首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mason  Julie  Kelly  Don P. 《Archives of microbiology》1988,149(4):317-323
Thiobacillus acidophilus can grow in batch and chemostat culture as a heterotroph on glucose, a chemolithoautotroph on tetrathionate and CO2, or as a mixotroph. Mixotrophically it obtains energy from the simultaneous oxidation of tetrathionate and glucose, and carbon from both glucose and CO2. Mixotrophic cultures contain lower activities of ribulose 1,5-bisphosphate carboxylase and exhibit lower specific rates of tetrathionate oxidation than do autotrophic cultures. Mixotrophic cultures with low concentrations of glucose have growth rates that are intermediate between slow autotrophic growth and fast heterotrophic growth. Slightly more glucose-carbon is assimilated by mixotrophic cultures than by heterotrophic ones provided with the same concentrations of glucose. Mixotrophic yield in the chemostat is also slightly greater than predicted from autotrophic and heterotrophic yields. These observations indicate that there is preferential assimilation of glucose, at the expense of energy from tetrathionate oxidation, during mixotrophy, resulting in an overall energy saving that produces enhanced growth yield. These observations are relevant to understanding the regulatory behaviour of T. acidophilus in its acidic, mineral-leaching habitats.  相似文献   

2.
Although the facultatively autotrophic acidophile Thiobacillus acidophilus is unable to grow on formate and formaldehyde in batch cultures, cells from glucose-limited chemostat cultures exhibited substrate-dependent oxygen uptake with these C1-compounds. Oxidation of formate and formaldehyde was uncoupler-sensitive, suggesting that active transport was involved in the metabolism of these compounds. Formate- and formaldehyde-dependent oxygen uptake was strongly inhibited at substrate concentrations above 150 and 400 M, respectively. However, autotrophic formate-limited chemostat cultures were obtained by carefully increasing the formate to glucose ratio in the reservoir medium of mixotrophic chemostat cultures. The molar growth yield on formate (Y=2.5 g ·mol-1 at a dilution rate of 0.05 h-1) and RuBPCase activities in cell-free extracts suggested that T. acidophilus employs the Calvin cycle for carbon assimilation during growth on formate. T. acidophilus was unable to utilize the C1-compounds methanol and methylamine. Formate-dependent oxygen uptake was expressed constitutively under a variety of growth conditions. Cell-free extracts contained both dye-linked and NAD-dependent formate dehydrogenase activities. NAD-dependent oxidation of formaldehyde required reduced glutathione. In addition, cell-free extracts contained a dye-linked formaldehyde dehydrogenase activity. Mixotrophic growth yields were higher than the sum of the heterotrophic and autotrophic yields. A quantitative analysis of the mixotrophic growth studies revealed that formaldehyde was a more effective energy source than formate.  相似文献   

3.
Oxidation of reduced sulphur compounds by Thiobacillus acidophilus was studied with cell suspensions from heterotrophic and mixotrophic chemostat cultures. Maximum substrate-dependent oxygen uptake rates and affinities observed with cell suspensions from mixotrophic cultures were higher than with heterotrophically grown cells. ph Optima for oxidation of sulphur compounds fell within the pH range for growth (pH 2–5), except for sulphite oxidation (optimum at pH 5.5). During oxidation of sulphide by cell suspensions, intermediary sulphur was formed. Tetrathionate was formed as an intermediate during aerobic incubation with thiosulphate and trithionate. Whether or not sulphite is an inter-mediate during sulphur compound oxidation by T. acidophilus remains unclear. Experiments with anaerobic cell suspensions of T. acidophilus revealed that trithionate metabolism was initiated by a hydrolytic cleavage yielding thiosulphate and sulphate. A hydrolytic cleavage was also implicated in the metabolism of tetrathionate. After anaerobic incubation of T. acidophilus with tetrathionate, the substrate was completely converted to equimolar amounts of thiosulphate, sulphur and sulphate. Sulphide- and sulphite oxidation were partly inhibited by the protonophore uncouplers 2,4-dinitrophenol (DNP) and carbonyl cyanide m-chlorophenylhydrazone (CCCP) and by the sulfhydryl-binding agent N-ethylmaleimide (NEM). Oxidation of elemental sulphur was completely inhibited by these compounds. Oxidation of thiosulphate, tetrathionate and trithionate was only slightly affected. The possible localization of the different enzyme systems involved in sulphur compound oxidation by T. acidophilus is discussed.  相似文献   

4.
Thiobacillus novellus was cultivated in a chemostate under the individual limitations of thiosulfate, glucose, and thiosulfate plus glucose. At dilution rate (D) of 0.05 h-1 or lower, the steady-state biomass concentration in mixotrophic medium was additive of the heterotrophic and autotrophic biomass at corresponding D values. The ambient concentrations of thiosulfate, glucose, or both in the various cultures were low and were very similar in mixotrophic, heterotrophic, and autotrophic environments at a given D value. At D = 0.05 h-1, mixotrophic cells possessed higher activities of sulfite oxidase and thiosulfate oxidation compared to autotrophic cells, as well as higher activities of glucose enzymes and glucose oxidation than heterotrophic cells. Thus, in contrast to nutrient-excess conditions, in nutrient-limited mixotrophic environments at these D values, T. novellus did not exhibit characteristics of uncoupled substrate oxidation, inhibition of substrate utilization, and repression of enzymes of energy metabolism. It is concluded that T. novellus responds to mixotrophic growth conditions differently in environments of different nutritional status, and the ecological and physiological significance of this finding is discussed.  相似文献   

5.
Thiosulfate was oxidized stoichiometrically to tetrathionate during growth on glucose byKlebsiella aerogenes, Bacillus globigii, B. megaterium, Pseudomonas putida, two strains each ofP. fluorescens andP. aeruginosa, and anAeromonas sp. A gram-negative, rod-shaped soil isolate, Pseudomonad Hw, converted thiosulfate to tetrathionate during growth on acetate. None of the organisms could use thiosulfate as sole energy source. The quantitative recovery of all the thiosulfate supplied to heterotrophic cultures either as tetrathionate alone or as tetrathionate and unused thiosulfate demonstrated that no oxidation to sulfate occurred with any of the strains tested. Two strains ofEscherichia coli did not oxidize thiosulfate. Thiosulfate oxidation in batch culture occurred at different stages of the growth cycle for different organisms:P. putida oxidized thiosulfate during lag and early exponential phase,K. aerogenes oxidized thiosulfate at all stages of growth, andB. megaterium andAeromonas oxidized thiosulfate during late exponential phase. The relative rates of oxidation byP. putida andK. aerogenes were apparently determined by different concentrations of thiosulfate oxidizing enzyme. Thiosulfate oxidation byP. aeruginosa grown in chemostat culture was inducible, since organisms pregrown on thiosulfate-containing media oxidized thiosulfate, but those pregrown on glucose only could not oxidize thiosulfate. Steady state growth yield ofP. aeruginosa in glucose-limited chemostat culture increased about 23% in the presence of 5–22 mM thiosulfate, with complete or partial concomitant oxidation to tetrathionate. The reasons for this stimulation are unclear. The results suggest that heterotrophic oxidation of thiosulfate to tetrathionate is widespread across several genera and may even stimulate bacterial growth in some organisms.  相似文献   

6.
Various cultures (previously described), which oxidize thiosulfate in mineral media have been studied in an attempt to determine the products of oxidation. The transformation of sodium thiosulfate by Cultures B, T, and K yields sodium tetrathionate and sodium hydroxide; secondary chemical reactions result in the accumulation of some tri- and pentathionates, sulfate, and elemental sulfur. As a result of the initial reaction, the pH increases; the secondary reactions cause a drop in pH after this initial rise. The primary reaction yields much less energy than the reactions effected by autotrophic bacteria. No significant amounts of assimilated organic carbon were detected in media supporting representatives of these cultures. It is concluded that they are heterotrophic bacteria. Th. novellus oxidizes sodium thiosulfate to sodium sulfate and sulfuric acid; the pH drops progressively with growth and oxidation. Carbon assimilation typical of autotrophic bacteria was detected; the ratio of sulfate-sulfur formed to carbon assimilated was 56:1. It is calculated that 5.1 per cent of the energy yielded by the oxidation of thiosulfate is accounted for in the organic cell substance synthesized from inorganic materials. This organism is a facultative autotroph. The products of oxidation of sodium thiosulfate by Th. thioparus are sodium sulfate, sulfuric acid, and elemental sulfur; the ratio of sulfate sulfur to elemental sulfur is 3 to 2. The pH decreases during growth and oxidation. The elemental sulfur is produced by the primary reaction and is not a product of secondary chemical changes. The bacterium synthesizes organic compounds from mineral substances during growth. The ratio of thiosulfate-sulfur oxidized to carbon assimilated was 125:1, with 4.7 per cent of the energy of oxidation recovered as organic cell substance. This bacterium is a strict autotroph.  相似文献   

7.
Magnetotactic bacteria are present at the oxic–anoxic transition zone where opposing gradients of oxygen and reduced sulfur and iron exist. Growth of non‐magnetotactic lithoautotrophic Magnetospirillum strain J10 and its close relative magnetotactic Magnetospirillum gryphiswaldense was characterized in microaerobic continuous culture. Both strains were able to grow in mixotrophic (acetate + sulfide) and autotrophic (sulfide or thiosulfate) conditions. Autotrophically growing cells completely converted sulfide or thiosulfate to sulfate and produced 7.5 g dry weight per mol substrate at a maximum observed growth rate of 0.09 h?1 for strain J10 and 0.07 h?1 for M. gryphiswaldense. The respiratory activity for acetate was repressed in autotrophic and also in mixotrophic cultures, suggesting acetate was used as C‐source in the latter. We have estimated the proportions of substrate used for assimilatory processes and evaluated the biomass yields per mol dissimilated substrate. The yield for lithoheterotrophic growth using acetate as the C‐source was approximately twice the autotrophic growth yield and very similar to the heterotrophic yield, showing the importance of reduced sulfur compounds for growth. In the draft genome sequence of M. gryphiswaldense homologues of genes encoding a partial sulfur‐oxidizing (Sox) enzyme system and reverse dissimilatory sulfite reductase (Dsr) were identified, which may be involved in the oxidation of sulfide and thiosulfate. Magnetospirillum gryphiswaldense is the first freshwater magnetotactic species for which autotrophic growth is shown.  相似文献   

8.
Thiosulfate oxidation and mixotrophic growth with succinate or methanol plus thiosulfate was examined in nutrient-limited mixotrophic condition for Methylobacterium oryzae CBMB20, which was recently characterized and reported as a novel species isolated from rice. Methylobacterium oryzae was able to utilize thiosulfate in the presence of sulfate. Thiosulfate oxidation increased the protein yield by 25% in mixotrophic medium containing 18.5 mmol.L-1 of sodium succinate and 20 mmol.L-1 of sodium thiosulfate on day 5. The respirometric study revealed that thiosulfate was the most preferable reduced inorganic sulfur source, followed by sulfur and sulfite. Thiosulfate was predominantly oxidized to sulfate and intermediate products of thiosulfate oxidation, such as tetrathionate, trithionate, polythionate, and sulfur, were not detected in spent medium. It indicated that bacterium use the non-S4 intermediate sulfur oxidation pathway for thiosulfate oxidation. Thiosulfate oxidation enzymes, such as rhodanese and sulfite oxidase activities appeared to be constitutively expressed, but activity increased during growth on thiosulfate. No thiosulfate oxidase (tetrathionate synthase) activity was detected.  相似文献   

9.
Heterotrophic growth of the facultatively chemolithoautotrophic acidophile Thiobacillus acidophilus was studied in batch cultures and in carbon-limited chemostat cultures. The spectrum of carbon sources supporting heterotrophic growth in batch cultures was limited to a number of sugars and some other simple organic compounds. In addition to ammonium salts and urea, a number of amino acids could be used as nitrogen sources. Pyruvate served as a sole source of carbon and energy in chemostat cultures, but not in batch cultures. Apparently the low residual concentrations in the steady-state chemostat cultures prevented substrate inhibition that already was observed at 150 M pyruvate. Molar growth yields of T. acidophilus in heterotrophic chemostat cultures were low. The Y max and maintenance coefficient of T. acidophilus grown under glucose limitation were 69 g biomass · mol–1 and 0.10 mmol · g–1 · h–1, respectively. Neither the Y max nor the maintenance coefficient of glucose-limited chemostat cultures changed when the culture pH was increased from 3.0 to 4.3. This indicates that in T. acidophilus the maintenance of a large pH gradient is not a major energy-requiring process. Significant activities of ribulose-1,5-bisphosphate carboxylase were retained during heterotrophic growth on a variety of carbon sources, even under conditions of substrate excess. Also thiosulphate- and tetrathionate-oxidising activities were expressed under heterotrophic growth conditions.  相似文献   

10.
Beggiatoa alba strain B18LD was grown in continuous culture under heterotrophic conditions on acetate or acetate and asparagine and under mixotrophic conditions on acetate plus either 1 mM sodium sulfide or 1 mM sodium thiosulfate. Considerable differences were observed between the yields and the cell compositions of heterotrophic and mixotrophic cultures at all dilution rates tested. The dry weight yield per gram acetate utilized was approximately three times higher in the acetate-sulfide mixotrophic culture than in the acetate heterotrophic culture, whereas the poly--hydroxybutyric acid and carbohydrate contents were much higher in the heterotrophic cultures. The high yields (0.52–0.75, corrected for the weight of the sulfur) obtained with the mixotrophic cultures imply that the acetate was utilized mainly for biosynthesis. Thus, the oxidation of sulfide supplied energy. The addition of catalase to the chemostat cultures increased yields slightly, but it was insufficient to explain the differences between the heterotrophic and the mixotrophic cultures.  相似文献   

11.
New data obtained by the author and other researchers on two different groups of obligately heterotrophic bacteria capable of inorganic sulfur oxidation are reviewed. Among culturable marine and (halo)alkaliphilic heterotrophs oxidizing sulfur compounds (thiosulfate and, much less actively, elemental sulfur and sulfide) incompletely to tetrathionate, representatives of the gammaproteobacteria, especially from the Halomonas group, dominate. Some denitrifying species from this group are able to carry out anaerobic oxidation of thiosulfate and sulfide using nitrogen oxides as electron acceptors. Despite the low energy output of the reaction of thiosulfate oxidation to tetrathionate, it can be utilized for ATP synthesis by some tetrathionate-producing heterotrophs; however, this potential is not always realized during their growth. Another group of marine and (halo)alkaliphilic heterotrophic bacteria capable of complete oxidation of sulfur compounds to sulfate mostly includes representatives of the alphaproteobacteria which are most closely related to nonsulfur purple bacteria. They can oxidize sulfide (polysulfide), thiosulfate, and elemental sulfur via sulfite to sulfate but neither produce nor oxidize tetrathionate. All of the investigated sulfate-forming heterotrophic bacteria belong to lithoheterotrophs, being able to gain additional energy from the oxidation of sulfur compounds during heterotrophic growth on organic substrates. Some doubtful cases of heterotrophic sulfur oxidation described in the literature are also discussed.  相似文献   

12.
The moderately thermophilic acidophilic bacterium Sulfobacillus thermosulfidooxidans subsp. asporogenes strain 41 is capable of utilizing sulfides of gold-arsenic concentrate and elemental sulfur as a source of energy. The growth in the presence of S0 under auto- or mixotrophic conditions was less stable compared with the media containing iron monoxide. The enzymes involved in oxidation of sulfur inorganic compounds--thiosulfate-oxidizing enzyme, tetrathionate hydrolase, rhodonase, adenylyl sulfate reductase, sulfite oxidase, and sulfur oxygenase--were discovered in the cells of Sulfobacillus grown in the mineral medium containing 0.02% yeast extract and either sulfur or iron monoxide and thiosulfate. Cell-free extracts of the cultures grown in the medium with sulfur under auto- or mixotrophic conditions displayed activity of the key enzyme of the Calvin cycle--ribulose bisphosphate carboxylase--and several other enzymes involved in heterotrophic fixation of carbonic acid. Activities of carboxylases depended on the composition of cultivation media.  相似文献   

13.
Xanthobacter tagetidis grew as a chemolithotrophic autotroph on thiosulfate and other inorganic sulfur compounds, as a heterotroph on thiophene-2-carboxylic acid, acetic acid and α-ketoglutaric acid, and as a mixotroph on thiosulfate in combination with thiophene-2-carboxylic acid and/or acetic acid. Autotrophic growth on one-carbon organosulfur compounds, and intermediates in their oxidation are also reported. Thiosulfate enhanced the growth yields in mixotrophic cultures, presumably by acting as a supplementary energy source, since ribulose bisphosphate carboxylase was only active in thiosulfate-grown cells and was not detected in mixotrophic cultures using thiosulfate with thiophene-2-carboxylic acid. Bacteria grown on thiophene-2-carboxylic acid also oxidized sulfide, thiosulfate and tetrathionate, indicating these as possible sulfur intermediates in thiophene-2-carboxylic acid degradation. Thiosulfate and tetrathionate were oxidized completely to sulfate and, consequently, did not accumulate as products of thiophene-2-carboxylic acid oxidation in growing cultures. K m and V max values for the oxidation of thiosulfate, tetrathionate or sulfide were 13 μM and 83 nmol O2 min–1 (mg dry wt.)–1, respectively; thiosulfate and tetrathionate became autoinhibitory at concentrations above 100 μM. The true growth yield (Ymax) on thiophene-2-carboxylic acid was estimated from chemostat cultures (at dilution rates of 0.034–0.094 h–1) to be 112.2 g mol–1, with a maintenance coefficient (m) of 0.3 mmol thiophene-2-carboxylic acid (g dry wt.)–1 h–1, and the maximum specific growth rate (μmax) was 0.116 h–1. Growth in chemostat culture at a dilution rate of 0.041 h–1 indicated growth yields [g dry wt. (mol substrate)–1] of 8.1 g (mol thiosulfate)–1, 60.9 g (mol thiophene-2-carboxylic acid)–1, and 17.5 g (mol acetic acid)–1, with additive yields for growth on mixtures of these substrates. At a dilution rate of 0.034 h–1, yields of 57.8 g (mol α-ketoglutaric acid)–1 and 60.7 g (mol thiophene-2-carboxylic acid)–1 indicated some additional energy conservation from oxidation of the thiophene-sulfur. SDS-PAGE of cell-free preparations indicated a polypeptide (M r, 21.0 kDa) specific to growth on thiophene-2-carboxylic acid for which no function can yet be ascribed: no metabolism of thiophene-2-carboxylic acid by cell-free extracts was detected. It was shown that X. tagetidis exhibits a remarkable degree of metabolic versatility and is representative of facultatively methylotrophic and chemolithotrophic autotrophs that contribute significantly to the turnover of simple inorganic and organic sulfur compounds (including substituted thiophenes) in the natural environment. Received: 1 July 1997 / Accepted: 3 November 1997  相似文献   

14.
Capacity for lithotrophic growth coupled to oxidation of reduced sulfur compounds was revealed in an Azospirillum strain, A. thiophilum BV-S T . Oxygen concentration in the medium was the major factor determining the type of energy metabolism (organotrophic or lithotrophic) in the presence of thiosulfate. Under aerobic conditions, metabolism of A. thiophilum BV-ST was organoheterotrophic, with thiosulfate oxidation to tetrathionate resulting from the interaction with reactive oxygen species, mostly H2O2, which was formed in the electron transport chain in the course of oxidation of organic electron donors. Under microaerobic conditions (2 mg/L O2 in liquid medium), A. thiophilum BV-ST carried out lithoheterotrophic (mixotrophic) metabolism; enzymes of the dissimilatory type of sulfur metabolism were responsible for thiosulfate oxidation to tetrathionate and sulfate. Two enzyme systems were found in the cells: thiosulfate dehydrogenase, which catalyzes incomplete oxidation of thiosulfate to tetrathionate and the thiosulfate-oxidizing Sox enzyme complex, which is involved in complete oxidation of thiosulfate to sulfate. The genetic determinant of a Sox complex component in A. thiophilum BV-ST was revealed. The soxB gene was found, and its expression under microaerobic conditions was observed to increase 32-fold compared to aerobic cultivation.  相似文献   

15.
The moderately thermophilic acidophilic bacterium Sulfobacillus thermosulfidooxidans subsp. asporogenes strain 41 is capable of utilizing sulfides of gold–arsenic concentrate and elemental sulfur as a source of energy. Growth in the presence of S0 under auto- or mixotrophic conditions was less stable than in media containing iron monoxide. The enzymes involved in the oxidation of sulfur inorganic compounds—thiosulfate-oxidizing enzyme, tetrathionate hydrolase, rhodanase, adenylyl phosphosulfate reductase, sulfite oxidase, and sulfur oxygenase—were determined in the cells of the sulfobacilli grown in mineral medium containing 0.02% yeast extract and either sulfur or iron monoxide and thiosulfate. Cell-free extracts of the cultures grown in the medium with sulfur under auto- or mixotrophic conditions displayed activity of the key enzyme of the Calvin cycle—ribulose bisphosphate carboxylase—and several other enzymes involved in the heterotrophic fixation of carbon dioxide. Activities of carboxylases depended on the composition of the cultivation media.  相似文献   

16.
The ability of Acidithiobacillus caldus to grow aerobically using pyruvate, acetate, citrate, 2-ketoglutarate, succinate, and malate as either an electron donor and carbon source (heterotrophic growth), or as a carbon source when potassium tetrathionate was added as an electron donor (mixotrophic growth), was tested in chemostat cultures. Under both heterotrophic and mixotrophic conditions, organic acids were added to a sub-lethal concentration (50 μM). Under mixotrophic conditions, potassium tetrathionate was added to an excess concentration (10 mM). No cell growth was observed under heterotrophic conditions; however, effluent cell concentrations increased over threefold when pyruvate was coupled with potassium tetrathionate. Under these conditions, the effluent pyruvate concentration was reduced to below the detection limit (2 μM), and oxygen consumption increased by approximately 100%. Although pyruvate provided a carbon source in these experiments, ambient carbon dioxide was also available to the cells. To test whether At. caldus could grow mixotrophically using pyruvate as a sole carbon source and potassium tetrathionate as an electron donor, cells were batch cultured in a medium free of dissolved inorganic carbon, and with no carbon dioxide in the headspace. These experiments showed that At. caldus was able to convert between 65 ± 8 and 82 ± 15% of the pyruvate carbon to cellular biomass, depending on the initial pyruvate concentrations. This work is the first to identify a defined organic-carbon source, other than glucose, that At. caldus can assimilate. This has important implications, as mixotrophic and heterotrophic activity has been shown to increase mineral leaching in acidic systems.  相似文献   

17.
Sorokin DIu 《Mikrobiologiia》2003,72(6):725-739
New data obtained by the author and other researchers on two different groups of obligately heterotrophic bacteria capable of inorganic sulfur oxidation are reviewed. Among culturable marine and (halo)alkaliphilic heterotrophs oxidizing sulfur compounds (thiosulfate and, much less actively, elemental sulfur and sulfide) incompletely to tetrathionate, representatives of the gammaproteobacteria, especially from the Halomonas group, dominate. Some of denitrifying species from this group are able to carry out anaerobic oxidation of thiosulfate and sulfide using nitrogen oxides as electron acceptors. Despite the low energy output of the reaction of thiosulfate oxidation to tetrathionate, it can be utilized for ATP synthesis by some tetrathionate-producing heterotrophs; however, this potential is not always realized during their growth. Another group of marine and (halo)alkaliphilic heterotrophic bacteria capable of complete oxidation of sulfur compounds to sulfate mostly includes representatives of the alphaproteobacteria most closely related to nonsulfur purple bacteria. They can oxidize sulfide (polysulfide), thiosulfate, and elemental sulfur via sulfite to sulfate but neither produce nor oxidize tetrathionate. All of the investigated sulfate-forming heterotrophic bacteria belong to lithoheterotrophs, being able to gain additional energy from the oxidation of sulfur compounds during heterotrophic growth on organic substrates. Some doubtful cases of heterotrophic sulfur oxidation described in the literature are also discussed.  相似文献   

18.
Heterotrophic growth of microalgae presents significant economic advantages over the more common autotrophic cultivation. The efficiency of growth and nitrogen, phosphorus, and glucose uptake from synthetic wastewater was compared under heterotrophic, autotrophic, and mixotrophic regimes of Chlorella vulgaris Beij. immobilized in alginate beads, either alone or with the bacterium Azospirillum brasilense. Heterotrophic cultivation of C. vulgaris growing alone was superior to autotrophic cultivation. The added bacteria enhanced growth only under autotrophic and mixotrophic cultivations. Uptake of ammonium by the culture, yield of cells per ammonium unit, and total volumetric productivity of the culture were the highest under heterotrophic conditions when the microalga grew without the bacterium. Uptake of phosphate was higher under autotrophic conditions and similar under the other two regimes. Positive influence of the addition of A. brasilense was found only when light was supplied (autotrophic and mixotrophic), where affinity to phosphate and yield per phosphate unit were the highest under heterotrophic conditions. The pH of the culture was significantly reduced in all regimes where glucose was consumed, similarly in heterotrophic and mixotrophic cultures. It was concluded that the heterotrophic regime, using glucose, is superior to autotrophic and mixotrophic regimes for the uptake of ammonium and phosphate. Addition of A. brasilense positively affects the nutrient uptake only in the two regimes supplied with light.  相似文献   

19.
Thiobacillus ferrooxidans was grown in chemostat cultures with thiosulfate and tetrathionate as the limiting substrates. The yields at steady state on both substrates at different dilution rates were calculated. In a few experiments the air supply was supplemented with 2% CO2 (v/v). This resulted in a slightly increased yield.Cells from the chemostat cultures were used to study the kinetics of thiosulfate, tetrathionate, sulfite and sulfide oxidation. With all substrates mentioned the Ks values were in the micromolar range. The values for thiosulfate and tetrathionate were 2 orders of magnitude lower that those published previously.  相似文献   

20.
Nostoc flagelliforme is a terrestrial cyanobacterium with high economic value. Dissociated cells separated from a natural colony of N. flagelliforme were cultivated for 7 days under either phototrophic, mixotrophic or heterotrophic culture conditions. The highest biomass, 1.67 g L−1 cell concentration, was obtained under mixotrophic culture, representing 4.98 and 2.28 times the biomass obtained in phototrophic and heterotrophic cultures, respectively. The biomass in mixotrophic culture was not the sum as that in photoautotrophic and heterotrophic cultures. During the first 4 days of culture, the cell concentration in mixotrophic culture was lower than the sum of those in photoautotrophic and heterotrophic cultures. However, from the 5th day, the cell concentration in mixotrophic culture surpassed the sum of those obtained from the other two trophic modes. Although the inhibitor of photosynthetic electron transport DCMU [3-(3,4-dichlorophenyl)-1,1-dimethylurea] efficiently inhibited autotrophic growth of N. flagelliforme cells, under mixotrophic culture they could grow by using glucose. The addition of glucose changed the response of N.flagelliforme cells to light. The maximal photosynthetic rate, dark respiration rate and light compensation point in mixotrophic culture were higher than those in photoautotrophic cultures. These results suggest that photoautotrophic (photosynthesis) and heterotrophic (oxidative metabolism of glucose) growth interact in mixotrophic growth of N. flagelliforme cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号