首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A survey was made of the capacity of mitochondria isolated from a number of different tissues and species to accumulate Ca(2+) from the suspending medium during electron transport. The species examined included the rat, mouse, rabbit, hamster, guinea pig, cow, chicken, turtle, blowfly, yeast and Neurospora crassa. The tissues examined included vertebrate liver, kidney, brain, heart, spleen, thyroid and adrenal cortex, and the flight muscle of the blowfly. The mitochondria from all vertebrate tissues examined showed: (a) stimulation of State 4 respiration by added Ca(2+) (Ca(2+)/~ activation ratio about 2.0), accompanied by accumulation of Ca(2+) and ejection of H(+), with a H(+)/Ca(2+) ratio about 1.0; (b) a requirement of phosphate for accumulation of large amounts of Ca(2+); (c) respiration-independent high-affinity binding sites for Ca(2+); (d) endogenous Ca(2+), which is largely released by uncoupling agents. However, mitochondria from yeast and blowfly flight muscle are unable to accumulate Ca(2+) in a respiration-dependent process and possess no high-affinity Ca(2+)-binding sites. These findings support the view that the high-affinity sites represent the ligand-binding sites of a specific Ca(2+) ;permease' or transport system in the membrane. The relatively high affinity for Ca(2+), which equals or exceeds the affinity for ADP, and the generally uniform characteristics of Ca(2+) transport in all the vertebrate mitochondria tested strongly suggest that respiration-linked Ca(2+) accumulation plays a general and fundamental role in vertebrate cell physiology.  相似文献   

2.
The contractile and regulatory proteins of insect flight muscle   总被引:9,自引:2,他引:7       下载免费PDF全文
1. Myosin, actin and the regulatory proteins were prepared from insect flight muscle. 2. The light subunit composition of the myosin differed from that of vertebrate muscle myosin. The ionic strength and pH dependence of the myosin adenosine triphosphatase (ATPase) were measured. 3. Actin was associated with a protein of subunit molecular weight 55000 and was purified by gel filtration. Impure actin had protein bound at a periodicity of about 40nm. 4. Regulatory protein extracts had tropomyosin and troponin components of subunit molecular weight 18000, 27000 and 30000. Crude extracts of regulatory proteins inhibited the ATPase activity of desensitized or synthetic actomyosin; this inhibition was relatively insensitive to high Ca(2+) concentrations. Purified insect regulatory protein produced as much sensitivity to Ca(2+) as did the rabbit troponin-tropomyosin complex. 5. Synthetic actomyosins were made from rabbit and insect proteins. Actomyosins containing insect myosin had a low ATPase activity that was activated by tropomyosin. The Ca(2+) sensitivity of actomyosins containing insect myosin or actin, with added troponin-tropomyosin complex from rabbit, was comparable with that of rabbit actomyosin.  相似文献   

3.
The dephosphorylated form of phosphorylase kinase was purified 700-fold from rabbit heart extract. The purified enzyme had a pH 6.8/pH 8.2 activity ratio of 0.04-0.08 and was completely dependent on Ca2+ with an apparent Ka value for Ca2+ of 2.59 microM at pH 6.8. At free Ca2+ concentrations between 0.057 microM and 400 microM, 1.5 microM rabbit heart troponin complex had no significant effect on the reaction. However, 1.5 microM rabbit skeletal muscle troponin complex stimulated the reaction 1.5-2-fold with a concomitant decrease in the Ka value for Ca2+ to 1.40 microM. No differences in the effects of these troponin complexes were observed when heart-type and skeletal muscle-type phosphorylase b isoenzymes from either rabbit or pig were used as substrate. Similar effects of heart and skeletal muscle troponin complexes were observed on the Ca2+-dependent reaction of the dephosphorylated form of phosphorylase kinase partially purified from rabbit skeletal muscle. A saturating concentration (1.36 microM) of bovine brain calmodulin stimulated 2-5-fold the Ca2+-dependent reaction of skeletal muscle phosphorylase kinase, but not the reaction of heart phosphorylase kinase. Heart troponin complex (12 microM) suppressed 80-100% the stimulatory effect of skeletal muscle troponin complex on the reactions of phosphorylase kinase isoenzymes, but had no significant effect on the stimulation by calmodulin of skeletal muscle phosphorylase kinase reaction.  相似文献   

4.
Mevalonate kinase was purified to homogeneity from Catharanthus roseus (L.) G. Don suspension-cultured cells. The purified enzyme had an M(r) of 104,600 and a subunit size of about 41,500. Kinetic studies indicated an ordered sequential mechanism of action, in which mevalonate was the first substrate to bind and ADP was the last product to leave the enzyme. True values for the kinetic constants were determined for mevalonate, with K(ma) = 76 microM and K(ia) = 74 microM, and for ATP, with K(mb) = 0.13 mM and K(ib) = 0. 13 mM; the true V(max) was calculated to be 138.7 nkat/mg of protein. Product inhibition was only detectable at rather high concentrations: above 0.7 mM for 5-phosphomevalonate and above 2 mM for ADP, with an ADP/ATP ratio of at least 1. Mevalonate kinase activity was shown to be strongly inhibited by farnesyl diphosphate. Farnesyl diphosphate acted as a competitive inhibitor toward ATP, with a K(i) value of 0.1 microM. Mevalonate kinase activity was dependent on the presence of divalent ions. At a concentration of 2 mM, Mg(2+) and Mn(2+) were best and equally effective in sustaining activity; compared to Mg(2+) and Mn(2+), relative activities of 35, 30, 16, 4.8, and 3.4% were detected at equimolar concentrations of Zn(2+), Fe(2+), Co(2+), Ca(2+), and Ni(2+), respectively. The pH-dependent activity profile of mevalonate kinase showed a broad pH optimum between pH 7 and 10, with a maximum at about pH 8.9.  相似文献   

5.
Phosphorylase kinase has been purified from white and red chicken skeletal muscle to near homogeneity, as judged by sodium dodecyl sulphate (SDS) gel electrophoresis. The molecular mass of the native enzyme, estimated by chromatography on Sepharose 4B, is similar to that of rabbit skeletal muscle phosphorylase kinase, i.e. 1320 kDa. The purified enzyme both from white and red muscles showed four subunits upon polyacrylamide gel electrophoresis in the presence of SDS, corresponding to alpha', beta, gamma' and delta with molecular masses of 140 kDa, 129 kDa, 44 kDa and 17 kDa respectively. Based on the molecular mass of 1320 kDa for the native enzyme and on the molar ratio of subunits as estimated from densitometric tracings of the polyacrylamide gels, a subunit formula (alpha' beta gamma' delta)4 has been proposed. The antiserum against the mixture of the alpha' and beta subunits of chicken phosphorylase kinase gave a single precipitin line with the chicken enzyme but did not cross-react with the rabbit skeletal muscle phosphorylase kinase. The pH 6.8/8.2 activity ratio of phosphorylase kinase from chicken skeletal muscle varied from 0.3 to 0.5 for different preparations of the enzyme. Chicken phosphorylase kinase could utilize rabbit phosphorylase b as a substrate with an apparent Km value of 0.02 mM at pH 8.2. The apparent V (18 mumol min-1 mg-1) and Km values for ATP at pH 8.2 (0.20 mM) were of the same order of magnitude as that of the purified rabbit phosphorylase kinase b. The activity of chicken phosphorylase kinase was largely dependent on Ca2+. The chicken enzyme was activated 2-4-fold by calmodulin and troponin C, with concentrations for half-maximal activation of 2 nM and 0.1 microM respectively. Phosphorylation with the catalytic subunit of cAMP-dependent protein kinase (up to 2 mol 32P/mol alpha beta gamma delta monomer) and autophosphorylation (up to 8 mol 32P/mol alpha beta gamma delta monomer) increased the activity 1.5-fold and 2-fold respectively. Limited tryptic and chymotryptic hydrolysis of chicken phosphorylase kinase stimulated its activity 2-fold. Electrophoretic analysis of the products of proteolytic attack suggests some differences in the structure of the rabbit and chicken gamma subunits and some similarities in the structure of the rabbit red muscle and chicken alpha'.  相似文献   

6.
1. Isolated outer membranes from rat spleen mitochondria can be stored in liquid N(2) for several weeks without significant loss of ATPase (adenosine triphosphatase) activity. 2. The ATPase reaction has a broad pH optimum centering on neutral pH, with little significant activity above pH9.0 or below pH5.5. 3. A sigmoidal response of the ATPase activity to temperature is observed between 0 and 55 degrees C, with complete inactivation at 60 degrees C. The Arrhenius plot shows that the activation energy above the transition temperature (22 degrees C) (E(a)=144kJ/mol) is one-third of that calculated for below the transition temperature (E'(a)=408kJ/mol). 4. The outer-membrane ATPase (K(m) for MgATP=50mum) is inactive unless Mg(2+) is added, whereas the inner-membrane ATPase (K(m) for ATP=11mum) is active without added Mg(2+) unless the mitochondria have been depleted of all endogenous Mg(2+) (by using ionophore A23187). 5. The substrate for the outer-membrane ATPase is a bivalent metal ion-nucleoside triphosphate complex in which Mg(2+) (K(m)=50mum) can be replaced effectively by Ca(2+) (K(m)=6.7mum) or Mn(2+), and ATP by ITP. Cu(2+), Co(2+), Sr(2+), Ba(2+), Ni(2+), Cd(2+) and Zn(2+) support very little ATP hydrolysis. 6. Univalent metal ions (Na(+), K(+), Rb(+), Cs(+) and NH(4) (+), but not Li(+)) stimulate the MgATPase activity (<10%) at low concentrations (50mm), but, except for K(+), are slightly inhibitory (20-30%) at higher concentrations (500mm). 7. The Mg(2+)-stimulated ATPase activity is significantly inhibited by Cu(2+) (K(i)=90mum), Ni(2+) (K(i)=510mum), Zn(2+) (K(i)=680mum) and Co(2+) (K(i)=1020mum), but not by Mg(2+), Ca(2+), Ba(2+) or Sr(2+). 8. The outer-membrane ATPase is insensitive to the inhibitors oligomycin, NN'-dicyclohexylcarbodiimide, NaN(3), ouabain and thiol-specific reagents. A significant inhibition is observed at high concentrations of AgNO(3) (0.5mm) and NaF (10mm). 9. The activity towards MgATP is competitively inhibited by the product MgADP (K(i)=0.7mm) but not by the second product P(i) or by 5'-AMP.  相似文献   

7.
The main kinetic parameters for purified phosphorylase kinase from chicken skeletal muscle were determined at pH 8.2: Vm = 18 micromol/min/mg; apparent Km values for ATP and phosphorylase b from rabbit muscle were 0.20 and 0.02 mM, respectively. The activity ratio at pH 6.8/8.2 was 0.1-0.4 for different preparations of phosphorylase kinase. Similar to the rabbit enzyme, chicken phosphorylase kinase had an absolute requirement for Ca2+ as demonstrated by complete inhibition in the presence of EGTA. Half-maximal activation occurred at [Ca2+] = 0.4 microM at pH 7.0. In the presence of Ca2+, the chicken enzyme from white and red muscles was activated 2-4-fold by saturating concentrations of calmodulin and troponin C. The C0.5 value for calmodulin and troponin C at pH 6.8 was 2 and 100 nM, respectively. Similar to rabbit phosphorylase kinase, the chicken enzyme was stimulated about 3-6-fold by glycogen at pH 6.8 and 8.2 with half-maximal stimulation occurring at about 0.15% glycogen. Protamine caused 60% inhibition of chicken phosphorylase kinase at 0.8 mg/ml. ADP (3 mM) at 0.05 mM ATP caused 85% inhibition with Ki = 0.2 mM. Unlike rabbit phosphorylase kinase, no phosphorylation of the chicken enzyme occurred in the presence of the catalytic subunit of cAMP-dependent protein kinase. Incubation with trypsin caused 2-fold activation of the chicken enzyme.  相似文献   

8.
Phosphorylase kinase was partially purified (530-970-fold) from chicken gizzard smooth muscle by a procedure involving ammonium sulfate fractionation, chromatography on 8-(6-aminohexyl)adenosine-5'-phosphate--Sepharose 4B and glycerol density gradient ultracentrifugation. The final and most efficient purification step takes advantage of the relatively high molecular mass of gizzard phosphorylase kinase, which was found to be similar to that of rabbit skeletal muscle enzyme. The gizzard kinase, further purified to near homogeneity by calmodulin-Sepharose 4 B affinity chromatography, showed one main protein band of 61 kDa, upon dodecyl sulfate acrylamide gel electrophoresis. Four minor protein bands of higher molecular mass were also present but no protein stain was seen at the position of the gamma subunit. The gizzard phosphorylase kinase showed a high pH 6.8/8.2 activity ratio of 0.53, it was stimulated by Ca2+, inhibited up to 80% by EGTA and it was activated about 1.9-fold by calmodulin. The km value for ATP was 0.45 mM, while the K0.5 for rabbit muscle phosphorylase b was extremely low, more than 200-fold lower than the Km of nonactivated skeletal muscle phosphorylase kinase for its protein substrate. High concentrations of phosphorylase b were found to be inhibitory. At 10 mg/ml phosphorylase b, the maximum activity of the kinase was inhibited fivefold. No evidence has been obtained indicating autophosphorylation or the existence of active and inactive forms of gizzard phosphorylase kinase. Limited proteolysis of the smooth muscle kinase with trypsin was accompanied by a twofold activation at pH 6.8.  相似文献   

9.
1. Two cyclic AMP-independent casein/glycogen synthase kinases were purified from pig polymorphonuclear leucocytes by chromatography on phosphocellulose followed by affinity chromatography on casein-Sepharose 4B or gel filtration on Bio-Gel A-1.5m. When the affinity step was used, the specific activities were 86 and 43units/mg of protein for casein kinase 1 and 2, respectively, whereas these values were 94 and 90units/mg of protein when the gel-filtration step was used. 2. These kinases differ as follows: (a) the molecular weight of casein kinase 1 (38000) is very much lower than that of casein kinase 2 (185000); (b) the K(m) for casein (0.46mg/ml) and K(a) for Mg(2+) (0.3mm) of casein kinase 1 are lower than those of casein kinase 2 (0.90mg/ml and 1.7mm respectively); (c) KCl stimulates the phosphorylation of casein by casein kinase 1, whereas it inhibits phosvitin phosphorylation by this enzyme; on the contrary, the effect of KCl on casein kinase 2 is very similar with either casein or phosvitin as substrate; (d) although both kinases phosphorylate rabbit muscle glycogen synthase I, the ratio of glycogen synthase to casein phosphorylation by casein kinase 1 is about 4-fold greater than that by casein kinase 2. Furthermore, (32)P incorporation into glycogen synthase promoted by casein kinase 1 (3.6mol of (32)P/mol of 85000-dalton subunit) is twice that observed with casein kinase 2 (1.8mol of (32)P/mol of 85000-dalton subunit). Such a phosphorylation results in a decrease in the glucose 6-phosphate-independence ratio of glycogen synthase to 10-15 with casein kinase 1 and to 35-45 with casein kinase 2. 3. The activity of both kinases is neither stimulated by cyclic AMP, Ca(2+) and calmodulin nor inhibited by cyclic AMP-dependent protein kinase inhibitor protein. 4. No phosphorylation kinase activity was observed with casein kinase 1 and 2 at either pH6.8 or 8.2 in the presence of Ca(2+). 5. Activities of both kinases on casein and glycogen synthase decreased in parallel when incubated at 50 degrees C.  相似文献   

10.
Trivalent lanthanide ions and Cd2+ were found to mimic effectively the stimulatory action of Ca2+ on rabbit muscle phosphorylase kinase. In the range of concentrations tested, Cd2+ and lanthanides (Tb3+, Gd3+, Pr3+, Ce3+) could substitute for Ca2+ in activating the enzyme to about 60% and 70% respectively of the maximal level seen with Ca2+, at pH 8.2. The effect induced by Cd2+ was biphasic (stimulation followed by inhibition with increasing metal cation concentration). Similar results were obtained at pH 6.8. Cd2+ and Tb3+ were also able to replace Ca2+ required for the stimulation of phosphorylase kinase activity at pH 8.2 by exogenous calmodulin. Maximal stimulation induced by calmodulin in presence of Cd2+ was significantly higher than that in presence of Ca2+ or Tb3+.  相似文献   

11.
The present study aimed to identify the presence of protein kinase C-like (PKC-like) in Leishmania amazonensis and to elucidate its possible role in the modulation of the (Na(+)+K(+))ATPase activity. Immunoblotting experiments using antibody against a consensus sequence (Ac 543-549) of rabbit protein kinase C (PKC) revealed the presence of a protein kinase of 80 kDa in L. amazonensis. Measurements of protein kinase activity showed the presence of both (Ca(2+)-dependent) and (Ca(2+)-independent) protein kinase activity in plasma membrane and cytosol. Phorbol ester (PMA) activation of the Ca(2+)-dependent protein kinase stimulated the (Na(+)+K(+))ATPase activity, while activation of the Ca(2+)-independent protein kinase was inhibitory. Both effects of protein kinase on the (Na(+)+K(+))ATPase of the plasma membrane were lower than that observed in intact cells. PMA induced the translocation of protein kinase from cytosol to plasma membrane, indicating that the maximal effect of protein kinase on the (Na(+)+K(+))ATPase activity depends on the synergistic action of protein kinases from both plasma membrane and cytosol. This is the first demonstration of a protein kinase activated by PMA in L. amazonensis and the first evidence for a possible role in the regulation of the (Na(+)+K(+))ATPase activity in this trypanosomatid. Modulation of the (Na(+)+K(+))ATPase by protein kinase in a trypanosomatid opens up new possibilities to understand the regulation of ion homeostasis in this parasite.  相似文献   

12.
13.
Vacuolar ion channels in guard cells play important roles during stomatal movement and are regulated by many factors including Ca(2+), calmodulin, protein kinases, and phosphatases. We report that physiological cytosolic and luminal Mg(2+) levels strongly regulate vacuolar ion channels in fava bean (Vicia faba) guard cells. Luminal Mg(2+) inhibited fast vacuolar (FV) currents with a K(i) of approximately 0.23 mM in a voltage-dependent manner at positive potentials on the cytoplasmic side. Cytosolic Mg(2+) at 1 mM also inhibited FV currents. Furthermore, in the absence of cytosolic Mg(2+), cytosolic Ca(2+) at less than 10 μM did not activate slow vacuolar (SV) currents. However, when cytosolic Mg(2+) was present, submicromolar concentrations of cytosolic Ca(2+) activated SV currents with a K(d) of approximately 227 nM, suggesting a synergistic Mg(2+)-Ca(2+) effect. The activation potential of SV currents was shifted toward physiological potentials in the presence of cytosolic Mg(2+) concentrations. The direction of SV currents could also be changed from outward to both outward and inward currents. Our data predict a model for SV channel regulation, including a cytosolic binding site for Ca(2+) with an affinity in the submicromolar range and a cytosolic low-affinity Mg(2+)-Ca(2+) binding site. SV channels are predicted to contain a third binding site on the vacuolar luminal side, which binds Ca(2+) and is inhibitory. In conclusion, cytosolic Mg(2+) sensitizes SV channels to physiological cytosolic Ca(2+) elevations. Furthermore, we propose that cytosolic and vacuolar Mg(2+) concentrations ensure that FV channels do not function as a continuous vacuolar K(+) leak, which would prohibit stomatal opening.  相似文献   

14.
We investigated the mechanism of phospholipase A(2) (PLA(2)) activation in response to the P2 receptor agonist ATP in rat thyroid FRTL-5 cells. The PLA(2) activity was determined by measuring the release of [(3)H]-arachidonic acid (AA) from prelabeled cells. ATP evoked a dose- and time-dependent AA release. This release was totally inhibited by pertussis toxin (PTX) treatment, indicating the involvement of a G(i)/G(o) protein. The AA release was also diminished by chelating extracellular Ca(2+) with EGTA or by inhibiting influx of Ca(2+) using Ni(2+). Although the activation of protein kinase C (PKC) by 12-phorbol 13-myristate acetate (PMA) alone did not induce any AA release, the ATP-evoked AA release was significantly reduced when PKC was inhibited by GF109203X or by a long incubation with PMA to downregulate PKC. Both the ATP-evoked AA release and the mitogen-activated protein kinase (MAP kinase) phosphorylation were decreased by the MAP kinase kinase (MEK) inhibitor PD98059. Furthermore, the ATP-evoked MAP kinase phosphorylation was also inhibited by GF109203X and by downregulation of PKC, suggesting a PKC-mediated activation of MAP kinase. Inhibiting Src-like kinases by PP1 attenuated both the MAP kinase phosphorylation and the AA release. These results suggest that these kinases are involved in the regulation of MAP kinase and PLA(2) activation. Elevation of intracellular cAMP by TSH or by dBucAMP did not induce a phosphorylation of MAP kinase. Furthermore, neither the ATP-evoked AA release nor the MAP kinase phosphorylation were attenuated by TSH or dBucAMP. Taken together, our results suggest that ATP regulates the activation of PLA(2) by a G(i)/G(o) protein-dependent mechanism. Moreover, Ca(2+), PKC, MAP kinase, and Src-like kinases are also involved in this regulatory process.  相似文献   

15.
Ca(2+), Mg(2+), and K(+) activities in red beet (Beta vulgaris L.) vacuoles were evaluated using conventional ion-selective microelectrodes and, in the case of Ca(2+), by non-invasive ion flux measurements (MIFE) as well. The mean vacuolar Ca(2+) activity was approximately 0.2 mM. Modulation of the slow vacuolar (SV) channel voltage dependence by Ca(2+) in the absence and presence of other cations at their physiological concentrations was studied by patch-clamp in excised tonoplast patches. Lowering pH at the vacuolar side from 7.5 to 5.5 (at zero vacuolar Ca(2+)) did not affect the channel voltage dependence, but abolished sensitivity to luminal Ca(2+) within a physiological range of concentrations (0.1-1.0 mM). Aggregation of the physiological vacuolar Na(+) (60 mM) and Mg(2+) (8 mM) concentrations also results in the SV channel becoming almost insensitive to vacuolar Ca(2+) variation in a range from nanomoles to 0.1 mM. At physiological cation concentrations at the vacuolar side, cytosolic Ca(2+) activates the SV channel in a voltage-independent manner with K(d)=0.7-1.5 microM. Comparison of the vacuolar Ca(2+) fluxes measured by both the MIFE technique and from estimating the SV channel activity in attached patches, suggests that, at resting membrane potentials, even at elevated (20 microM) cytosolic Ca(2+), only 0.5% of SV channels are open. This mediates a Ca(2+) release of only a few pA per vacuole (approximately 0.1 pA per single SV channel). Overall, our data suggest that the release of Ca(2+) through SV channels makes little contribution to a global cytosolic Ca(2+) signal.  相似文献   

16.
Gangliosides have profound effects on protein phosphorylation in skeletal muscle. Addition of GT1b to guinea pig muscle extract stimulated the phosphorylation of a 98-kDa protein 4-8-fold. In contrast, Ca2+ stimulated the phosphorylation of this protein and two other proteins with apparent Mr of 107,000 and 145,000, respectively. Addition of GT1b in the presence of Ca2+ further enhanced the phosphorylation of the 98-kDa protein but completely inhibited the phosphorylation of both the 107- and the 145-kDa proteins. The nature of the ganglioside-modulated 98-kDa protein has been characterized. Results on the pH activity profiles and the requirements of Ca2+ for phosphorylation suggest that this phosphoprotein may correspond to glycogen phosphorylase. Phosphorylation of purified rabbit muscle phosphorylase b by nonactivated phosphorylase kinase was stimulated by GT1b. This stimulation was in part due to an activation of the kinase activity. Autophosphorylation of highly purified phosphorylase kinase was increased 4-10-fold in the presence of GT1b. Polysialogangliosides were more potent than monosialogangliosides in stimulating the autocatalytic activity, whereas asialo-GM1, colominic acid, N-acetylneuraminic acid, and phosphatidylserine were ineffective. The effects of gangliosides were dose-dependent. At physiological pH, the concentrations of GT1b required for half-maximal stimulation of the autophosphorylation of phosphorylase kinase were 6.4 microM in the absence of Ca2+ and 1.3 microM when the divalent cation was present. These findings suggest that gangliosides may play a role as biomodulators in the regulation of glycogenolysis in muscle.  相似文献   

17.
Fat cells from rat and rabbit hydrolyzed externally applied adenosine triphosphate at a rate of about 1.8 nmol times mg(-1) cells times min(-1) corresponding to about 0.3 mumol times mg(-1) protein tinus min(-1). Similar activities were found in cell homogenates. In purified adipocyte plasma membranes the rate of hydrolysis was about 1.8 mumol times mg(-1) protein times min(-1). The hydrolytic activity was dependent on divalent metal ions. Mg(2+), Mn(2+) and Ca(2+) gave highest activities. The activity was maximal at about equimolar concentrations of M(2+) and ATP. Km for MgATP was about 0.23 mM and for CaATP about 0.36 mM. Combinations of Mg(2+) and Ca(2+), or of Mg(2+), Na(+) and K(+) gave similar activities as did Mg(2+) only. At concentrations of 1 mM the following nucleotides were hydrolyzed with a decreasing rate: ATP > ITP > GTP > UTP = CTP. In isolated fat cells the beta-adrenergic drug isoproterenol and insulin slightly increased the rate of hydrolysis of external ATP, while the alpha-effector clonidine was inhibitory. The results suggest that a major portion of the ATP hydrolytic activity of the fat cell plasma membrane represents a nucleotide pyrophosphatase activity with access to externally applied ATP.  相似文献   

18.
Phosphorylase b kinase was extensively purified from rat liver. It was located in a form which could be activated 20--30-fold by a preincubation with adenosine 3':5'-monophosphate (cyclic AMP) and ATP-Mg. This activation was time-dependent, and was paralleled by a simultaneous incorporation of 32P from [gamma-32P]ATP into two polypeptides which comigrated in sodium dodecyl sulfate gel electrophoresis with the alpha and beta subunits of rabbit skeletal muscle phosphorylase b kinase. The liver enzyme was eluted from Sepharose 4B and Bio-Gel A-50m columns at the same place as muscle phosphorylase b kinase, which is indicative of a molecular weight of 1.3 x 10(6). After activation, the most purified liver preparation had a specific activity about 10-fold less than the homogeneous muscle enzyme at pH 8.2. The inactive enzyme form had a pronounced pH optimum around pH 6.0, whereas the activated form was mostly active above neutral pH. The activation of the enzyme reduced the Km for its substrate phosphorylase b severalfold. Liver phosphorylase b kinase was shown to be partially dependent on Ca2+ ions for its activity: addition of 0.5 mM [ethylenebis-(oxoethylenenitrilo)]tetraacetic acid (EGTA) to the phosphorylase b kinase assay increased the Km for phosphorylase b about twofold for both the inactive and the activated form of liver phosphorylase b kinase, but affected the V of the inactive species only.  相似文献   

19.
20.
Two cyclic AMP-independent protein kinases (ATP: protein phosphotransferase, EC 2.7.1.37) (casein kinase 1 and 2) have been purified from rat liver cytosol by a method involving chromatography on phosphocellulose and casein-Sepharose 4B. Both kinases were essentially free of endogeneous protein substrates and capable of phosphorylating casein, phosvitin and I-form glycogen synthase, but were inactive on histone IIA, protamine and phosphorylase b. They were neither stimulated by cyclic AMP, Ca2+ and calmodulin, nor inhibited by the cyclic AMP-dependent protein kinase inhibitor protein. The casein and glycogen synthase kinase activities of each enzyme decreased at the same rate when incubated at 50 degrees C. Casein kinase 1 and casein kinase 2 showed differences in molecular weight, sensitivity to KCl, Km for casein and phosvitin and Ka for Mg2+, whereas their Km values for ATP and I-form glycogen synthase were similar. The phosphorylation of glycogen synthase by these kinases correlated with a decrease in the +/- glucose 6-phosphate activity ratio (independence ratio). However, casein kinase 1 catalyzed the incorporation of about 3.6 mol of 32P/85000 dalton subunit, decreasing the independence ratio from 83 to about 15, whereas the phosphorylation achieved by casein kinase 2 was only about 1.9 mol of 32P/850000 dalton subunit, decreasing the independence ratio to about 23. The independence ratio decrease was prevented by the presence of casein but was unaffected by phosphorylase b. These data indicate that casein/glycogen synthase kinases 1 and 2 are different from cyclic AMP-dependent protein kinase and phosphorylase kinase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号