首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
The early steps in the biosynthesis of Mr 46,000 mannose 6-phosphate-specific receptor (MPR 46) have been studied by in vivo labeling of transfected BHK cells. The acquisition of phosphomannan-binding activity was compared with changes in protein structure and posttranslational modifications of MPR 46. Intramolecular disulfide bonds were formed before MPR 46 acquired a ligand-binding conformation. A conformational change that resulted in increased trypsin resistance, formation of highly immunogenic epitopes and assembly to noncovalently linked homodimers was observed almost simultaneously with the acquisition of ligand-binding activity. MPR 46 was shown to acquire ligand-binding activity before N-linked oligosaccharides were processed to complex-type forms. Maturation of the ligand-binding conformation was observed under conditions where transport to the Golgi was blocked by lowering the temperature to 16 degrees C, or by addition of brefeldin A or dinitrophenol to the medium at 37 degrees C. This suggests that receptor maturation and assembly take place before reaching the Golgi complex. The affinity towards phosphomannan-containing ligands was shown to be similar for the high-mannose and complex-glycosylated forms of MPR 46.  相似文献   

2.
The post-translational processing of the epidermal growth factor receptor in human A431 epidermoid carcinoma cells has been investigated. By employing the affinity matrix epidermal growth factor Affi-Gel in conjunction with immunoprecipitation, it has been demonstrated that core oligosaccharide addition is essential for the acquisition of epidermal growth factor-binding activity. Furthermore, the initial 160-kDa translation product was observed to undergo a processing step by which ligand-binding activity was acquired with a half-time of approximately 30 min while exhibiting no apparent change in mobility on sodium dodecyl sulfate-polyacrylamide gels. This was shown not to involve the conversion of high-mannose chains to complex chains which have been capped with fucose and sialic acid. Possible explanations for this activation in terms of translocation of intermediates and/or formation of disulfide bonds are discussed.  相似文献   

3.
The defining functional feature of N-methyl-d-aspartate (NMDA) receptors is activation gating, the energetic coupling of ligand binding into opening of the associated ion channel pore. NMDA receptors are obligate heterotetramers typically composed of glycine-binding GluN1 and glutamate-binding GluN2 subunits that gate in a concerted fashion, requiring all four ligands to bind for subsequent opening of the channel pore. In an individual subunit, the extracellular ligand-binding domain, composed of discontinuous polypeptide segments S1 and S2, and the transmembrane channel-forming domain, composed of M1-M4 segments, are connected by three linkers: S1-M1, M3-S2, and S2-M4. To study subunit-specific events during pore opening in NMDA receptors, we impaired activation gating via intrasubunit disulfide bonds connecting the M3-S2 and S2-M4 in either the GluN1 or GluN2A subunit, thereby interfering with the movement of the M3 segment, the major pore-lining and channel-gating element. NMDA receptors with gating impairments in either the GluN1 or GluN2A subunit were dramatically resistant to channel opening, but when they did open, they showed only a single-conductance level indistinguishable from wild type. Importantly, the late gating steps comprising pore opening to its main long-duration open state were equivalently affected regardless of which subunit was constrained. Thus, the NMDA receptor ion channel undergoes a pore-opening mechanism in which the intrasubunit conformational dynamics at the level of the ligand-binding/transmembrane domain (TMD) linkers are tightly coupled across the four subunits. Our results further indicate that conformational freedom of the linkers between the ligand-binding and TMDs is critical to the activation gating process.  相似文献   

4.
G protein-coupled receptors (GPCRs) are integral membrane proteins involved in cellular signaling and constitute major drug targets. Despite their importance, the relationship between structure and function of these receptors is not well understood. In this study, the role of extracellular disulfide bonds on the trafficking and ligand-binding activity of the human A2A adenosine receptor was examined. To this end, cysteine-to-alanine mutations were conducted to replace individual and both cysteines in three disulfide bonds present in the first two extracellular loops. Although none of the disulfide bonds were essential for the formation of plasma membrane-localized active GPCR, loss of the disulfide bonds led to changes in the distribution of the receptor within the cell and changes in the ligand-binding affinity. These results indicate that in contrast to many class A GPCRs, the extracellular disulfide bonds of the A2A receptor are not essential, but can modulate the ligand-binding activity, by either changing the conformation of the extracellular loops or perturbing the interactions of the transmembrane domains.  相似文献   

5.
Xanthine oxidoreductase (XOR) is a 300-kDa homodimer that can exist as an NAD+-dependent dehydrogenase (XD) or as an O2-dependent oxidase (XO) depending on the oxidation state of its cysteine thiols. Both XD and XO undergo limited cleavage by chymotrypsin and trypsin. Trypsin selectively cleaved both enzyme forms at Lys184, while chymotrypsin cleaved XD primarily at Met181 but cleaved XO at Met181 and at Phe560. Chymotrypsin, but not trypsin, cleavage also prevented the reductive conversion of XO to XD; thus the region surrounding Phe560 appears to be important in the interconversion of the two forms. Size exclusion chromatography showed that disulfide bond formation reduced the hydrodynamic volume of the enzyme, and two-dimensional gel electrophoresis of chymotrypsin-digested XO showed significant, disulfide bond-mediated, conformational heterogeneity in the N-terminal third of the enzyme but no evidence of disulfide bonds between the N-terminal and C-terminal regions or between XOR subunits. These results indicate that intrasubunit disulfide bond formation leads to a global conformational change in XOR that results in the exposure of the region surrounding Phe560. Conformational changes within this region in turn appear to play a critical role in the interconversion between the XD and XO forms of the enzyme.  相似文献   

6.
The chemical modification of histidine and arginine residues results in a loss of binding of the Mr 46,000 mannose 6-phosphate receptor (MPR 46) to a phosphomannan affinity matrix (Stein, M., Meyer, J. E., Hasilik, A., and von Figura, K. (1987) Biol. Chem. Hoppe-Seyler 368, 927-936). Reversal of the modification or presence of mannose 6-phosphate during the modification partially restores or protects the binding activity, indicating that histidine and arginine residues contribute to the mannose 6-phosphate binding site. The 5 histidine and 8 arginine residues within the luminal domain of MPR 46, which contains the ligand binding site, were exchanged by site-directed mutagenesis. Only the conservative replacement of His-131 and Arg-137 by serine and lysine, respectively, results in a loss of binding activity without affecting other properties of the receptor such as the presence of intramolecular disulfide bonds, immunoreactivity, processing of N-linked oligosaccharides, formation of dimers, intracellular distribution, and surface expression. Conservative replacement of other histidine and arginine residues did not affect the binding activity. Nonconservative replacement of several arginine residues reduced binding activity and immunoreactivity, indicating that the loss of a positive charge at these positions alters the folding of MPR 46. We conclude from these results that His-131 and Arg-137 are essential for binding of ligands by MPR 46.  相似文献   

7.
Zhang YH  Yan X  Maier CS  Schimerlik MI  Deinzer ML 《Biochemistry》2002,41(52):15495-15504
In vitro oxidative folding of reduced recombinant human macrophage colony stimulating factor beta (rhm-CSFbeta) involves two major events: disulfide isomerization in the monomeric intermediates and disulfide-mediated dimerization. Kinetic analysis of rhm-CSFbeta folding indicated that monomer isomerization is slower than dimerization and is, in fact, the rate-determining step. A time-dependent determination of the number of free cysteines remaining was made after refolding commence. The folding intermediates revealed that rhm-CSFbeta folds systematically, forming disulfide bonds via multiple pathways. Mass spectrometric evidence indicates that native as well as non-native intrasubunit disulfide bonds form in monomeric intermediates. Initial dimerization is assumed to involve formation of disulfide bonds, Cys 157/159-Cys' 157/159. Among six intrasubunit disulfide bonds, Cys 48-Cys 139 and Cys' 48-Cys' 139 are assumed to be the last to form, while Cys 31-Cys' 31 is the last intersubunit disulfide bond that forms. Conformational properties of the folding intermediates were probed by H/D exchange pulsed labeling, which showed the coexistence of noncompact dimeric and monomeric species at early stages of folding. As renaturation progresses, the noncompact dimer undergoes significant structural rearrangement, forming a native-like dimer while the monomer maintains a noncompact conformation.  相似文献   

8.
Previous studies have predicted five disulfide bonds in Aspergillus niger phytase (phy A). To investigate the role of disulfide bonds, intrinsic fluorescence spectra, far-ultraviolet circular dichroism (CD) spectra, and an enzyme activity assay were used to compare the differences of catalytic activity and conformational stability of phytase during denaturation in urea in the presence and absence of dithiothreitol (DTT). In the presence of 2 mM DTT, the inactivation and unfolding were greatly enhanced at the same concentration of denaturant. The fluorescence emission maximum red shift and decreases of ellipticity at 222 nm were in accord with the changes of catalytic activity. The kinetics of the unfolding courses were a biphasic process consisting of two first-order reactions in the absence of DTT and a monophasic process of a first-order reaction in the presence of DTT. The results suggested that the loss of enzymatic activity was most likely because of a conformational change, and that disulfide bonds played an important role in three-dimensional structure and catalytic activity.  相似文献   

9.
Kaye SL  Sansom MS  Biggin PC 《Biochemistry》2007,46(8):2136-2145
The precise nature of redox modulation of N-methyl-d-aspartate (NMDA) receptors is still unclear, although it is thought to be related to the formation and breaking of disulfide bonds. Recent structural data demonstrated the way in which disulfide bonds in the ligand-binding core of the NR1 subunit are arranged. However, the structures were not able to reconcile existing experimental data that examined the effects of mutating these cysteine residues. We have used molecular dynamics (MD) simulations of a series of in silico mutations to try and address this in terms of the current structure of the NR1 ligand-binding domain. A double mutation that removes the disulfide bridge between C744 and C798 gives rise to greater interlobe mobility which was predicted from the crystal structure information but, unexpectedly, also appears to predispose the receptor toward greater flexibility in the hinge region. Removal of the disulfide bond between C454 and C420 did not show any appreciable difference from the "wild-type" simulation, suggesting that removal of this would not change receptor properties, which is in agreement with experimental findings. Furthermore, the position of the C454 side chain could be characterized into discrete rotamers, which may reflect the observation of alternative density in the crystal structure for this residue. Simulations in which two of the disulfide bonds are removed via mutations to alanine (C420A and C436A) resulted in a tendency of the protein to adopt a partially closed conformation.  相似文献   

10.
The extremely heat-stable 5'-methylthioadenosine phosphorylase from the hyperthermophilic archaeon Pyrococcus furiosus was cloned, expressed to high levels in Escherichia coli, and purified to homogeneity by heat precipitation and affinity chromatography. The recombinant enzyme was subjected to a kinetic analysis including initial velocity and product inhibition studies. The reaction follows an ordered Bi-Bi mechanism and phosphate binding precedes nucleoside binding in the phosphorolytic direction. 5'-Methylthioadenosine phosphorylase from Pyrococcus furiosus is a hexameric protein with five cysteine residues per subunit. Analysis of the fragments obtained after digestion of the protein alkylated without previous reduction identified two intrasubunit disulfide bridges. The enzyme is very resistant to chemical denaturation and the transition midpoint for guanidinium chloride-induced unfolding was determined to be 3.0 M after 22 h incubation. This value decreases to 2.0 M in the presence of 30 mM dithiothreitol, furnishing evidence that disulfide bonds are needed for protein stability. The guanidinium chloride-induced unfolding is completely reversible as demonstrated by the analysis of the refolding process by activity assays, fluorescence measurements and SDS/PAGE. The finding of multiple disulfide bridges in 5'-methylthioadenosine phosphorylase from Pyrococcus furiosus argues strongly that disulfide bond formation may be a significant molecular strategy for stabilizing intracellular hyperthermophilic proteins.  相似文献   

11.
The properties of the newly synthesized and partially glycosylated forms of the transferrin receptor were examined to determine which co- and post-translational modifications are necessary for the acquisition of transferrin binding activity and transport of the receptor to the cell surface. The nascent transferrin receptor containing core-glycosylated asparagine-linked oligosaccharides does not possess complete intersubunit disulfide bonds, sediments predominantly as a monomer in sucrose density gradients, and shows reduced binding to transferrin-agarose. Within 20-30 min after synthesis, the transferrin receptor acquires the ability to bind to a transferrin-linked affinity column. Intersubunit disulfide bond formation occurs slowly throughout the transit of the receptor to the cell surface. These results indicate that core glycosylation of the receptor may be necessary but is not sufficient for the acquisition of the ability of the receptor to bind transferrin and that intersubunit disulfide bond formation is a post-translational event. Inhibition of complex carbohydrate synthesis by either swainsonine (1 micrograms/ml) or deoxynojirimycin (4 mM) does not inhibit the ability of this receptor to form intersubunit disulfide bonds or to be transported to the cell surface. The partially glycosylated receptor, however, does show an approximately 3-fold reduced affinity for transferrin.  相似文献   

12.
M Nagao  C Sakamoto  T Matozaki  S Baba 《FEBS letters》1987,214(1):107-110
We have characterized inter- and intrasubunit disulfide bonds of insulin receptors using reductant-treated rat liver and brain membranes. In autoradiograms of 125I-insulin cross-linked to both membranes pretreated with dithiothreitol, the intensity of affinity-labeled bands of the alpha beta-heterodimer and alpha-subunit was increased. Interestingly, labeled 120 and 110 kDa bands considered to be the alpha-subunit in partially reduced liver and brain membranes moved to 130 and 120 kDa bands under further reduced conditions, respectively. Double electrophoresis of each partially reduced band in the presence of reductants clearly demonstrates that the alpha-subunit of insulin receptors contains intrasubunit disulfide bonds.  相似文献   

13.
To study the conformational changes that convert G protein-coupled receptors (GPCRs) from their resting to their active state, we used the M(3) muscarinic acetylcholine receptor, a prototypical class A GPCR, as a model system. Specifically, we employed a recently developed in situ disulfide cross-linking strategy that allows the formation of disulfide bonds in Cys-substituted mutant M(3) muscarinic receptors present in their native membrane environment. At present, little is known about the conformational changes that GPCR ligands induce in the immediate vicinity of the ligand-binding pocket. To address this issue, we generated 11 Cys-substituted mutant M(3) muscarinic receptors and characterized these receptors in transfected COS-7 cells. All analyzed mutant receptors contained an endogenous Cys residue (Cys-532(7.42)) located within the exofacial segment of transmembrane domain (TM) VII, close to the agonist-binding site. In addition, all mutant receptors harbored a second Cys residue that was introduced into the exofacial segment of TM III, within the sequence Leu-142(3.27)-Asn-152(3.37). Disulfide cross-linking studies showed that muscarinic agonists, but not antagonists, promoted the formation of a disulfide bond between S151(3.36)C and Cys-532. A three-dimensional model of the inactive state of the M(3) muscarinic receptor indicated that Cys-532 and Ser-151 face each other in the center of the TM receptor core. Our cross-linking data therefore support the concept that agonist activation pulls the exofacial segments of TMs VII and III closer to each other. This structural change may represent one of the early conformational events triggering the more pronounced structural reorganization of the intracellular receptor surface. To the best of our knowledge, this is the first direct demonstration of a conformational change occurring in the immediate vicinity of the binding site of a GPCR activated by a diffusible ligand.  相似文献   

14.
A complex between secretory component and an immunoglobulin A (IgA) myeloma dimer has been studied in vitro as a model to elucidate the mechanism of the formation of disulfide bonds during assembly in vivo of secretory immunoglobin A. A small amount of free thiol groups, totally about 0.4 groups per mole of protein, were shown to be present on both the heavy and light chains of the IgA dimer, but not on its J-chain, while no such groups could be demonstrated on free secretory component. The SH-groups on IgA most likely exist as a result of incomplete oxidation of some intra-or interchain disulfide bonds of the molecule, analogous to what has been suggested for IgG. Several types of evidence indicated that the disulfide bonds between secretory component and IgA are formed after the noncovalent association of the two proteins by a sulfhydryl group-disulfide bond exchange reaction, in which the small amount of free sulfhydryl groups on the IgA dimer initiate the reaction by reducing a reactive disulfide bond on secretory component. This exchange reaction, which thus proceeds by the mechanism of so-called disulfide interchange reactions, requires certain conformational features of one or both of the proteins and leads to the formation of presumably two new interchain disulfide bonds between secretory component and IgA. The reaction does not progress to completion, however, but ends in an equilibrium so that a small proportion of the secretory component molecules always are unattached by disulfide bonds.  相似文献   

15.
The functional and structural significance of the intrasubunit disulfide bond in copper-zinc superoxide dismutase (SOD1) was studied by characterizing mutant forms of human SOD1 (hSOD) and yeast SOD1 lacking the disulfide bond. We determined x-ray crystal structures of metal-bound and metal-deficient hC57S SOD1. C57S hSOD1 isolated from yeast contained four zinc ions per protein dimer and was structurally very similar to wild type. The addition of copper to this four-zinc protein gave properly reconstituted 2Cu,2Zn C57S hSOD, and its spectroscopic properties indicated that the coordination geometry of the copper was remarkably similar to that of holo wild type hSOD1. In contrast, the addition of copper and zinc ions to apo C57S human SOD1 failed to give proper reconstitution. Using pulse radiolysis, we determined SOD activities of yeast and human SOD1s lacking disulfide bonds and found that they were enzymatically active at ∼10% of the wild type rate. These results are contrary to earlier reports that the intrasubunit disulfide bonds in SOD1 are essential for SOD activity. Kinetic studies revealed further that the yeast mutant SOD1 had less ionic attraction for superoxide, possibly explaining the lower rates. Saccharomyces cerevisiae cells lacking the sod1 gene do not grow aerobically in the absence of lysine, but expression of C57S SOD1 increased growth to 30–50% of the growth of cells expressing wild type SOD1, supporting that C57S SOD1 retained a significant amount of activity.  相似文献   

16.
The biological activities of pancreatic presecretory and secretory proteins synthesized in vitro were compared in studies of (a) the binding of nascent amylase to its substrate, glycogen, (b) the binding of nascent trypsinogen 1, trypsinogen 2+3, and chymotrypsinogen 1 to Sepharose-bound soybean trypsin inhibitor, and (c) the activation of nascent trypsinogen by porcine enterokinase. Nascent secretory proteins synthesized in vitro using a mRNA-dependent gel-filtered reticulocyte lysate translation system supplemented with canine pancreas rough microsomes or canine pancreas mRNA and micrococcal nuclease-treated microsomal membranes showed biological activities similar to authentic secretory proteins if oxidized glutathione was added during their synthesis. Proteins synthesized in the presence of membranes and the absence of glutathione showed significantly less biological activity due to incorrect development of conformation. Presecretory proteins synthesized in vitro with canine pancreas mRNA in the absence of microsomal membranes had little or no activity after translation in either the absence or presence of glutathione. These and previous findings (Scheele, G. A., and Jacoby, R. (1982) J. Biol. Chem. 257, 12277-12282) indicate that proteolytic removal of the NH2-terminal transport peptide is necessary to allow correct conformational development, including the formation of native disulfide bonds, which not only stabilizes the molecule but allows expression of authentic biological and probiological activity.  相似文献   

17.
Few experimental models have been used to investigate how proteins fold inside a cell. Using the formation of disulfide bonds as an index of conformational changes during protein folding, we have developed a unique system to determine the intracellular folding pathway of the beta subunit of human chorionic gonadotropin (hCG). Three folding intermediates of the beta subunit were purified from [35S]cysteine-labeled JAR choriocarcinoma cells by immunoprecipitation and by reverse-phase high performance liquid chromatography (HPLC). To identify unformed disulfide bonds, nonreduced folding intermediates were treated with trypsin to liberate non-disulfide-bound, [35S]cysteine-containing peptides from the disulfide-linked peptides. Released peptides were purified by HPLC and identified by amino acid sequencing. The amount of a peptide that was released indicated the extent of disulfide bond formation involving the cysteine in that peptide. Of the six disulfide bonds in hCG-beta, bonds 34-88 and 38-57 form first. The rate-limiting event of folding involves the formation of the S-S bonds between cysteines 23 and 72 and cysteines 9 and 90. Disulfide bond 93-100, the formation of which appears to be necessary for assembly with the alpha subunit of the hCG heterodimer, forms next. Finally, disulfide bond 26-110 forms after assembly with the alpha subunit, suggesting that completion of folding of the COOH terminus in the beta subunit occurs after assembly with the alpha subunit.  相似文献   

18.
Folding determinants of LDL receptor type A modules.   总被引:1,自引:0,他引:1  
V Koduri  S C Blacklow 《Biochemistry》2001,40(43):12801-12807
To investigate how three disulfide bonds and coordination of a calcium ion cooperate to specify the structure of an LDL-A module, we studied the interdependence of disulfide bond formation and calcium coordination in the folding of ligand-binding module 5 of the LDL receptor (LR5). In variants of LR5 containing only a single pair of cysteines normally disulfide-bonded in the native polypeptide, the addition of calcium does not alter the effective concentration of one cysteine for the other. LR5 only exhibits a calcium-dependent preference for formation of native disulfide bonds and detectable calcium-induced changes in structure when the two C-terminal disulfide bonds are present. Furthermore, when the conformation of this two-disulfide variant of LR5 is probed by NMR in the presence of calcium, only the C-terminal lobe of the module, which contains the calcium coordination site, acquires a near-native conformation; the N-terminal lobe appears to be disordered. These findings contrast with studies of other model proteins, like BPTI, in which formation of a single disulfide bond is sufficient to drive the entire domain to acquire a stable, nativelike fold.  相似文献   

19.
Disulfide bonds and protein folding   总被引:22,自引:0,他引:22  
The applications of disulfide-bond chemistry to studies of protein folding, structure, and stability are reviewed and illustrated with bovine pancreatic ribonuclease A (RNase A). After surveying the general properties and advantages of disulfide-bond studies, we illustrate the mechanism of reductive unfolding with RNase A, and discuss its application to probing structural fluctuations in folded proteins. The oxidative folding of RNase A is then described, focusing on the role of structure formation in the regeneration of the native disulfide bonds. The development of structure and conformational order in the disulfide intermediates during oxidative folding is characterized. Partially folded disulfide species are not observed, indicating that disulfide-coupled folding is highly cooperative. Contrary to the predictions of "rugged funnel" models of protein folding, misfolded disulfide species are also not observed despite the potentially stabilizing effect of many nonnative disulfide bonds. The mechanism of regenerating the native disulfide bonds suggests an analogous scenario for conformational folding. Finally, engineered covalent cross-links may be used to assay for the association of protein segments in the folding transition state, as illustrated with RNase A.  相似文献   

20.
Abstract

Mammalian defensins are crucial components of the innate immune system. They are characterized by three disulfide bridges and exhibit broad spectrum antibacterial activity. The spacing between the cysteines and disulfide connectivities in the two classes of defensins, the α- and β-forms, are different. The structural motif of 3 β-strands appears to be conserved in α and β-defensins despite differences in disulfide connectivities and spacing between cysteines. In this study, Molecular Dynamics Simulations (MDS) have been carried out to study the conformational behavior of α- and β-defensins with and without disulfide bridges. Our results indicate that β-strands in the C-terminal region of HBD-1 and HNP-3 do not unfold during the course of MDS. The segment adopting α-helix in HBD-1 unfolds early during the simulations. The backbone hydrogen bonds in HBD-1 and HNP-3 are broken during MDS. When the disulfide bonds are absent, the N-terminal β-strand unfolds by 20 ns but β-strands are observed in the C-terminal region of HNP-3. HBD-1, without disulfide bridges, unfolds to a greater extent during the course of the MDS. Examination of distances between sulfur atoms of cysteines without disulfide bridges during the simulations indicate that there is no specific preference for native disulfide bridges, which could be the reason for the experimental observation of non-native disulfide bridge formation during chemical synthesis of human α- and β-defensins. Since defensins with non-native disulfide bridges are biologically active, the exact three dimensional structures observed for native HBD-1 and HNP-3 does not appear to be essential for exhibiting antibacterial activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号