首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Parasitization by the gregarious larval endoparasitoid Glyptapantles liparidis induces a dramatic increase in the hemolymph juvenile hormone (JH) titer (especially JH III) of its host larva, Lymantria dispar. Here, we investigated the role of the parasitoid larvae in JH synthesis and release by in vitro and in vivo experiments. GC-MS analyses confirmed that the rising hemolymph JH titer coincided with the time at which the parasitoids molt to the second larval instar. Peak values in host hemolymph titers were observed prior to parasitoid emergence, and titers dropped to negligible levels within 24 h after parasitoid emergence. Whole body extracts from excised second instar parasitoids yielded JH III and trace amounts of JH II. The in vitro secretory activity of the corpora allata (CA) of L. dispar larvae was not enhanced by parasitization. When the host's CA were separated by neck ligation, we found elevated JH III titers, but no JH II in the hemolymph of the posterior section, which contained the parasitoids. Parasitoids that were kept in in vitro culture produced and released only JH III. The parasitoids’ ability to secrete JH and to molt independently from their host's molting cycles indicates that at least second instar parasitoids are hormonally self-reliant.  相似文献   

2.
The increase in the juvenile hormone (JH) III titer in the hemolymph of Lymantria dispar larvae that were parasitized by the endoparasitoid braconid, Glyptapanteles liparidis, during the host's premolt to third instar, coincided with the molt of the parasitoid larvae to the second instar between day 5 and 7 of the fourth host instar. It reached a maximum mean value of 89 pmol/ml on day 7 of the fifth instar while it remained below 1 pmol/ml in unparasitized larvae. Only newly molted fifth instar hosts showed a low JH III titer similar to that of the unparasitized larvae. JH II, which is the predominant JH homologue in unparasitized gypsy moth larvae, also increased relative to controls in the last two samples (days 7 and 9) from parasitized fourth and fifth instars. Compared to unparasitized larvae, a generally reduced activity of JH esterase (JHE) was found in parasitized larvae throughout both larval stages. The reduction in enzyme activity at the beginning and at the end of each instar, when the JHE activity in unparasitized larvae was high, may be in part responsible for the increased JH II and JH III titers in parasitized larvae. Ester hydrolysis was the only pathway of JH metabolism in the hemolymph of unparasitized and parasitized gypsy moth larvae as detected by chromatographic assays. © 1996 Wiley-Liss, Inc.  相似文献   

3.
The gypsy moth, Lymantria dispar L. (Lepidoptera, Lymantriidae), a serious defoliator of deciduous trees, is an economically important pest when population densities are high. Outbreaking populations are, however, subject to some moderating influences in the form of entomopathogens, including several species of microsporidia. In this study, we conducted laboratory experiments to investigate the transmission of an unusual Nosema sp. isolated from L. dispar in Schweinfurt, Germany; this isolate infects only the silk glands and, to a lesser extent, Malpighian tubules of the larval host. The latent period ended between 8 and 15 days after oral inoculation and spores were continuously released in the feces of infected larvae until pupation. Exclusion of feces from the rearing cages resulted in a 58% decrease in horizontal transmission. The silk of only 2 of 25 infected larvae contained microsporidian spores. When larvae were exposed to silk that was artificially contaminated with Nosema sp., 5% became infected. No evidence was found for venereal or transovum (including transovarial) transmission of this parasite.  相似文献   

4.
A. Schopf 《BioControl》1991,36(4):593-604
The endoparasitic development ofG. liparidis was examined in 3 different host stages of gypsy moth larvae. Hatching ofG. liparidis-larvae occurred 3 to 5 days after oviposition in hosts parasitized during their premoulting period, and after 5 to 7 days in those parasitized in the 3rd midinstar state. The parasites generally moulted to the 2nd larval instar between the 11th and 13th day in the first group, and between the 13th and 15th day in the latter, when they had reached a volume of 0.04–0.05 mm3. The positive correlation between host ecdysis and the ecdysis of 1st stadium larvae to L2 suggested that host moulting influenced the development of the parasitoid larvae. Emergence from the host larvae occurred at 20°C after 27 days on average, and coincided with the parasites moulting to the 3rd instar. Five to 7 days after spinning their cocoons near the developmentally arrested host larva, the male, and 1 to 2 days later the female wasps eclosed. Due to the variation in the number of parasites per host, no difference was observed between the hosts parasitized at various stages; however, a tendency for later parasitized hosts to contain more parasite larvae was evident. The nutritional conditions of the moth parental generation influenced both host and parasite development. On the other hand no influence of host age was observed on emergence dates of larvae and wasps.   相似文献   

5.
We examined mortality and feeding inhibition response of Lymantria dispar L. (Lepidoptera: Lymantriidae) larvae to ingested doses of Bacillus thuringiensis subsp. kurstaki as a function of dose, instar and temperature. We developed generalized (logistic) linear mixed models and a mixture survival model, commonly used in medical statistics, to analyze the complex data set. We conducted bioassays of Foray 48B with larvae from the NJSS laboratory stock, using droplet imbibing or force-feeding to ensure dose ingestion. The dose causing mortality in 50% of the test population (LD50) under standard test conditions (22 °C) ranged from 0.019 International Units (IU)/larva for first instar larvae (L1) to 1.6 IU/larva for L4. Temperature affected larval mortality in two ways. Mortality occurred sooner and progressed more rapidly with increasing temperature (13-25 °C) at each dose level and instar, while the maximum level of mortality attained by each instar decreased with increasing rearing temperature. The mechanisms underlying this effect are being investigated. Larvae that survived exposure to B. thuringiensis resumed feeding after a period that was dependent on instar, dose, and temperature. The equations describing observed mortality and feeding recovery responses were used to construct a simulation model, which was able to predict both processes, and which forms the basis for a process-oriented model that can be used as a decision support tool in aerial sprays.  相似文献   

6.
Nosema lymantriae is a microsporidian pathogen of the gypsy moth, Lymantria dispar that has been documented to be at least partially responsible for the collapse of L. dispar outbreak populations in Europe. To quantify horizontal transmission of this pathogen under field conditions we performed caged-tree experiments that varied (1) the density of the pathogen through the introduction of laboratory-infected larvae, and (2) the total time that susceptible (test) larvae were exposed to these infected larvae. The time frame of the experiments extended from the early phase of colonization of the target tissues by the microsporidium to the onset of pathogen-induced mortality or pupation of test larvae. Upon termination of each experiment, the prevalence of infection in test larvae was evaluated. In the experiments performed over a range of pathogen densities, infection of test larvae increased with increasing density of inoculated larvae, from 14.2 ± 3.5% at density of 10 inoculated per 100 larvae to 36.7 ± 5.7% at 30 inoculated per 100 larvae. At higher densities, percent infection in test larvae appeared to level off (35.7 ± 5.5% at 50 inoculated per 100 larvae). When larval exposure to the pathogen was varied, transmission of N. lymantriae did not occur within the first 15 d post-inoculation (dpi) (11 d post-exposure of test larvae to inoculated larvae). We found the first infected test larvae in samples taken 20 dpi (16 d post-exposure). Transmission increased over time; in the cages sampled 25 dpi (21 d post-exposure), Nosema prevalence in test larvae ranged from 20.6% to 39.2%.  相似文献   

7.
Infection of Lymantria dispar host larvae by the entomopathogenic microsporidium Vairimorpha sp. has a negative impact on the performance of the endoparasitic braconid Glyptapanteles liparidis. To investigate possible causes for this effect, we studied to what extent nutritional host suitability is altered by the microsporidium. Therefore, we analyzed carbohydrates and fatty acids in host larvae after Vairimorpha infection and/or parasitism by G. liparidis. Trehalose levels were significantly reduced in the hemolymph of infected hosts. After day five post infection, it was detected only in traces. Four to six days later, the glycogen resources were depleted in infected larvae. Parasitism by G. liparidis, on the other hand, led to increased hemolymph trehalose levels during the early endoparasitic phase but to a significant decrease at the end of its larval development. No effect of parasitism on the glycogen content was ascertained. Hemolymph levels of the fatty acids analyzed, such as palmitic, stearic, oleic, linoleic, and linolenic acid, were significantly reduced in microsporidia-infected L. dispar. Vairimorpha sp. develops as an intracellular parasite in the fat body of the host larva and synthesis of trehalose and fatty acids may be disturbed. Moreover, microsporidia may also harness metabolites or energy produced by host cells. We conclude that the microsporidia-induced decrease in hemolymph carbohydrates and fatty acids adversely affects growth and development of parasitoid larvae.  相似文献   

8.
Nine alkaloids (acridine, aristolochic acid, atropine, berberine, caffeine, nicotine, scopolamine, sparteine, and strychnine) were evaluated as feeding deterrents for gypsy moth larvae (Lymantria dispar (L.); Lepidoptera: Lymantriidae). Our aim was to determine and compare the taste threshold concentrations, as well as the ED50 values, of the nine alkaloids to determine their potency as feeding deterrents. The alkaloids were applied to disks cut from red oak leaves (Quercus rubra) (L.), a plant species highly favored by larvae of this polyphagous insect species. We used two-choice feeding bioassays to test a broad range of biologically relevant alkaloid concentrations spanning five logarithmic steps. We observed increasing feeding deterrent responses for all the alkaloids tested and found that the alkaloids tested exhibited different deterrency threshold concentrations ranging from 0.1 to 10 mM. In conclusion, it appears that this generalist insect species bears a relatively high sensitivity to these alkaloids, which confirms behavioral observations that it avoids foliage containing alkaloids. Berberine and aristolochic acid were found to have the lowest ED50 values and were the most potent antifeedants. Handling Editor: Joseph Dickens.  相似文献   

9.
The effects of infection by a microsporidium, Vairimorpha necatrix (Kramer), on the endogenous levels of juvenile hormones in tomato moth (Lacanobia oleracea L.) larvae were investigated. Levels of juvenile hormone II (JH II) were 10-fold greater in the infected larvae on day two of the sixth stadium but no significant difference was observed on day seven. Juvenile hormone I (JH I) was also detected in day two and day seven sixth instar infected larvae but was not detected in non-infected larvae. The duration of the fifth and sixth stadia was significantly longer for infected larvae when compared with non-infected larvae. No evidence was found to suggest that supernumerary moults are a feature of infection by V. necatrix in L. oleracea larvae. Experiments were performed to determine whether the elevation in JH levels, which probably prevents pupation, is an adaptive mechanism of the microsporidium for extending the growth phase of the host, thereby allowing increased spore production. A proportion of infected larvae were collected on days 9 and 24 of the sixth stadium and spore extracts prepared from each larva. These days represent the average duration of the sixth stadium required for uninfected larvae to reach pupation, and the average number of days that V. necatrix-infected larvae survive in the sixth stadium before dying from infection. The mean spore yields from infected larvae 24 days into the sixth stadium were significantly higher than the spore yields obtained from day nine sixth instar larvae. The hypothesis that V. necatrix manipulates host endocrinology (i.e. prolong the host larval state to maximise spore yield) is discussed in context with the results obtained.  相似文献   

10.
Ethanol solutions of essential oil of Ocimum basilicum and its main component, linalool (both isomer forms), all in three concentrations, as well as botanical standard Bioneem (0.5%), were tested for their toxicity and antifeedant activity against the second instar gypsy moth larvae in the laboratory bioassay. The essential oil of O. basilicum was subjected to gas chromatography analysis, and totally 37 compounds were detected, of which linalool was predominantly present. All tested solutions showed low to moderate larvicidal effect in both residual toxicity test and in chronic larval mortality bioassay. Chronic mortality tests showed that obtained mortality was a consequence of starving rather than ingestion of treated leaves. However, antifeedant index achieved by application of tested solutions in feeding choice assay was remarkable. Foliar application of all tested compounds deterred feeding by L2 in the same percent as Bioneem. Antifeedant index was relatively high at all tested treatments (85-94%); moreover, the larval desensitization to repelling volatiles has not occurred after five days of observation. Low toxic and high antifeedant properties make these plant-derived compounds suitable for incorporation in integrated pest management programs, especially in urban environments.  相似文献   

11.
Summary Survival and body composition of starving gypsy moth larvae initially reared on aspen foliage or artificial diet differeing in nitrogen (N) and carbohydrate concentration were examined under laboratory conditions. Diet nitrogen concentration strongly affected starvation resistance and body composition, but diet carbohydrate content had no effects on these. Within any single diet treatment, greater body mass afforded greater resistance to starvation. However, starving larvae reared on 1.5% N diet survived nearly three days longer than larvae reared on 3.5% N diet. Larvae reared on artificial diet survived longer than larvae reared on aspen. Differences in survival of larvae reared on artificial diet with low and high nitrogen concentrations could not be attributed to variation in respiration rates, but were associated with differences in body composition. Although percentage lipid in larvae was unaffected by diet nitrogen concentration, larvae reared on 1.5% N diet had a higher percentage carbohydrate and lower percentage protein in their bodies prior to starvation than larvae reared on 3.5% N diet. Hence, larger energy reserves of larvae reared on low nitrogen diet may have contributed to their greater starvation resistance. Whereas survival under food stress was lower for larvae reared on high N diets, growth rates and pupal weights were higher, suggesting a tradeoff between rapid growth and survival. Larger body size does not necessarily reflect larger energy reserves, and, in fact, larger body size accured via greater protein accumulation may be at the expense of energy reserves. Large, fast-growing larvae may be more fit when food is abundant, but this advantage may be severely diminished under food stress. The potential ecological and evolutionary implications of a growth/survival tradeoff are discussed.  相似文献   

12.
Germination of conidia of Entomophaga maimaiga, an important fungal pathogen of gypsy moth, Lymantria dispar, was investigated on water agar and larval cuticle at varying densities. Percent germination was positively associated with conidial density on water agar but not on larval cuticle. When conidia were showered onto water agar, the rate of germination was much slower than on the cuticle of L. dispar larvae. From the same conidial showers, the resulting conidial densities on water agar were much higher than those on larval cuticle in part because many conidia adhered to setae and did not reach the cuticle. A second factor influencing conidial densities on larval cuticle was the location conidia occurred on larvae. Few conidia were found on the flexible intersegmental membranes in comparison with the areas of more rigid cuticle, presumably because conidia were physically dislodged from intersegmental membranes when larvae moved. Conidia were also exposed to heightened CO(2) to evaluate whether this might influence germination. When conidia on water agar were exposed to heightened CO(2) levels, germinating conidia primarily formed germ tubes while most conidia exposed to ambient CO(2) rapidly formed secondary conidia.  相似文献   

13.
The interactions in multiple species infections and effects on the horizontal transmission of three microsporidian species, Vairimorpha disparis, Nosema lymantriae and Endoreticulatus schubergi, infecting Lymantria dispar were evaluated in the laboratory. Simultaneous and sequential inoculations of host larvae were performed and the resulting infections were evaluated. Test larvae were exposed to the inoculated larvae to measure horizontal transmission. Dual species infections demonstrated interspecific competition between Nosema and Vairimorpha in the host larvae, but no observable competition occurred between Endoreticulatus and either of the other microsporidian species. Timing of inoculation was an important factor determining the outcome of competition between Nosema and Vairimorpha. The species inoculated first showed a higher rate of successful establishment; a time lag of 7 days between inoculations allowed the first species to essentially exclude the second. The microsporidia differed in efficiency of horizontal transmission. Nosema and Endoreticulatus were transmitted at very high rates, close to 100%. Horizontal transmission of Vairimorpha was less efficient, ranging from 25% to a maximum of 75%. The patterns of infection observed in inoculated larvae were reflected in the test larvae that acquired infections in the horizontal transmission experiments. Competition with Vairimorpha suppressed horizontal transmission of Nosema after simultaneous and sequential inoculation. In simultaneous inoculation experiments Endoreticulatus had no effect on transmission of Nosema and Vairimorpha.  相似文献   

14.
The gypsy moth, Lymantria dispar, is an important economic pest that causes large-scale damage to forests worldwide. Because of its important role in initiating and controlling insect behavior, olfaction—and olfaction-based pest management—has drawn increasing attention from entomologists. In this study, we identified the gene that encodes the olfactory receptor co-receptor (OrCo). Through amino acid sequence alignment, we found that LdisOrCo shares high identity with other OrCo proteins from different insect orders. Next, we performed RNA-interference (RNAi) to assess the role of OrCo in olfaction. Electroantennographic assays showed that after RNAi, the average value of males'' response to sex pheromones was 0.636 mV, significantly lower than that of the positive control (average = 1.472 mV). Females showed no response to sex pheromones before or after RNAi. Finally, quantitative PCR showed a strong decrease in the expression of OrCo after RNAi, by ~74% in males and by 23% in females relative to the positive controls. These results indicate that OrCo is not only critical to odor recognition, but it may also represent a new target for development of semiochemicals that can influence insect behavior.  相似文献   

15.
The impact of parasitism by Asobara tabida on Drosophila melanogaster larval development, survival features and larval activity has been investigated using two strains of the parasitoid. The successful parasitism rate of the A1 strain was four times greater than that of the WOPV strain. Both strains induced equivalent mortality rates but hosts parasitized by A1 predominantly died as pupae. The time necessary for the host pupariation and emergence, and the larval weight at 72, 96 and 120 h post-parasitization were measured. Parasitized larvae exhibited longer periods of development and lower weights than controls, especially when parasitized by A1. These results suggest that hosts underwent physiological costs varying with respect to the outcome of the parasitic relationship. Of the parasitoid factors possibly responsible for these costs, we examined venoms for their impact on host mortality. Artificial injections of WOPV venoms induced higher mortality rates than did A1 venoms. Venoms were also found responsible for the induction of a transient paralysis, naturally occuring after parasitization. Again, the strongest effect was observed after parasitization by WOPV or injections of its venoms. This study gives new insights into the intriguing features of A. tabida and constitutes the first report of the paralysing properties of the venoms.  相似文献   

16.
Effects of parasitism, polydnavirus, and venom of the endoparasitoid Glyptapanteles liparidis on Lymantria dispar larvae infected with the microsporidium Vairimorpha sp. and uninfected hosts were studied. We tested the impact on growth and development of hosts, as well as on microsporidian infection. Both parasitism and polydnavirus/venom treatment alone caused a slight increase in growth rate and relative growth rate in uninfected fourth instar hosts. This effect was more pronounced with the addition of Vairimorpha infection. With no parasitism, however, infection reduced host growth markedly. Microsporidiosis delayed larval molts of L. dispar, and additional polydnavirus/venom treatment or parasitization induced significantly earlier molting. Polydnavirus/venom treatment of uninfected L. dispar resulted in prolonged larval development due to supernumerary molts and in higher pupal mortality. Infected larvae treated with polydnavirus/venom died earlier than infected larvae that were not treated and produced more Vairimorpha spores per unit fresh mass of the host.  相似文献   

17.
As a result of parasitism by Glyptapanteles liparidis in the first, second, third and fourth instar larvae of Acronicta rumicis, the mortality of each larval stage was found to be 46.67, 90, 71 and 16.67%, respectively. The mortality was highest when G. liparidis parasitized the second and third instar larvae. The difference in mortality between the parasitized group and the control group was 72.14% in the second instar larvae. With regards to the food consumption of the parasitized larvae, the first and second instar larvae consumed 6495.58 ± 646.52 mm2 (leaf surface) and 7951.12 ± 4167.36 mm2, respectively, while the third and fourth larvae consumed 13 826.77 ± 3396.66 mm2 and 18 599.85 mm2, respectively, showing that food consumption increased with instar stages of the host larvae. The clutch size of G. liparidis increased in relation to the instar stages of the host: it was 25.25 ± 7.89, 48.65 ± 53.75, 91.09 ± 44.52 and 114 individuals when they were fed with the first, second, third and the fourth instar larvae of the host, respectively.  相似文献   

18.
Heavy metal contamination of the forest pest insect Lymantria dispar (L.) (Lepidoptera; Lymantriidae), the gypsy moth, can alter its haemolymph composition, as has already been shown for carbohydrates and lipids in recent studies. L. dispar larvae are frequently parasitized by Glyptapanteles liparidis (Bouché) (Hymenoptera; Braconidae) larvae, which can—to some extent—regulate the population size of the pest insect. The parasitoids feed on the haemolymph of L. dispar larvae; hence, a different haemolymph composition of the host alters the trophic situation of the parasitoids. The aim of the present study was to investigate whether metal contamination also affects the concentrations of free amino acids in L. dispar haemolymph, and protein concentrations in their haemolymph and tissue. L. dispar larvae were parasitized on the first day of the second instar and then reared on diets contaminated with Cd, Pb, Cu or Zn at two concentrations each. Haemolymph and total body tissue of the larvae (fourth instar/third day) were analyzed. The concentrations of the free amino acids were elevated in five out of the eight contamination groups (Cd6, Pb4, Cu6, Cu10, Zn60), whereas haemolymph protein concentrations were significantly reduced in all contaminated individuals. The haemolymph protein concentration was 18 mg/ml in the control group and decreased to less than 10 mg/ml due to cadmium and zinc contamination at both concentrations and in the low copper contamination group. In contrast, total body proteins (136 g/mg dry weight in the control group) were elevated due to heavy metal stress. Analyses of haemolymph protein concentrations during the fourth instar demonstrated an increase of the proteins from day one to day four (followed by a decrease on the fifth day) in the control group and the cadmium contamination group. A steady increase of proteins from the first to the fifth day in the copper and zinc contaminated larvae indicated a retarded development in these groups. Thus, the present study along with other recent studies demonstrated, that heavy metal stress changes the concentrations of all main haemolymph compounds of L. dispar larvae.  相似文献   

19.
The life cycle of Glyptapanteles liparidis was 23.75 ± 1.26, 21.95 ± 2.44 and 20.83 ± 0.78 days when fed on the first, second and third instar larvae of Acronicta rumicis, respectively. Although insufficient numbers hindered statistical analysis, the life cycle of G. liparidis appeared to be shortest, 19 days, when fed on fourth instar larvae. The life cycle of G. liparidis tends to shorten as the larvae of A. rumicis fed upon are more advanced. The body length, forewing length and head capsule width of female G. liparidis fed on first instar larvae of A. rumicis were greater than those of males, while the antennae of males were longer than those of females. When fed on second instar larvae, there was no difference in body length and head capsule width between males and females, but the male antennae were longer than the female, and the female forewings were longer than the male. When fed on third instar larvae, there was no significant difference in head capsule width between the sexes, but female body length and forewing length were greater than the male, and the male antennae were longer than the female. On the whole, females were bigger than males in terms of body length and forewing length, while antennae of the males were longer than those of the females. There was no difference in head capsule width between males and females. Body length, antenna length, forewing length and head capsule width of male and female G. liparidis were relatively larger when fed on first instar larvae of A. rumicis than when fed on second and third instar larvae.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号