首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hirota H  Chen J  Betz UA  Rajewsky K  Gu Y  Ross J  Müller W  Chien KR 《Cell》1999,97(2):189-198
Biomechanical stress is a major stimulus for cardiac hypertrophy and the transition to heart failure. By generating mice that harbor a ventricular restricted knockout of the gp130 cytokine receptor via Cre-IoxP-mediated recombination, we demonstrate a critical role for a gp130-dependent myocyte survival pathway in the transition to heart failure. Such conditional mutant mice have normal cardiac structure and function, but during aortic pressure overload, these mice display rapid onset of dilated cardiomyopathy and massive induction of myocyte apoptosis versus the control mice that exhibit compensatory hypertrophy. Thus, cardiac myocyte apoptosis is a critical point in the transition between compensatory cardiac hypertrophy and heart failure. gp130-dependent cytokines may represent a novel therapeutic strategy for preventing in vivo heart failure.  相似文献   

2.
Inflammation plays a key role in pressure overload‐induced cardiac hypertrophy and heart failure, but the mechanisms have not been fully elucidated. High‐mobility group box 1 (HMGB1), which is increased in myocardium under pressure overload, may be involved in pressure overload‐induced cardiac injury. The objectives of this study are to determine the role of HMGB1 in cardiac hypertrophy and cardiac dysfunction under pressure overload. Pressure overload was imposed on the heart of male wild‐type mice by transverse aortic constriction (TAC), while recombinant HMGB1, HMGB1 box A (a competitive antagonist of HMGB1) or PBS was injected into the LV wall. Moreover, cardiac myocytes were cultured and given sustained mechanical stress. Transthoracic echocardiography was performed after the operation and sections for histological analyses were generated from paraffin‐embedded hearts. Relevant proteins and genes were detected. Cardiac HMGB1 expression was increased after TAC, which was accompanied by its translocation from nucleus to both cytoplasm and intercellular space. Exogenous HMGB1 aggravated TAC‐induced cardiac hypertrophy and cardiac dysfunction, as demonstrated by echocardiographic analyses, histological analyses and foetal cardiac genes detection. Nevertheless, the aforementioned pathological change induced by TAC could partially be reversed by HMGB1 inhibition. Consistent with the in vivo observations, mechanical stress evoked the release and synthesis of HMGB1 in cultured cardiac myocytes. This study indicates that the activated and up‐regulated HMGB1 in myocardium, which might partially be derived from cardiac myocytes under pressure overload, may be of crucial importance in pressure overload‐induced cardiac hypertrophy and cardiac dysfunction.  相似文献   

3.
Activation of gp130 transduces a hypertrophic signal in the heart, but it is not clear whether signalling through gp130 is enhanced when gp130 is overexpressed in vivo. We generated gp130 transgenic mice (TG) and examined the activation of signalling pathways downstream of gp130 in the hearts. The tyrosine phosphorylation of gp130 was enhanced, the phosphorylation of STAT3 and ERK (extracellular signal regulated kinase) 1/2 was increased and induction of the beta-myosin heavy chain (MHC) gene was observed in TG hearts without significant phenotypic changes. Intravenous administration of leukaemia inhibitory factor (LIF) induced tyrosine phosphorylation of STAT3 and ERK 1/2 and expression of c-fos and beta-MHC mRNAs in wild-type littermates' (WT) hearts. However, enhancement of STAT3 and ERK 1/2 phosphorylation or augmented mRNA expressions was not observed in TG hearts after LIF stimulation. Next, STAT-induced STAT inhibitor (SSI) mRNA expression was examined. The expression of SSI-1, SSI-2, and SSI-3 mRNAs was significantly augmented in TG hearts after LIF stimulation. These results indicate that overexpressed gp130 does not always enhance downstream signals in the hearts and suggest that the SSI family plays a role in the regulation of the gp130-dependent signalling pathway in the hearts.  相似文献   

4.
Glycogen synthase kinase-3 (GSK-3) is a serine/threonine kinase having multiple functions and consisting of two isoforms, GSK-3alpha and GSK-3beta. Pressure overload increases expression of GSK-3alpha but not GSK-3beta. Despite our wealth of knowledge about GSK-3beta, the function of GSK-3alpha in the heart is not well understood. To address this issue, we made cardiac-specific GSK-3alpha transgenic mice (Tg). Left ventricular weight and cardiac myocyte size were significantly smaller in Tg than in non-Tg (NTg) mice, indicating that GSK-3alpha inhibits cardiac growth. After 4 weeks of aortic banding (transverse aortic constriction (TAC)), increases in left ventricular weight and myocyte size were significantly smaller in Tg than in NTg, indicating that GSK-3alpha inhibits cardiac hypertrophy. More severe cardiac dysfunction developed in Tg after TAC. Increases in fibrosis and apoptosis were greater in Tg than in NTg after TAC. Among signaling molecules screened, ERK phosphorylation was decreased in Tg. Adenovirus-mediated overexpression of GSK-3alpha, but not GSK-3beta, inhibited ERK in cultured cardiac myocytes. Knockdown of GSK-3alpha increased ERK phosphorylation, an effect that was inhibited by PD98059, rottlerin, and protein kinase Cepsilon (PKCepsilon) inhibitor peptide, suggesting that GSK-3alpha inhibits ERK through PKC-MEK-dependent mechanisms. Knockdown of GSK-3alpha increased protein content and reduced apoptosis, effects that were abolished by PD98059, indicating that inhibition of ERK plays a major role in the modulation of cardiac growth and apoptosis by GSK-3alpha. In conclusion, up-regulation of GSK-3alpha inhibits cardiac growth and pressure overload-induced cardiac hypertrophy but increases fibrosis and apoptosis in the heart. The anti-hypertrophic and pro-apoptotic effect of GSK-3alpha is mediated through inhibition of ERK.  相似文献   

5.
Hypertension‐induced left ventricular hypertrophy (LVH) is an independent risk factor for heart failure. Regression of LVH has emerged as a major goal in the treatment of hypertensive patients. Here, we tested our hypothesis that the valosin‐containing protein (VCP), an ATPase associate protein, is a novel repressor of cardiomyocyte hypertrophy under the pressure overload stress. Left ventricular hypertrophy (LVH) was determined by echocardiography in 4‐month male spontaneously hypertensive rats (SHRs) vs. age‐matched normotensive Wistar Kyoto (WKY) rats. VCP expression was found to be significantly downregulated in the left ventricle (LV) tissues from SHRs vs. WKY rats. Pressure overload was induced by transverse aortic constriction (TAC) in wild‐type (WT) mice. At the end of 2 weeks, mice with TAC developed significant LVH whereas the cardiac function remained unchanged. A significant reduction of VCP at both the mRNA and protein levels in hypertrophic LV tissue was found in TAC WT mice compared to sham controls. Valosin‐containing protein VCP expression was also observed to be time‐ and dose‐dependently reduced in vitro in isolated neonatal rat cardiomyocytes upon the treatment of angiotensin II. Conversely, transgenic (TG) mice with cardiac‐specific overexpression of VCP showed a significant repression in TAC‐induced LVH vs. litter‐matched WT controls upon 2‐week TAC. TAC‐induced activation of the mechanistic target of rapamycin complex 1 (mTORC1) signaling observed in WT mice LVs was also significantly blunted in VCP TG mice. In conclusion, VCP acts as a novel repressor that is able to prevent cardiomyocyte hypertrophy from pressure overload by modulating the mTORC1 signaling pathway.  相似文献   

6.
Galpha(q) protein-coupled receptor (GPCR) signaling pathway, which includes diacylglycerol (DAG) and protein kinase C (PKC), plays a critical role in cardiac hypertrophy. DAG kinase (DGK) catalyzes DAG phosphorylation and controls cellular DAG levels, thus acting as a regulator of GPCR signaling. It has been reported that DGKepsilon acts specifically on DAG produced by inositol cycling. In this study, we examined whether DGKepsilon prevents cardiac hypertrophy and progression to heart failure under chronic pressure overload. We generated transgenic mice with cardiac-specific overexpression of DGKepsilon (DGKepsilon-TG) using an alpha-myosin heavy chain promoter. There were no differences in cardiac morphology and function between wild-type (WT) and DGKepsilon-TG mice at the basal condition. Either continuous phenylephrine infusion or thoracic transverse aortic constriction (TAC) was performed in WT and DGKepsilon-TG mice. Increases in heart weight after phenylephrine infusion and TAC were abolished in DGKepsilon-TG mice compared with WT mice. Cardiac dysfunction after TAC was prevented in DGKepsilon-TG mice, and the survival rate after TAC was higher in DGKepsilon-TG mice than in WT mice. Phenylephrine- and TAC-induced DAG accumulation, the translocation of PKC isoforms, and the induction of fetal genes were blocked in DGKepsilon-TG mouse hearts. The upregulation of transient receptor potential channel (TRPC)-6 expression after TAC was attenuated in DGKepsilon-TG mice. In conclusion, these results demonstrate the first evidence that DGKepsilon restores cardiac dysfunction and improves survival under chronic pressure overload by controlling cellular DAG levels and TRPC-6 expression. DGKepsilon may be a novel therapeutic target to prevent cardiac hypertrophy and progression to heart failure.  相似文献   

7.
Cardiac hypertrophy and function were studied 6 wk after constriction of the thoracic aorta (TAC) in transgenic (TG) mice expressing constitutively active mutant alpha(1B)-adrenergic receptors (ARs) in the heart. Hearts from sham-operated TG animals and nontransgenic littermates (WT) were similar in size, but hearts from TAC/TG mice were larger than those from TAC/WT mice, and atrial natriuretic peptide mRNA expression was also higher. Lung weight was markedly increased in TAC/TG animals, and the incidence of left atrial thrombus formation was significantly higher. Ventricular contractility in anesthetized animals, although it was increased in TAC/WT hearts, was unchanged in TAC/TG hearts, implying cardiac decompensation and progression to failure in TG mice. There was no increase in alpha(1A)-AR mRNA expression in TAC/WT hearts, and expression was significantly reduced in TAC/TG hearts. These findings show that cardiac expression of constitutively actively mutant alpha(1B)-ARs is detrimental in terms of hypertrophy and cardiac function after pressure overload and that increased alpha(1A)-AR mRNA expression is not a feature of the hypertrophic response in this murine model.  相似文献   

8.
We found that the anticoagulant plasma protease, activated protein C (APC), stimulates the energy sensor kinase, AMPK, in the stressed heart by activating protease-activated receptor 1 (PAR1) on cardiomyocytes. Wild-type (WT) and AMPK-kinase dead (KD) transgenic mice were subjected to transverse aortic constriction (TAC) surgery. The results demonstrated that while no phenotypic differences can be observed between WT and AMPK-KD mice under normal physiological conditions, AMPK-KD mice exhibit significantly larger hearts after 4 weeks of TAC surgery. Analysis by echocardiography suggested that the impairment in the cardiac function of AMPK-KD hearts is significantly greater than that of WT hearts. Immunohistochemical staining revealed increased macrophage infiltration and ROS generation in AMPK-KD hearts after 4 weeks of TAC surgery. Immunoblotting results demonstrated that the redox markers, pShc66, 4-hydroxynonenal and ERK, were all up-regulated at a higher extent in AMPK-KD hearts after 4 weeks of TAC surgery. Administration of APC-WT and the signaling selective APC-2Cys mutant, but not the anticoagulant selective APC-E170A mutant, significantly attenuated pressure overload-induced hypertrophy and fibrosis. Macrophage infiltration and pShc66 activation caused by pressure overload were also inhibited by APC and APC-2Cys but not by APC-E170A. Therefore, the cardiac AMPK protects against pressure overload-induced hypertrophy and the signaling selective APC-2Cys may have therapeutic potential for treating hypertension-related hypertrophy without increasing the risk of bleeding.  相似文献   

9.
Cardiac hypertrophy, a major determinant of heart failure, is associated with heat shock proteins (HSPs). HSP75 has been reported to protect against environmental stresses; however, its roles in cardiac hypertrophy remain unclear. Here, we generated cardiac-specific inducible HSP75 transgenic mice (TG) and cardiac hypertrophy was developed at 4 weeks after aortic banding in TG mice and wild-type littermates. The results revealed that overexpression of HSP75 prevented cardiac hypertrophy and fibrosis as assessed by heart weight/body weight ratio, heart weight/tibia length ratio, echocardiographic and hemodynamic parameters, cardiomyocyte width, left ventricular collagen volume, and gene expression of hypertrophic markers. Further studies showed that overexpression of HSP75 inhibited the activation of TAK/P38, JNK, and AKT signaling pathways. Thus, HSP75 likely reduces the hypertrophy and fibrosis induced by pressure overload through blocking TAK/P38, JNK, and AKT signaling pathways.  相似文献   

10.
11.
Interleukin (IL)-18 is a cardiotropic proinflammatory cytokine chronically elevated in the serum of patients with cardiac hypertrophy (LVH). The purpose of this study was to examine the role of IL-18 in pressure-overload hypertrophy using wild type (WT) and IL-18 -/- (null) mice. Adult male C57Bl/6 mice underwent transaortic constriction (TAC) for 7days or sham surgery. Heart weight/body weight ratios showed blunted hypertrophy in IL-18 null TAC mice compared to WT TAC animals. Microarray analyses indicated differential expression of hypertrophy-related genes in WT versus IL-18 nulls. Northern, Western, and EMSA analyses showed Akt and GATA4 were increased in WT but unchanged in IL-18 null mice. Our results demonstrate blunted hypertrophy with reduced expression of contractile-, hypertrophy-, and remodeling-associated genes following pressure overload in IL-18 null mice, and suggest that IL-18 plays a critical role in the hypertrophic response.  相似文献   

12.
Cardiac remodelling is a major determinant of heart failure (HF) and is characterised by cardiac hypertrophy, fibrosis, oxidative stress and myocytes apoptosis. Hesperetin, which belongs to the flavonoid subgroup of citrus flavonoids, is the main flavonoid in oranges and possesses multiple pharmacological properties. However, its role in cardiac remodelling remains unknown. We determined the effect of hesperetin on cardiac hypertrophy, fibrosis and heart function using an aortic banding (AB) mouse. Male, 8–10-week-old, wild-type C57 mice with or without oral hesperetin administration were subjected to AB or a sham operation. Our data demonstrated that hesperetin protected against cardiac hypertrophy, fibrosis and dysfunction induced by AB, as assessed by heart weigh/body weight, lung weight/body weight, heart weight/tibia length, echocardiographic and haemodynamic parameters, histological analysis, and gene expression of hypertrophic and fibrotic markers. Also, hesperetin attenuated oxidative stress and myocytes apoptosis induced by AB. The inhibitory effect of hesperetin on cardiac remodelling was mediated by blocking PKCα/βII-AKT, JNK and TGFβ1-Smad signalling pathways. In conclusion, we found that the orange flavonoid hesperetin protected against cardiac remodelling induced by pressure overload via inhibiting cardiac hypertrophy, fibrosis, oxidative stress and myocytes apoptosis. These findings suggest a potential therapeutic drug for cardiac remodelling and HF.  相似文献   

13.
We developed a minimally invasive method for producing left ventricular (LV) pressure overload in mice. With the use of this technique, we quickly and reproducibly banded the transverse aorta with low surgical morbidity and mortality. Minimally invasive transverse aortic banding (MTAB) acutely and chronically increased LV systolic pressure, increased heart weight-to-body weight ratio, and induced myocardial fibrosis. We used this technique to determine whether reduced insulin signaling in the heart altered the cardiac response to pressure overload. Mice with cardiac myocyte-restricted knockout of the insulin receptor (CIRKO) have smaller hearts than wild-type (WT) controls. Four weeks after MTAB, WT and CIRKO mice had comparably increased LV systolic pressure, increased cardiac mass, and induction of mRNA for beta-myosin heavy chain and atrial natriuretic factor. However, CIRKO hearts were more dilated, had depressed LV systolic function by echocardiography, and had greater interstitial fibrosis than WT mice. Expression of connective tissue growth factor was increased in banded CIRKO hearts compared with WT hearts. Thus lack of insulin signaling in the heart accelerates the transition to a more decompensated state during cardiac pressure overload. The use of the MTAB approach should facilitate the study of the pathophysiology and treatment of pressure-overload hypertrophy.  相似文献   

14.
15.
In isolated myocytes, hypertrophy induced by norepinephrine is mediated via α(1)-adrenergic receptors (ARs) and not β-ARs. However, mice with deletions of both major cardiac α(1)-ARs still develop hypertrophy in response to pressure overload. Our purpose was to better define the role of β-AR subtypes in regulating cardiac hypertrophy in vivo, important given the widespread clinical use of β-AR antagonists and the likelihood that patients treated with these agents could develop conditions of further afterload stress. Mice with deletions of β(1), β(2), or both β(1)- and β(2)-ARs were subjected to transverse aortic constriction (TAC). After 3 wk, β(1)(-/-) showed a 21% increase in heart to body weight vs. sham controls, similar to wild type, whereas β(2)(-/-) developed exaggerated (49% increase) hypertrophy. Only when both β-ARs were ablated (β(1)β(2)(-/-)) was hypertrophy totally abolished. Cardiac function was preserved in all genotypes. Several known inhibitors of cardiac hypertrophy (FK506 binding protein 5, thioredoxin interacting protein, and S100A9) were upregulated in β(1)β(2)(-/-) compared with the other genotypes, whereas transforming growth factor-β(2), a positive mediator of hypertrophy was upregulated in all genotypes except the β(1)β(2)(-/-). In contrast to recent reports suggesting that angiogenesis plays a critical role in regulating cardiac hypertrophy-induced heart failure, we found no evidence that angiogenesis or its regulators (VEGF, Hif1α, and p53) play a role in compensated cardiac hypertrophy. Pressure overload hypertrophy in vivo is dependent on a coordination of signaling through both β(1)- and β(2)-ARs, mediated through several key cardiac remodeling pathways. Angiogenesis is not a prerequisite for compensated cardiac hypertrophy.  相似文献   

16.
Pressure overload-induced cardiac hypertrophy results in a pathological type of hypertrophy with activation of signaling cascades like the extracellular signal-regulated kinase (ERK) pathway, which promotes negative cardiac remodeling and decreased contractile function. In contrast, thyroid hormone mediates a physiological type of hypertrophy resulting in enhanced contractile function. In addition, thyroid hormone action is diminished in pressure overload-induced cardiac hypertrophy. We hypothesized that thyroid hormone status modulates ERK activity and that administration of thyroid hormone could alter the activity of this kinase in cardiac hypertrophy induced by pressure overload. ERK is activated by phosphorylation; accordingly, we investigated phosphorylation of ERK in hearts of control, hypothyroid, and hyperthyroid mice. In addition, the effect of T3 treatment on ERK phosphorylation in hypertrophied hearts from transverse aortic-constricted (TAC) mice was investigated. Results showed that phosphorylated ERK (p-ERK) was decreased by 25% in hyperthyroid mice. In contrast, hypothyroid mice presented increased p-ERK by 80%. TAC mice presented a greater than fourfold increase of p-ERK compared with control mice. Interestingly, T3 administration dramatically canceled TAC-induced ERK phosphorylation (36% lower compared with control). Raf-1 is upstream of the ERK pathway. TAC mice presented a 45% increase in phospho-Raf-1 (Ser338). T3 treatment inhibited this effect of pressure overload and further decreased p-Raf-1 (Ser338) by 37%, compared with control. Overexpression of thyroid hormone receptor-α in cultured cardiomyocytes potentiated the inhibitory effect of T3 on ERK phosphorylation. We concluded that thyroid hormone has an inhibitory effect on the Raf-1/ERK pathway. Furthermore, treatment of TAC mice with T3 inhibited Raf-1/ERK pathway by a thyroid hormone receptor-dependent mechanism.  相似文献   

17.
DOC-2 (differentially expressed in ovarian carcinoma) is involved in Ras-, beta-integrin-, PKC-, and transforming growth factor-beta-mediated cell signaling. These pathways are implicated in the accumulation of extracellular matrix proteins during progression of hypertrophy to heart failure; however, the role of DOC-2 in cardiac pathophysiology has never been examined. This study was undertaken to 1) analyze DOC-2 expression in primary cultures of cardiac fibroblasts and cardiac myocytes and in the heart following different types of hemodynamic overloads and 2) examine its role in growth factor-mediated ERK activation and collagen production. Pressure overload and volume overload were induced for 10 wk in Sprague-Dawley rats by aortic constriction and by aortocaval shunt, respectively. ANG II (0.3 mg.kg(-1).day(-1)) was infused for 2 wk. Results showed that, compared with myocytes, DOC-2 was found abundantly expressed in cardiac fibroblasts. Treatment of cardiac fibroblasts with ANG II and TPA resulted in increased expression of DOC-2. Overexpression of DOC-2 in cardiac fibroblasts led to inhibition of hypertrophy agonist-stimulated ERK activation and collagen expression. An inverse correlation between collagen and DOC-2 was observed in in vivo models of cardiac hypertrophy; in pressure overload and after ANG II infusion, increased collagen mRNA correlated with reduced DOC-2 levels, whereas in volume overload increased DOC-2 levels were accompanied by unchanged collagen mRNA. These data for the first time describe expression of DOC-2 in the heart and demonstrate its modulation by growth-promoting agents in cultured cardiac fibroblasts and in in vivo models of heart hypertrophy. Results suggest a role of DOC-2 in cardiac remodeling involving collagen expression during chronic hemodynamic overload.  相似文献   

18.
Pathological hypertrophy contributes to heart failure and there is not quite effective treatment to invert this process. Isosteviol has been shown to protect the heart against ischaemia-reperfusion injury and isoproterenol-induced cardiac hypertrophy, but its effect on pressure overload-induced cardiac hypertrophy is still unknown. Pressure overload induced by transverse aortic constriction (TAC) causes cardiac hypertrophy in rats to mimic the pathological condition in human. This study examined the effects of isosteviol sodium (STVNa) on cardiac hypertrophy by the TAC model and cellular assays in vitro. Cardiac function test, electrocardiogram analysis and histological analysis were conducted. The effects of STVNa on calcium transient of the adult rat ventricular cells and the proliferation of neonatal rat cardiac fibroblasts were also studied in vitro. Cardiac hypertrophy was observed after 3-week TAC while the extensive cardiac dysfunction and electronic remodelling were observed after 9-week TAC. Both STVNa and sildenafil (positive drug) treatment reversed the two process, but STVNa appeared to be more superior in some aspects and did not change calcium transient considerably. STVNa also reversed TAC-induced cardiac fibrosis in vivo and TGF-β1-induced fibroblast proliferation in vitro. Moreover, STVNa, but not sildenafil, reversed impairment of the autonomic nervous system induced by 9-week TAC.  相似文献   

19.
The serine-threonine kinase, Akt, inhibits cardiomyocyte apoptosis acutely both in vitro and in vivo. However, the effects of chronic Akt activation in the heart are unknown. To address this issue, we generated transgenic mice (TG+) with cardiac-specific expression of a constitutively active mutant of Akt (myr-Akt) driven by the myosin heavy chain-alpha promoter. Three TG+ founders (9-19 weeks) died suddenly with massive cardiac dilatation. Two viable TG+ lines (TG564 and TG20) derived from independent founders demonstrated cardiac-specific transgene expression as well as activation of Akt and p70S6 kinase. TG564 (n = 19) showed cardiac hypertrophy with a heart/body weight ratio 2.3-fold greater than littermates (n = 17, p < 0.005). TG20 (n = 18) had less marked cardiac hypertrophy with a heart/body weight ratio 1.6-fold greater than littermates (n = 17, p < 0.005). Isolated TG564 myocytes were also hypertrophic with surface areas 1.7-fold greater than littermates (p < 0.000001). Echocardiograms in both lines demonstrated concentric hypertrophy and preserved systolic function. After ischemia-reperfusion, TG+ had a 50% reduction in infarct size versus TG- (17 +/- 3% versus 34 +/- 4%, p < 0.001). Thus, chronic Akt activation is sufficient to cause a spectrum of phenotypes from moderate cardiac hypertrophy with preserved systolic function and cardioprotection to massive cardiac dilatation and sudden death.  相似文献   

20.
Transgenic mice with cardiac-specific overexpression of active Akt (TG) not only exhibit hypertrophy but also show enhanced left ventricular (LV) function. In 3-4-month-old TG, heart/body weight was increased by 60% and LV ejection fraction was elevated (84 +/- 2%, p < 0.01) compared with nontransgenic littermates (wild type (WT)) (73 +/- 1%). An increase in isolated ventricular myocyte contractile function (% contraction) in TG compared with WT (6.1 +/- 0.2 versus 3.5 +/- 0.2%, p < 0.01) was associated with increased Fura-2 Ca2+ transients (396 +/- 50 versus 250 +/- 24 nmol/liter, p < 0.05). The rate of relaxation (+dL/dt) was also enhanced in TG (214 +/- 15 versus 98 +/- 18 microm/s, p < 0.01). L-type Ca2+ current (ICa) density was increased in TG compared with WT (-9.0 +/- 0.3 versus 7.2 +/- 0.3 pA/pF, p < 0.01). Sarcoplasmic reticulum Ca2+ ATPase 2a (SERCA2a) protein levels were increased (p < 0.05) by 6.6-fold in TG, which could be recapitulated in vitro by adenovirus-mediated overexpression of Akt in cultured adult ventricular myocytes. Conversely, inhibiting SERCA with either ryanodine or thapsigargin affected myocyte contraction and relaxation and Ca2+ channel kinetics more in TG than in WT. Thus, myocytes from mice with overexpressed Akt demonstrated enhanced contractility and relaxation, Fura-2 Ca2+ transients, and Ca2+ channel currents. Furthermore, increased protein expression of SERCA2a plays an important role in mediating enhanced LV function by Akt. Up-regulation of SERCA2a expression and enhanced LV myocyte contraction and relaxation in Akt-induced hypertrophy is opposite to the down-regulation of SERCA2a and reduced contractile function observed in many other forms of LV hypertrophy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号