin. and O--D-glucopyranosyl-9--D-ribofuranosylzeatin. In addition, compounds which resemble zeatin and its glycosides in chromatographic behaviour and in ultraviolet absorption characteristics were purified from extracts of the same material by high-performance liquid chromatography. In addition to zeatin and zeatin riboside, the following compounds were identified unambiguously: O--D-glucopyranosyl-9--D-ribofuranosyldihydrozeatin, O--D-glucopyranosyldihydrozeatin, and hihydrozeatin riboside. A further compound was tentatively identified as O--D-glucopyranosylzeatin, and at least two unidentified compounds appeared to be new derivatives of zeatin. In identifying the above compounds, chemical-ionization mass spectrometry proved to be an invaluable complementary technique, yielding spectra showing intense protonated-molecular-ion peaks and also prominent structure-related fragmentation that was either not evident or very minor in the electron-impact spectra. An assessment of the relative importance of the various possible mechanisms for cytokinin modification and inactivation in mature sweet-corn kernels was made by supplying [3H]zeatin and [3H]zeatin riboside to such kernels after excision. The principal metabolites of zeatin were adenine nucleotides, adenosine and adenine, while little of the metabolite radioactivity was attributable to known O-glucosides. Adenine nucleotides and adenine were the principal metabolites of zeatin riboside, while lesser metabolites were identified as adenosine, dihydrozeatin, and the O-glucosides of dihydrozeatin and dihydrozeatin riboside. Side-chain cleavage, rather than side-chain modification, appears to be the dominant form of cytokinin metabolism in mature sweet-corn kernels.Abbreviations CI-MS chemical-ionization mass spectrum - EIMS electron-impact mass spectrum - GC-MS combined gas chromatography-mass spectrometry - HPLC high performance liquid chromatography - M+ molecular ion - MH+ protonated molecular ion - TLC thin-layer chromatography - TMS trimethylsilyl - UV ultraviolet XXVII=Letham et al. (1979)  相似文献   

15.
Thiamine or vitamin B-1, is an essential constituent of all cells since it is a cofactor for two enzyme complexes involved in the citric acid cycle, pyruvate dehydrogenase and -ketoglutarate dehydrogenase. Thiamine is synthesized by plants, but it is a dietary requirement for humans and other animals. The biosynthetic pathway for thiamine in plants has not been well characterized and none of the enzymes involved have been isolated. Here we report the cloning and characterization of two cDNAs representing members of the maize thi1 gene family encoding an enzyme of the thiamine biosynthetic pathway. This assignment was made based on sequence homology to a yeast thiamine biosynthetic gene and by functional complementation of a yeast strain in which the endogenous gene was inactivated. Using immunoblot analysis, the thi1 gene product was found to be located in a plastid membrane fraction. RNA gel blot analysis of various tissues and developmental stages indicated thi1 expression was differentially regulated in a manner consistent with what is known about thiamine synthesis in plants. This is the first report of cDNAs encoding proteins involved in thiamine biosynthesis for any plant species.  相似文献   

16.
以采自农田中自然生长的植物群落中的香丝草为供体,以典型的双子叶植物蚕豆和典型的单子叶植物玉米的幼苗为受体,运用根尖微核试验和染色体畸变试验,研究了香丝草的根、茎、叶和幼果4种器官水浸提液对受体的遗传毒性。结果表明:(1)在香丝草不同器官水浸提液作用下,蚕豆和玉米根尖细胞的有丝分裂各时期均受到明显影响,细胞中出现了微核、染色体桥、染色体断片、染色体环、染色体粘连及染色体滞后等多种染色体畸变。(2)香丝草各器官水浸提液对蚕豆幼苗根尖细胞分裂的抑制作用明显大于玉米。(3)香丝草各器官水浸提液对蚕豆和玉米幼苗根尖的染色体畸变诱导存在显著的浓度效应,即水浸提液浓度越高,受体的微核率和畸变率越高,相应的有丝分裂指数越低,水浸提液的诱导作用与浓度呈正相关关系,但不是简单的加和作用。(4)香丝草各器官水浸提液均具有较强的遗传毒性,但整体化感效应表现为叶>幼果>茎>根,即叶片产生的化感作用最强。因此,香丝草分泌的化感物质可能通过对受体植物生长点的细胞有丝分裂和细胞形态产生影响,造成受体植物染色体的多种畸变和不可逆的遗传损伤,从而成功入侵新的栖息地。  相似文献   

17.
The effect of amino acids on nitrate transport was studied in Zea mays cell suspension cultures and in Zea mays excised roots. The inclusion of aspartic acid, arginine, glutamine and glycine (15mM total amino acids) in a complete cell-culture media containing 1.0 mM NO3 - strongly inhibited nitrate uptake and the induction of accelerated uptake rates. The nitrate uptake rate increased sharply once solution amino acid levels fell below detection limits. Glutamine alone inhibited induction in the cell suspension culture. Maize seedlings germinated and grown for 7 days in a 15 mM mixture of amino acids also had lower nitrate uptake rates than seedlings grown in 0.5 mM Ca(NO3)2 or 1 mM CaCl2. As amino acids are the end product of nitrate assimilation, the results suggest an end-product feed-back mechanism for the regulation of nitrate uptake.  相似文献   

18.
以玉米幼苗为材料,通过在镉处理的同时补充外源一氧化氮(NO)供体硝普钠(SNP)及其类似物[K3Fe(CN)6]、以及NO消除剂,分析NO对植物耐镉性的影响,探讨NO在植物逆境胁迫响应中的作用及其机理。结果显示:添加20μmol·L-1 SNP能显著降低镉引发的玉米幼苗根生长抑制及根尖内源镉的积累,减少电解质的渗漏以及超氧化物自由基(O2.-)和过氧化氢(H2O2)的上升幅度,抑制超氧化物歧化酶(SOD)、过氧化氢酶(CAT)、抗坏血酸过氧化物酶(APX)活性的增加,进一步提高镉胁迫下谷胱甘肽还原酶(GR)的活性。SNP的上述效应可被NO消除剂2-(4-羧基-2-苯基)-4,4,5,5-四甲基咪唑-1-氧-3-氧化物(cPTIO)所逆转,而SNP类似物K3Fe(CN)6的应用对上述反应几乎无影响,说明该反应具有NO特异性。研究表明,外源NO能够显著缓解镉胁迫对玉米幼苗生长造成的伤害,该缓解作用主要是通过降低植株体内内源镉积累和减轻镉诱发的氧化伤害来实现的。  相似文献   

19.
Summary In a field experiment, more than 22% increase in the grain yield of corn was obtained by the application of 50 kg ZnSO4/ha. Grain yields were also increased by increasing the level of applied phosphorus. Positive relationship was obtained between Zn and P, the phosphorus treatment increased Zn uptake by grains and vice versa.  相似文献   

20.
Roots have the ability to change the direction of their forward growth. Sometimes these directional changes are rapid, as in mutations, or they are slower, as in tropisms. The gravitational force is always present and roots have an efficient graviperception mechanism which enables them to initiate gravitropic movements. In trying to model and simulate the course of gravitropic root movements with a view to analyse the component processes, the following aspects of the plant's interaction with gravity have been considered: (1) The level of organization (organism, organ, cell) at which the movement process is expressed; (2) whether the gravity stimulation event is dynamic or static (i.e. whether or not physiologically significant displacements take place with respect to the gravity vector); (3) the sub-systems involved in movement and the processes which they regulate; (4) the mathematical characterization of the relevant sub-systems. A further allied topic is the nature of nutational movements and whether they are linked with gravitropic movements in some way. In considering how they can best be modelled, two types of nutational movements are proponed: stochastic nutation and circumnutation. Most, if not all, natural movements developed in response to static gravistimulation can be viewed as gravimorphisms. This applies at the levels of cell, organ and organism. However, when a system at any one of these levels experiences dynamic gravistimulation, because of its inherent homeostatic properties, it is induced to regenerate a state similar to that previously held. Thus, gravitropism is a regenerative gravimorphic process at the level of the organ.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号