首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
The secreted glycoprotein Sonic hedgehog (SHH), a vertebrate homologue of the Drosophila segment polarity gene Hedgehog, is essential for the development of diverse tissues during embryogenesis. Studies of SHH function during neural tube and somite development have focused on its role in specifying the dorsoventral polarity of these structures, but a recent report by Ahlgren and Bronner-Fraser(1) supports the possibility that SHH has additional functions in cell survival and cell proliferation. Perturbation of SHH signaling after the early dorsoventral specification of the cranial neural tube leads to increased cell death in both the neural tube and the neural crest. This implies that SHH is continually required as a trophic and/or mitogenic factor during brain development, and expands the variety of cellular responses to SHH signaling. BioEssays 22:499-502, 2000.  相似文献   

2.
The division of the mammalian forebrain into distinct left and right hemispheres represents a critical step in neural development. Several signaling molecules including sonic hedgehog (SHH), fibroblast growth factor 8 (FGF8), and bone morphogenetic proteins (BMPs) have been implicated in dorsal midline development, and prior work suggests that the organizing centers from which these proteins are secreted mutually regulate one another during development. To explore the role of the ventral organizing center in the formation of two hemispheres, we assessed dorsal midline development in Shh mutant embryos and in wildtype embryos treated with the SHH signaling inhibitor HhAntag. Collectively, our findings demonstrate that SHH signaling plays an important role in maintaining the normal expression patterns of Fgf8 and Bmp4 in the developing forebrain. We further show that FGF8 can induce the expression of Zic2, which is normally expressed at the midline and is required in vivo for hemispheric cleavage, suggesting that FGF signaling may stimulate dorsal midline development by inducing Zic2 expression.  相似文献   

3.
The role of sonic hedgehog in normal and abnormal craniofacial morphogenesis.   总被引:16,自引:0,他引:16  
There is growing evidence that implicates a role for Sonic hedgehog (SHH) in morphogenesis of the craniofacial complex. Mutations in human and murine SHH cause midline patterning defects that are manifested in the head as holoprosencephaly and cyclopia. In addition, teratogens such as jervine, which inhibit the response of tissues to SHH, also produce cyclopia. Thus, the loss of SHH signaling during early stages of neural plate patterning has a profound influence of craniofacial morphogenesis. However, the severity of these defects precludes analyses of SHH function during later stages of craniofacial development. We have used an embryonic chick system to study the role of SHH during these later stages of craniofacial development. Using a combination of surgical and molecular experiments, we show here that SHH is essential for morphogenesis of the frontonasal and maxillary processes (FNP and MXPs), which give rise to the mid- and upper face. Transient loss of SHH signaling in the embryonic face inhibits growth of the primordia and results in defects analogous to hypotelorism and cleft lip/palate, characteristics of the mild forms of holoprosencephaly. In contrast, excess SHH leads to a mediolateral widening of the FNP and a widening between the eyes, a condition known as hypertelorism. In severe cases, this widening is accompanied by facial duplications. Collectively, these experiments demonstrate that SHH has multiple and profound effects on the entire spectrum of craniofacial development, and perturbations in SHH signaling are likely to underlie a number of human craniofacial anomalies.  相似文献   

4.
5.
音猬因子(sonic hedgehog,SHH)是一种分泌蛋白质,可在发育过程中控制神经祖细胞、神经元和神经胶质细胞的形成。研究发现,海马是学习和记忆中至关重要的大脑区域,SHH在海马神经元回路的形成和可塑性中发挥重要作用,可介导海马神经的发生和突触的可塑性调节。海马神经元树突中SHH受体的激活是跨神经元信号通路的组成部分,该信号通路可加速轴突的生长并增强谷氨酸从突触前末端的释放。SHH信号通路转导受损可导致中枢神经系统损伤和相关疾病(如自闭症、抑郁症和神经退行性疾病等)发生。因此,控制SHH信号通路转导,如使用SHH通路抑制剂或激动剂可能有助于相关疾病的治疗。综述了SHH信号通路的海马神经可塑性及其在中枢神经系统发育和相关疾病中的影响,以期为阐明SHH信号转导受损导致的海马神经受损和中枢神经系统相关疾病的机制奠定一定的理论依据。  相似文献   

6.
Sonic hedgehog regulates the growth and patterning of the cerebellum.   总被引:1,自引:0,他引:1  
The molecular bases of brain development and CNS malignancies remain poorly understood. Here we show that Sonic hedgehog (Shh) signaling controls the development of the cerebellum at multiple levels. SHH is produced by Purkinje neurons, it is required for the proliferation of granule neuron precursors and it induces the differentiation of Bergmann glia. Blocking SHH function in vivo results in deficient granule neuron and Bergmann glia differentiation as well as in abnormal Purkinje neuron development. Thus, our findings provide a molecular model for the growth and patterning of the cerebellum by SHH through the coordination of the development of cortical cerebellar cell types. In addition, they provide a cellular context for medulloblastomas, childhood cancers of the cerebellum.  相似文献   

7.
Cholesterol is critical in embryonic development. Inhibition of cholesterol synthesis in experimental animals has caused a birth defect called holoprosencephaly (HPE), which is evidenced by cyclopia (one eye in the middle of the face), monorhinia (protruding single nose above the eye), absence of the pituitary gland, and central nervous system (CNS) abnormalities. In humans, an inherited defect in the cholesterol-synthesizing enzyme 7-dehydrocholesterol reductase depletes cholesterol and results in human HPE, termed Smith-Lemli-Opitz syndrome. In its most severe form, the syndrome leads to cyclopia, monorhinia, and lack of separation of cerebral hemispheres. The cause of the syndrome is a defect in a protein coded by the gene Sonic hedgehog (SHH). The protein SHH is expressed in the notochord of the CNS in the early embryo and is activated by being cleaved autocatalytically, with simultaneous covalent attachment of cholesterol to the N-terminal fragment, which is secreted by cells of the mesoderm layer, signaling the establishment of the neural midline cells. Thus, cholesterol is essential for proper signaling in the development of the normal embryo.  相似文献   

8.
The mechanisms that regulate the growth of the brain remain unclear. We show that Sonic hedgehog (Shh) is expressed in a layer-specific manner in the perinatal mouse neocortex and tectum, whereas the Gli genes, which are targets and mediators of SHH signaling, are expressed in proliferative zones. In vitro and in vivo assays show that SHH is a mitogen for neocortical and tectal precursors and that it modulates cell proliferation in the dorsal brain. Together with its role in the cerebellum, our findings indicate that SHH signaling unexpectedly controls the development of the three major dorsal brain structures. We also show that a variety of primary human brain tumors and tumor lines consistently express the GLI genes and that cyclopamine, a SHH signaling inhibitor, inhibits the proliferation of tumor cells. Using the in vivo tadpole assay system, we further show that misexpression of GLI1 induces CNS hyperproliferation that depends on the activation of endogenous Gli1 function. SHH-GLI signaling thus modulates normal dorsal brain growth by controlling precursor proliferation, an evolutionarily important and plastic process that is deregulated in brain tumors.  相似文献   

9.
The role of sonic hedgehog (SHH) in maintaining corpora cavernosal morphology in the adult penis has been established; however, the mechanism of how SHH itself is regulated remains unclear. Since decreased SHH protein is a cause of smooth muscle apoptosis and erectile dysfunction (ED) in the penis, and SHH treatment can suppress cavernous nerve (CN) injury-induced apoptosis, the question of how SHH signaling is regulated is significant. It is likely that neural input is involved in this process since two models of neuropathy-induced ED exhibit decreased SHH protein and increased apoptosis in the penis. We propose the hypothesis that SHH abundance in the corpora cavernosa is regulated by SHH signaling in the pelvic ganglia, neural activity, or neural transport of a trophic factor from the pelvic ganglia to the corpora. We have examined each of these potential mechanisms. SHH inhibition in the penis shows a 12-fold increase in smooth muscle apoptosis. SHH inhibition in the pelvic ganglia causes significantly increased apoptosis (1.3-fold) and decreased SHH protein (1.1-fold) in the corpora cavernosa. SHH protein is not transported by the CN. Colchicine treatment of the CN resulted in significantly increased smooth muscle apoptosis (1.2-fold) and decreased SHH protein (1.3-fold) in the penis. Lidocaine treatment of the CN caused a similar increase in apoptosis (1.6-fold) and decrease in SHH protein (1.3-fold) in the penis. These results show that neural activity and a trophic factor from the pelvic ganglia/CN are necessary to regulate SHH protein and smooth muscle abundance in the penis.  相似文献   

10.
11.
Human embryonic stem cells (hESC) are characterized by their ability to self-renew and differentiate into all cell types of the body, making them a valuable resource for regenerative medicine. Yet, the molecular mechanisms by which hESC retain their capacity for self-renewal and differentiation remain unclear. The Hedgehog signaling pathway plays a pivotal role in organogenesis and differentiation during development, and is also involved in the proliferation and cell-fate specification of neural stem cells and neural crest stem cells. As there has been no detailed study of the Sonic hedgehog (SHH) signaling pathway in hESC, this study examines the expression and functional role of SHH during hESC self-renewal and differentiation. Here, we show the gene and protein expression of key components of the SHH signaling pathway in hESC and differentiated embryoid bodies. Despite the presence of functioning pathway components, SHH plays a minimal role in maintaining pluripotency and regulating proliferation of undifferentiated hESC. However, during differentiation with retinoic acid, a GLI-responsive luciferase assay and target genes PTCH1 and GLI1 expression reveal that the SHH signaling pathway is highly activated. Besides, addition of exogenous SHH to hESC differentiated as embryoid bodies increases the expression of neuroectodermal markers Nestin, SOX1, MAP2, MSI1, and MSX1, suggesting that SHH signaling is important during hESC differentiation toward the neuroectodermal lineage. Our findings provide a new insight in understanding the SHH signaling in hESC and the further development of hESC differentiation for regenerative medicine.  相似文献   

12.
During development, spinal cord oligodendrocyte precursors (OPCs) originate from the ventral, but not dorsal, neuroepithelium. Sonic hedgehog (SHH) has crucial effects on oligodendrocyte production in the ventral region of the spinal cord; however, less is known regarding SHH signalling and oligodendrocyte generation from neural stem cells (NSCs). We show that NSCs isolated from the dorsal spinal cord can generate oligodendrocytes following FGF2 treatment, a MAP kinase dependent phenomenon that is associated with induction of the obligate oligogenic gene Olig2. Cyclopamine, a potent inhibitor of hedgehog signalling, did not block the formation of oligodendrocytes from FGF2-treated neurosphere cultures. Furthermore, neurospheres generated from SHH null mice also produced oligodendrocytes, even in the presence of cyclopamine. These findings are compatible with the idea of a hedgehog independent pathway for oligodendrocyte generation from neural stem cells.  相似文献   

13.
14.
Thirty to eighty-seven percent of patients treated by radical prostatectomy experience erectile dysfunction (ED). The reduced efficacy of treatments in this population makes novel therapeutic approaches to treat ED essential. We propose that abundant apoptosis observed in penile smooth muscle when the cavernous nerve (CN) is cut (mimicking the neural injury which can result from prostatectomy) is a major contributing factor to ED development. We hypothesize that decreased Sonic hedgehog (SHH) signaling is a cause of ED in neurological models of impotence by increasing apoptosis in penile smooth muscle. We examined this hypothesis in a bilateral CN injury model of ED. We found that the active form of SHH protein was significantly decreased 1.2-fold following CN injury, that SHH inhibition causes a 12-fold increase in smooth muscle apoptosis in the penis, and that SHH treatment at the time of CN injury was able to decrease CN injury-induced apoptosis (1-3-fold) in a dose-dependent manner. These results show that SHH stabilizes the alterations of the corpora cavernosal smooth muscle following nerve injury.  相似文献   

15.
The zebrafish enteric nervous system (ENS), like those of all other vertebrate species, is principally derived from the vagal neural crest cells (NCC). The developmental controls that govern the migration, proliferation and patterning of the ENS precursors are not well understood. We have investigated the roles of endoderm and Sonic hedgehog (SHH) in the development of the ENS. We show that endoderm is required for the migration of ENS NCC from the vagal region to the anterior end of the intestine. We show that the expression of shh and its receptor ptc-1 correlate with the development of the ENS and demonstrate that hedgehog (HH) signaling is required in two phases, a pre-enteric and an enteric phase, for normal ENS development. We show that HH signaling regulates the proliferation of vagal NCC and ENS precursors in vivo. We also show the zebrafish hand2 is required for the normal development of the intestinal smooth muscle and the ENS. Furthermore we show that endoderm and HH signaling, but not hand2, regulate gdnf expression in the intestine, highlighting a central role of endoderm and SHH in patterning the intestine and the ENS.  相似文献   

16.
Sonic hedgehog (SHH) is a regulator of forebrain development that acts through its receptor, patched 1. However, little is known about cellular mechanisms at neurulation, whereby SHH from the prechordal plate governs specification of the rostral diencephalon ventral midline (RDVM), a major forebrain organizer. We identified LRP2, a member of the LDL receptor gene family, as a component of the SHH signaling machinery in the RDVM. LRP2 acts as an apical SHH-binding protein that sequesters SHH in its target field and controls internalization and cellular trafficking of SHH/patched 1 complexes. Lack of LRP2 in mice and in cephalic explants results in failure to respond to SHH, despite functional expression of patched 1 and smoothened, whereas overexpression of LRP2 variants in cells increases SHH signaling capacity. Our data identify a critical role for LRP2 in SHH signaling and reveal the molecular mechanism underlying forebrain anomalies in mice and patients with Lrp2 defects.  相似文献   

17.
‘Hedgehog’ (HH) molecules are secretory signaling proteins that were first discovered in Drosophila. Three HH homologues have been identified in humans including Sonic hedgehog (SHH), Indian hedgehog (IHH) and Desert hedgehog (DHH). During embryonic development, the Hedgehog (HH) signaling pathway is critical, and it regulates both proliferation and differentiation of various types of stem cells.1This article provides a brief overview of HH signaling, summarizes the correlation between HH signaling and treatment resistance of cancer cells, and discusses the recent advances in targeting this signaling cascade to overcome treatment resistance with supporting experimental results.  相似文献   

18.
Sonic hedgehog (SHH) signaling, acting in a combinatorial manner with androgen signaling, is essential for prostate patterning and development. Recently, elevated activation of SHH signaling has been shown to play important roles in proliferation, progression and metastasis of prostate cancer. In this report, we demonstrate for the first time, that GLI1, which has been shown to play a central role in SHH signaling in prostate cancer, can act as a co-repressor to substantially block androgen receptor (AR)-mediated transactivation, at least in part, by directly interacting with AR. Our observations suggest that the SHH-GLI pathway might be one of determinants governing the transition of prostate cancer from an androgen-dependent to an androgen-independent state by compensating, or even superseding androgen signaling.  相似文献   

19.

Autism is a multifactorial neurodevelopmental condition; it demonstrates some main characteristics, such as impaired social relationships and increased repetitive behavior. The initiation of autism spectrum disorder is mostly triggered during brain development by the deregulation of signaling pathways. Sonic hedgehog (SHH) signaling is one such mechanism that influences neurogenesis and neural processes during the development of the central nervous system. SMO-SHH signaling is also an important part of a broad variety of neurological processes, including neuronal cell differentiation, proliferation, and survival. Dysregulation of SMO-SHH signaling leads to many physiological changes that lead to neurological disorders such as ASD and contribute to cognitive decline. The aberrant downregulation of SMO-SHH signals contributes to the proteolytic cleavage of GLI (glioma-associated homolog) into GLI3 (repressor), which increases oxidative stress, neuronal excitotoxicity, neuroinflammation, and apoptosis by suppressing target gene expression. We outlined in this review that SMO-SHH deregulation plays a crucial role in the pathogenesis of autism and addresses the current status of SMO-SHH pathway modulators. Additionally, a greater understanding of the SHH signaling pathway is an effort to improve successful treatment for autism and other neurological disorders.

  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号