首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 823 毫秒
1.
HLA haplotype discordance   总被引:4,自引:0,他引:4  
J Green  M Montasser 《Biometrics》1988,44(4):941-950
Previous work on the inheritance of disease has often used certain measures of HLA haplotype concordance (such as the number of haplotypes "identical by descent," IBD) among affected siblings from each of a number of sibships, each of which contains at least two affected siblings. Here we introduce a new measure of HLA haplotype discordance between the affected and unaffected siblings of each sibship (provided there is at least one of each). We show how the measure can be used to give a simple test for inheritance, which we exemplify with data.  相似文献   

2.
We studied a family with HLA-linked hereditary hemochromatosis in which an informative recombination occurred within the HLA region. The father, an obligate heterozygote for hereditary hemochromatosis, had HLA haplotypes A2,B13 and A11,B27. The mother, also an obligate heterozygote, had HLA haplotypes A29,B44 and A2,B7. Three haplotypes were found among three homozygous affected offspring. Two affected siblings were HLA-identical with haplotypes A2,B13 and A29,B44. The proband had HLA haplotypes A2,B13 and A2,B44, the latter a recombinant haplotype inherited from her mother. Since the maternal hemochromatosis allele was linked to the A29,B44 haplotype, and since the proband has hemochromatosis, the maternal hemochromatosis allele was transmitted to the proband with the B44 antigen. This is the first known example of recombination in an individual with HLA-linked hemochromatosis in whom the hemochromatosis allele appeared to segregate with the HLA-B antigen instead of the -A antigen. The possibility of either a double reciprocal recombination event or a gene conversion event cannot be excluded. Combined with earlier observations of segregation of the hemochromatosis allele with the A locus in HLA recombinants, the findings in this pedigree map the hemochromatosis locus between the HLA-B and HLA-A loci rather than outside the HLA region.  相似文献   

3.
Regression modelling of HLA haplotype sharing in affected siblings   总被引:1,自引:0,他引:1  
A link between the HLA system and disease susceptibility can be assessed through the observation of families containing two or more affected siblings. Departures from Mendelian inheritance of the parental haplotypes among the affected siblings are an indication of such a relationship. Other variables, such as environmental factors, may also be related to disease susceptibility. An approach to examining the degree of haplotype sharing and the effect of other variables of interest on observed sharing is presented and two examples analyzed.  相似文献   

4.
Summary HLA genotype and HLA-linked marker data for 40 unrelated patients from central Italy and 2 unrelated patients from Sardinia with congenital adrenal hyperplasia due to 21-hydroxylase deficiency (21-OH-def) were analyzed. The results confirm that the HLA-linked 21-OH-def gene is associated with several different HLA determinants and complete HLA haplotypes, although the only determinant with significantly increased frequency was the complement C2 allele C2B. The HLA antigens B8 and DR3 were found in significantly decreased frequencies. The haplotype A3, Cw6, Bw47, BfF, DR7, which is exceptionally rare in the general population but which has been found in many other 21-OH-def patients from diverse geographical origins, was also found in one of the Italian patients. This and other HLA haplotype associations found among the Italian patients may represent mutations that have occurred on HLA haplotypes with genetic linkage disequilibrium or, alternatively, may represent mutations that have not yet had time to become randomly associated with different HLA complex determinants. The marked negative associations with B8 and DR3 could, however, result from an interaction between the gene products of the HLA complex and the 21-OH-def phenotype.  相似文献   

5.
The hypothesis of linkage between HLA and a disease susceptibility (DS) locus (or loci) for type 1 diabetes was tested. HLA segregation was random among 57 non-diabetic sibs but not among 39 diabetic sibs, suggesting that susceptibility to type 1 diabetes may be due to an HLA-linked gene(s). The data did not fit a genetic model involving either a single recessive or dominant gene. The excess of HLA-identical diabetic sibs and the reduced number who were HLA-discordant compared to expected numbers indicated that factors from both paternal and maternal haplotypes were necessary for DS. In 1 of the 3 families with a diabetic parent and more than one diabetic sib, the diabetic sibs inherited different haplotypes from the affected parent, suggesting that either of these haplotypes conferred DS. HLAB 8, B 18 and B 40 were increased in frequency among 97 unrelated type 1 diabetics compared with 238 controls, especially among those with onset age less than 10 years. This early onset group may represent a subtype of type 1 diabetes.  相似文献   

6.
HLA and disease: predictions for HLA haplotype sharing in families.   总被引:8,自引:3,他引:5       下载免费PDF全文
An analysis of published data on the segregation of HLA haplotypes in families with more than one individual affected with insulin-dependent diabetes mellitus or multiple sclerosis yields three conclusions: (1) In families with unaffected parents, affected sib pairs are much more often HLA haplotype identical in sibships with two affected sibs than in sibships with three or four affected sibs (P less than .01). (2) In families with unaffected parents and HLA half-identical affected sibs, well siblings more often receive the single haplotype not found in the affected sibs than is expected by chance (P less than .05). (3) In families with one affected parent, well siblings of affected individuals may share with the affected child a haplotype from the unaffected parent less than 50% of the time (P less than .10). These results are consistent with the premise that in some non-Mendelian, familial, HLA-associated disease more than one gene may contribute to susceptibility to the disorder.  相似文献   

7.
The HLA haplotype segregation and autoantibody spectrum in 7 type I (insulin-dependent) diabetic multiplex families of North Indian origin were determined. Of the total of 17 diabetic sibs, 7 shared both haplotypes and 3 shared one haplotype with the proband. No HLA-non-identical sibs were observed. This distribution of haplotypes was non-random (P approximately equal to 0.005). The mode of inheritance was compatible with an autosomal recessive model, while a dominant model was unlikely. Pancreatic islet-cell antibodies were found in 23.5% of affected sibs, but in no healthy family member. A high incidence of other autoantibodies (parietal-cell and thyroglobulin/thyroid microsomal antibodies) was detected in both the diabetic patients (26.3%), and in healthy first-degree relatives (22.2%). These findings emphasize the role of HLA-linked genes and autoimmunity in the pathogenesis of type I diabetes in North India.  相似文献   

8.
It has been shown that genetic factors within the HLA region are involved in the etiology of several diseases. For some of these, the existence of another genetic factor has been suggested, although not proven. A possible way to give evidence for another locus (G) is to show that the disease and an unlinked HLA-marker locus (M) do not segregate independently. The usual lod-score method, which assumes monogenic inheritance, is inappropriate for this test. We propose a correction of this method for performing a linkage analysis between the G and M loci, taking into account the role of HLA. A very simple way of using the HLA information is by modifying, for each individual of a pedigree, the penetrance values at the G locus according to the number of HLA haplotypes shared with the index case. These penetrance values are inferred from the observed IBD (identity-by-descent) distribution of HLA haplotypes in a sample of affected sib-pairs. The advantage of using this empirical distribution is that it is not based on any assumptions concerning the mode of inheritance at the HLA-linked locus. This correction method was established using a two-locus model with restrictive assumptions. Its value is discussed for various sets of parameters in more general and realistic two-locus models using simulations.  相似文献   

9.
In a recent study of GM allotype frequencies in HLA-defined subsets of patients with insulin-dependent diabetes mellitus (IDDM) and similarly defined healthy sibling controls, we found evidence for an HLA-dependent GM effect on IDDM susceptibility. To circumvent problems inherent in such patient-control studies of complex diseases, we have now examined sharing of genes in the HLA and GM regions in 26 informative pairs of siblings who were both affected with IDDM. We found that: (1) in the total sample of affected sib-pairs, sharing of two HLA haplotypes was increased compared to Mendelian expectations, in agreement with many previous studies; (2) in the total sample, sharing of GM region genes (as measured by GM phenotype concordance) was not different from Mendelian expectations, given the distribution of parental mating types; and (3) affected sib-pairs who shared two HLA haplotypes showed significantly increased sharing of GM region genes compared to affected sib-pairs who shared one or zero HLA haplotypes (P = .018). These results provide new evidence for HLA-dependent effects of a locus at or near GM on susceptibility to IDDM.  相似文献   

10.
The study of genetic markers linked and associated with disease has provided important evidence of a genetic contribution to numerous diseases and has helped to establish their modes of inheritance. However, this information has not been fully utilized in counseling individuals at risk for these disorders. In the case of recessive, marker-linked diseases, such as idiopathic hemochromatosis linked to HLA in family studies and associated with specific HLA alleles in population surveys, the only current clinical application has been to identify siblings who share both HLA-marker haplotypes with the affected proband. They are considered to be presymptomatically affected, and more definitive invasive investigations are considered appropriate. All other relatives, including parents, offspring, and other siblings, who share only one marker with the proband, have been counseled only that their risk is equivalent to the gene frequency of the disease allele, for example, 3%-6% for hemochromatosis. We have developed a generally applicable method to utilize population association data to derive more specific and accurate risk figures for these other relatives of patients with marker-linked and associated diseases. We have applied this method to idiopathic hemochromatosis. If the offspring of a patient with hemochromatosis lacks A3, B7, and B14, the risk to that offspring for developing hemochromatosis is less than 2%. On the other hand, if they receive HLA A3 from their unaffected parent, their risk climbs to 9%-10%; if they receive an A3-B14 haplotype, their risk increases to virtually 100%. As demonstrated by our example, the application of association data to family members already at a basal increased risk for marker-linked disease can significantly refine the disease risk estimates given to those relatives. This information can be utilized to select individuals in whom invasive diagnostic testing or preventative intervention is indicated.  相似文献   

11.
HLA phenotypes of cases with insulin-dependent diabetes mellitus (IDDM) and identity by descent of HLA haplotypes in affected sib-pairs support an intermediate model in which morbid risk is increased by one HLA-linked IDDM determinant, and greatly increased by two determinants, which may be qualitatively different in DR3 and DR4 haplotypes. Linkage analysis allowing for gametic disequilibrium reveals no recombination in pedigrees with a DR3/DR4 propositus, but spurious recombination in the remaining pedigrees. This evidence favors interaction of unlinked IDDM determinants to produce affection in a small proportion of heterozygotes for an HLA-linked determinant. Partition of data by HLA type of the propositus (ideally by DR and the complement types jointly) is a powerful method to resolve etiological heterogeneity for HLA-associated diseases.  相似文献   

12.
To investigate the possible coinheritance of autoimmune diseases that are associated with the same HLA antigen, we studied 70 families in which at least two siblings had either type I diabetes mellitus (IDDM), autoimmune thyroid disease (ATD), rheumatoid arthritis (RA), or a combination of these diseases. HLA-A, B, and C typing was performed on all affected sibs in one generation or more. First, we estimated by sib-pair analysis the disease allele frequency (pD) and the mode of inheritance for each disease. According to the method of ascertainment entered into the analysis, the pD for ATD ranged from .120 to .180, for an additive (dominant) mode of inheritance. For RA, the pD ranged from .254 to .341, also for additive inheritance, although recessive inheritance could not be excluded. For IDDM, the pD ranged from .336 to .337 for recessive inheritance; additive inheritance was rejected. Second, we examined the distribution of shared parental haplotypes in pairs of siblings that were discordant for their autoimmune diseases. The results suggested that the same haplotype may predispose to both IDDM and ATD, or IDDM and RA, but not to both RA and ATD. Analysis of pedigrees supported this hypothesis. In 16 families typed for HLA-DR also, the haplotype predisposing to both IDDM and ATD was assigned from pedigree information to DR3 (44%), DR4 (39%), or DR5, DR6, or DR7 (5.5% each). In some families, these haplotypes segregated over several generations with ATD only (either clinical or subclinical), suggesting that in such families, ATD was a marker for a susceptibility to IDDM. In several families, an IDDM haplotype segregated with RA but not with ATD. This suggests that ATD- and RA-associated susceptibilities to IDDM may be biologically different and thus independently increase the risk of IDDM.  相似文献   

13.
Although psoriasis is strongly associated with certain human leukocyte antigens (HLAs), evidence for linkage to HLA markers has been limited. The objectives of this study were (1) to provide more definitive evidence for linkage of psoriasis to HLA markers in multiplex families; (2) to compare the major HLA risk alleles in these families with those determined by previous case-control studies; and (3) to localize the gene more precisely. By applying the transmission/disequilibrium test (TDT) and parametric linkage analysis, we found evidence for linkage of psoriasis to HLA-C, -B, -DR, and -DQ, with HLA-B and -C yielding the most-significant results. Linkage was detectable by parametric methods only when marker-trait disequilibrium was considered. Case-control association tests and the TDT identified alleles belonging to the EH57.1 ancestral haplotype as the major risk alleles in our sample. Among individuals carrying recombinant ancestral haplotypes involving EH57. 1, the class I markers were retained selectively among affecteds four times more often than among unaffecteds; among the few affected individuals carrying only the class II alleles from the ancestral haplotype, all but one also carried Cw6. These data show that familial and "sporadic" psoriasis share the same risk alleles. They also illustrate that substantial parametric linkage information can be extracted by accounting for linkage disequilibrium. Finally, they strongly suggest that a major susceptibility gene resides near HLA-C.  相似文献   

14.
It has been proposed that gluten sensitive enteropathy (GSE) results from the interaction of two loci: one locus linked to HLA and associated with dominant inheritance, and the other, a non-HLA-linked GSE-associated B-cell alloantigen, exhibiting recessive inheritance. We have shown in previous analyses that a two-locus, dominant-recessive model is less compatible with the existing population prevalence and observed familial segregation data than is a recessive-recessive two-locus model. Here we present additional analyses of reported population and familial HLA data that support the recessive mode of inheritance for the HLA-linked disease locus. Reported data from HLA typing of affected sib pairs, the association of GSE with DR3 and DR7 in different populations, and the proportions of different HLA phenotypes and genotypes were compared with expected data derived by three different methods. The HLA data analyses consistently reject a dominant mode of inheritance for the presumed HLA-linked disease allele but do not reject a recessive model. The affected sib-pair data also support a recessive model. These analyses are consistent with our previous prediction that the HLA-"linked" disease allele in GSE is recessive inherited.  相似文献   

15.
In an effort to clarify the mode of inheritance of insulin-dependent diabetes mellitus (IDDM), a total of 230 nuclear families with pointers were analyzed using the computer program COMBIN. Each family was ascertained without deliberate selection for multiplex families, and most families were completely typed for HLA-B, HLA-DR, and properdin factor B (Bf). There were 186 families with normal parents, 44 families with one affected parent, and no families with two affected parents. The computer program COMBIN evaluates evidence for a major locus of disease susceptibility, linkage of the major locus to a known genetic marker locus, linkage disequilibrium between the marker haplotypes and disease susceptibility, pleiotropic effects, and presence of an unlinked modifier. The parameters of COMBIN are T, Q, and D, representing the displacement, gene frequency of the IDDM allele, and dominance, respectively, of the major locus--and TM, QM, and DM being the analogous parameters of the modifier. In addition, the recombination fraction, theta, between the IDDM locus and HLA as well as the coupling frequencies are estimated. Finally, COMBIN simultaneously performs segregation and linkage analysis, with the optimal model being adjusted by the fit to the haplotype sharing distribution of IDDM. The results of these analyses indicated that the best-fitting genetic model of diabetic susceptibility appears to be a single major locus with near recessivity on a scale of standardized genetic liability, with gene frequency of the IDDM susceptibility allele of approximately 14%. In addition, the recombination fraction between the major locus and HLA is zero in all models; that is, for the B-BF-DR haplotype, the IDDM locus is tightly linked, probably (according to data from previous studies) to HLA-DR. Information determined by magnitude of coupling frequencies indicated that there is significant positive linkage disequilibrium with the haplotypes B8-BfS-DR4 and B15-BfS-DR4, significant negative linkage disequilibrium with B7-BfS-DR2, and intermediate disequilibrium for B8-BfS-DR3, B18-BfF1-DR3, and B40-BfS-DR4. Significant evidence in favor of an unlinked (to HLA) modifier (either single major locus or polygenes) could not be demonstrated. In conclusion, genetic susceptibility to IDDM appears to be most consistent with a single major locus with near recessivity that is tightly linked to HLA.  相似文献   

16.
Two hundred and eighty-eight patients with insulin-dependent diabetes w,o were aged 30 or under at onset and 150 patients with late-onset diabetes, 50 of them dependent on insulin and 100 not dependent on insulin, were HLA-typed. There was a significant positive association between the young-onset insulin-dependent patients and HLA-B8, BW15, and B18 and a significant negative association with B7. These data were combined with those from two other centres. There was a significant concordance for the distribution of all the HLA antigens among these three series, producing evidence in favour of an HLA-linked diabetogenic gene (or genes) having a major role in all cases of juvenile-onset insulin-dependent diabetes. There was a positive association between late-onset insulin-dependent diabetes and B8, but no association between non-insulin-dependent diabetes and the HLA system. This provides further evidence for the existence of different pathogenetic mechanisms in the two major clinical forms of diabetes mellitus.  相似文献   

17.
Diffuse panbronchiolitis affecting East Asians is strongly associated with the class I human leukocyte antigen (HLA) alleles. Recent observations suggest that a major disease-susceptibility gene may be located between the HLA-B and HLA-A loci in the class I region of the major histocompatibility complex on chromosome 6. To test this possibility, we analyzed 14 polymorphic markers in 92 Japanese patients and 93 healthy controls. Of these, seven marker alleles, including HLA-B54 and HLA-A11, were significantly associated with the disease. Maximum-likelihood haplotype analysis and subsequent direct determination of individual haplotypes identified a group of disease-associated haplotypes, one of which contained all seven disease-associated marker alleles. Another haplotype, containing HLA-B*5504, was also associated with the disease. All these haplotypes seem to have diverged from a common ancestral haplotype in East Asians and share a specific segment containing three consecutive markers between the S and TFIIH loci in the class I region. Furthermore, one of the markers within the candidate region showed the highest delta value, indicating the strongest association. Of 20 Korean patients with diffuse panbronchiolitis, 17 also shared the combination of the disease-associated marker alleles within the candidate region. These results indicate that an HLA-associated major susceptibility gene for diffuse panbronchiolitis is probably located within the 200 kb in the class I region 300 kb telomeric of the HLA-B locus on the chromosome 6p21.3.  相似文献   

18.
Heritable factors appear to account for much of the risk for Hodgkin disease (HD). There is evidence for an HLA-linked gene, but other predisposing loci remain unaccounted for. The observation of a family coinheriting both HD and Leri-Weill dyschondrosteosis (LWD) suggests that a gene conferring risk for HD resides adjacent to the LWD locus. The gene responsible for LWD, SHOX, localizes to the short-arm pseudoautosomal region (PAR) of the X and Y chromosomes. A unique segregation pattern for PAR-linked genes has been predicted-that affected sibs will tend to be same sex. An excess of sex-concordant affected sib pairs with HD has been noted but has been attributed to an environmental etiology. These two observations-sex concordance in sib pairs with HD and cosegregation of HD and LWD-impelled a test of the hypothesis that there is a PAR-localized gene for HD. By first scoring recombinations dissociating sex from phenotype in individuals from pedigrees with LWD, we determined a male maximum recombination frequency (thetamax) of.405. This places SHOX near the short-arm telomeres of the sex chromosome and supports the prediction that PAR recombination is obligatory for spermatogenesis. By inferring recombinations between HD and sexual phenotype in sib pairs, we predict, for the postulated HD gene, a male thetamax as high as .254, which places it in proximity to SHOX. Morton's nonparametric affected-sib-pair "beta" model was used in the evaluation of linkage between HD and phenotypic sex and gave a LOD score of 2.41. Using this approach, we reevaluated evidence for HLA linkage in HD in haplotyped sib pairs and found a LOD score of 2.00. The resulting beta values indicate that the putative PAR- and HLA-linked loci account for 29% and 40%, respectively, of the heritability of HD in an American population.  相似文献   

19.
An association between insulin-dependent diabetes mellitus (IDDM) and an RFLP adjacent to the insulin gene has been consistently observed, but its etiological significance is unclear. We studied unrelated IDDM patients (N = 45) and controls (N = 65) to confirm the association--and assessed evidence for linkage in 22 families with at least two affected (IDDM) sibs--to determine whether the insulin-gene region actually contributes to susceptibility to IDDM. All individuals were typed for the RFLP in the 5'-flanking region of the insulin gene (5'FP) used in the previous studies, and the 12 families not fully informative for linkage with the 5'FP were typed for additional closely linked RFLPs. We found a higher frequency of class 1 alleles of the 5'FP in IDDM patients (.83) than in controls (.75), which is consistent with the reported association, but the difference was not statistically significant in our sample. Among the 33 affected sib pairs (ASPs) in 22 families, if maximum possible sharing is assumed when sharing is ambiguous, 10 pairs share both parental insulin genes, 17 pairs share one, and six share neither. This distribution is incompatible with close linkage. In contrast, for the HLA region, for which all 22 families are fully informative, 19 of the 33 ASPs share two haplotypes and the remaining 14 share one. There are no pairs that share neither HLA haplotype. Thus, although these data clearly illustrate the contribution of HLA-linked susceptibility to IDDM, they argue strongly against a contribution of similar magnitude by the insulin-gene region.  相似文献   

20.
Uzi Motro  Glenys Thomson 《Genetics》1985,110(3):525-538
The distribution of the number of HLA haplotypes shared by sibs affected with the same HLA-linked disease can be used to obtain information on the genetics of the disease. Since the inception of the use of sib-pair methods for the analysis of the HLA-associated diseases, the question has been raised of how to include families with more than two affected sibs in the sib-pair analysis. This paper presents appropriate weighting schemes. A procedure for estimating the frequency of the disease allele in the general population, under the assumptions of single-allele recessive, additive, dominant and intermediate models, with negligible recombination (theta = 0) between the disease-predisposing gene and the HLA region, and no selective disadvantage of the trait, is also given. Cluster-sampling techniques are used in the analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号