共查询到20条相似文献,搜索用时 15 毫秒
1.
Activation of p38 mitogen-activated protein kinase in spinal microglia is a critical link in inflammation-induced spinal pain processing 总被引:24,自引:0,他引:24
Svensson CI Marsala M Westerlund A Calcutt NA Campana WM Freshwater JD Catalano R Feng Y Protter AA Scott B Yaksh TL 《Journal of neurochemistry》2003,86(6):1534-1544
We examined the effect of p38 mitogen-activated protein kinase (MAPK) inhibitors in models of nociception and correlated this effect with localization and expression levels of p38 MAPK in spinal cord. There was a rapid increase in phosphorylated p38 MAPK in spinal cord following intrathecal administration of substance P or intradermal injection of formalin. Immunocytochemistry revealed that phosphorylated p38 MAPK-immunoreactive cells were predominantly present in laminae I-IV of the dorsal horn. Double-staining with markers for neurons, microglia, astrocytes and oligodendrocytes unexpectedly revealed co-localization with microglia but not with neurons or other glia. Pretreatment with p38 MAPK inhibitors (SB20358 or SD-282) had no effect on acute thermal thresholds. However, they attenuated hyperalgesia in several nociceptive models associated with spinal sensitization including direct spinal activation (intrathecal substance P) and peripheral tissue inflammation (intraplantar formalin or carrageenan). Spinal sensitization, manifested by enhanced expression of cyclo-oxygenase-2 and inflammation-induced appearance of Fos-positive neurons, was blocked by pretreatment, but not post-treatment, with p38 MAPK inhibitors. Taken together, these results indicate that spinal p38 MAPK is involved in inflammation-induced pain and that activated spinal microglia play a direct role in spinal nociceptive processing. 相似文献
2.
脊髓p38丝裂原活化蛋白激酶激活参与坐骨神经压迫性损伤所致神经病理性痛 总被引:6,自引:0,他引:6
本研究旨在观察脊髓p38丝裂原活化蛋白激酶(p38 mitogen-activated protein kinase,p38 MAPK)在坐骨神经压迫性损伤所致神经病理性痛中的作用。雄性Sprague-Dawley大鼠鞘内置管后,4-0丝线松结扎左侧坐骨神经制作慢性压迫性损伤(chronic constriction injury,CCI)模型。CCI后第5天,鞘内注射不同剂量的p38 MAPK特异性抑制剂SB203580,并在给药前及给药后不同时间点,分别用von Frey机械痛敏监测仪和热辐射刺激仪监测大鼠损伤侧后爪机械和热刺激反应闽值,用免疫印迹技术(Western blot)观察给药前后脊髓磷酸化p38 MAPK(p-p38 MAPK)和磷酸化环磷酸腺苷反应元件结合蛋白(phosphorylated cAMP response element binding protein,pCREB)表达变化。结果发现:坐骨神经压迫性损伤引起脊髓p-p38 MAPK蛋白表达明显增加;鞘内注射SB203580能剂量依赖性逆转CCI引起的机械性痛觉异常和热痛觉过敏及脊髓水平p-p38 MAPK表达的增加,也明显抑制CCI引起的脊髓pCREB表达的增加。结果提示,脊髓水平p38 MAPK激活参与坐骨神经压迫性损伤所致神经病理性痛的发展,其作用可能通过pCREB介导。 相似文献
3.
Inoue K 《Purinergic signalling》2007,3(1-2):135-144
There is abundant evidence that extracellular ATP and other nucleotides have an important role in pain signaling at both the
periphery and in the CNS. The focus of attention now is on the possibility that endogenous ATP and its receptor system might
be activated in chronic pathological pain states, particularly in neuropathic and inflammatory pain. Neuropathic pain is often
a consequence of nerve injury through surgery, bone compression, diabetes or infection. This type of pain can be so severe
that even light touching can be intensely painful; unfortunately, this state is generally resistant to currently available
treatments. In this review, we summarize the role of ATP receptors, particularly the P2X4, P2X3 and P2X7 receptors, in neuropathic and inflammatory pain. The expression of P2X4 receptors in the spinal cord is enhanced in spinal microglia after peripheral nerve injury, and blocking pharmacologically
and suppressing molecularly P2X4 receptors produce a reduction of the neuropathic pain behaviour. Understanding the key roles of these ATP receptors may lead
to new strategies for the management of intractable chronic pain. 相似文献
4.
本文用Fos作为背角伤害性反应神经元活动的一个标志物,结合免疫细胞化学和神经药理学方法,观察了速激肽受体拮抗剂对福尔马林诱发的脊髓c-fos原癌基因表达的影响。一侧大鼠后肢跖部皮下注射福尔马林,仅在同侧脊髓背角有c-fos表达。Fos阳性神经元最密集分布于I层和Ⅱ层背侧的内侧部,中等量分布于Ⅳ层和V型,少量定位于Ⅱ层腹侧部、Ⅲ、Ⅵ和Ⅹ层。若预先在一侧大鼠后肢跖部皮下注射福尔马林前,鞘内给予神经激肽 相似文献
5.
Qing-Shan Niu Feng Jiang Li-Ming Hua Jin Fu Yun-Lu Jiao Yong-Hua Ji Gang Ding 《Biochemical and biophysical research communications》2013
Intraplantar (i.pl.) injection of BmK I, a receptor site 3-specific modulator of voltage-gated sodium channels (VGSCs) from the venom of scorpion Buthus martensi Karsch (BmK), was shown to induce long-lasting and spontaneous nociceptive responses as demonstrated through experiments utilizing primary thermal and mirror-imaged mechanical hypersensitivity with different time course of development in rats. In this study, microglia was activated on both sides of L4–L5 spinal cord by i.pl. injection of BmK I. Meanwhile, the activation of p38/MAPK in L4–L5 spinal cord was found to be co-expressed with OX-42, the cell marker of microglia. The unilateral thermal and bilateral mechanical pain hypersensitivity of rat induced by BmK I was suppressed in a dose-dependent manner following pretreatment with SB203580 (a specific inhibitor of p-p38). Interestingly, microglia activity was also reduced in the presence of SB203580, which suggests that BmK I-induced microglial activation is mediated by p38/MAPK pathway. Combined with previously published literature, the results of this study demonstrate that p38-dependent microglial activation plays a role in scorpion envenomation-induced pain-related behaviors. 相似文献
6.
p38 MAPK介导高糖诱导的肾小管上皮细胞向间充质细胞转变 总被引:2,自引:0,他引:2
本文旨在观察p38MAPK与高糖诱导的肾小管上皮细胞向间充质细胞转变之间的关系。将雄性Sprague—Dawley(SD)大鼠随机分为对照组、糖尿病组、胰岛素治疗组,用免疫组织化学、Western blot检测p38MAPK和磷酸化p38MAPK(P—p38MAPK)蛋白表达。采用机械分离和酶消化获取SD大鼠肾小管节段,进行肾小管上皮细胞培养,将肾小管上皮细胞分为对照组、高渗组(20mmol/L D—mannitol)、高糖组(20mmol/L D—glucose)和SB202190(p38MAPK特异性抑制剂)+高糖组,处理72h后收集细胞,用免疫细胞化学检测α-平滑肌肌动蛋白(α—smooth muscleactin,α-SMA)、p-p38MAPK和Snaill蛋白表达,Western blot检测p38MAPK、p-p38MAPK、Snaill、转化生长因子β1(transforming growth factor—β1,TGF-β1)、α-SMA和E-cadherin的表达,RT-PCR检测α-SMA和E-cadherin mRNA的表达。体内和体外结果均显示,高糖状态激活了p38MAPK,这种活化作用在体内可因胰岛素控制血糖而被消除,在体外可被p38MAPK特异性抑制剂SB202190显著抑制;高糖组α-SMA蛋白和mRNA在原代培养肾小管上皮细胞的表达较对照组分别增加12倍和8倍(P〈0.01),SB202190处理组其表达则较高糖组分别减少67%和50%(P〈0.01)。SB202190不影响TGF—β1蛋白表达,但下调Snaill蛋白表达,并部分恢复高糖组E—cadherin蛋白和mRNA的表达。上述结果提示,p38MAPK可能通过转录因子Snaill介导高糖诱导的肾小管上皮细胞向间充质细胞转变。 相似文献
7.
There is abundant evidence that extracellular ATP and other nucleotides have an important role in pain signaling at both the periphery and in the CNS. At first, it was thought that ATP was simply involved in acute pain, since ATP is released from damaged cells and excites directly primary sensory neurons by activating their receptors. However, neither blocking P2X/Y receptors pharmacologically nor suppressing the expression of P2X/Y receptors molecularly in sensory neurons or in the spinal cord had an effect on acute physiological pain. The focus of attention now is on the possibility that endogenous ATP and its receptor system might be activated in pathological pain states, particularly in neuropathic pain. Neuropathic pain is often a consequence of nerve injury through surgery, bone compression, diabetes or infection. This type of pain can be so severe that even light touching can be intensely painful; unfortunately, this state is generally resistant to currently available treatments. An important advance in our understanding of the mechanisms involved in neuropathic pain has been made by a recent work demonstrating the crucial role of ATP receptors (i.e., P2X3 and P2X4 receptors). In this review, we summarize the role of ATP receptors, particularly the P2X4 receptor, in neuropathic pain. The expression of P2X4 receptors in the spinal cord is enhanced in spinal microglia after peripheral nerve injury, and blocking pharmacologically and suppressing molecularly P2X4 receptors produce a reduction of the neuropathic pain behaviour. Understanding the key roles of ATP receptors including P2X4 receptors may lead to new strategies for the management of neuropathic pain. 相似文献
8.
Subcutaneous injection of bee venom causes long-term neural activation and hypersensitization in the dorsal horn of the spinal cord, which contributes to the development and maintenance of various pain-related behaviors. The unique behavioral 'pheno-types' of nociception and hypersensitivity identified in the rodent bee venom test are believed to reflect a complex pathological state of inflammatory pain and might be appropriate to the study of phenotype-based mechanisms of pain and hyperalgesia. In this review, the spinal processing of the bee venom-induced different 'phenotypes' of pain and hyperalgesia will be described. The accumulative electrophysiological, pharmacological, and behavioral data strongly suggest that different 'phenotypes' of pain and hyperalgesia are mediated by different spinal signaling pathways. Unraveling the phenotype-based mechanisms of pain might be useful in development of novel therapeutic drugs against complex clinic pathological pain. 相似文献
9.
10.
Direct evidence for spinal cord microglia in the development of a neuropathic pain-like state in mice 总被引:13,自引:0,他引:13
Narita M Yoshida T Nakajima M Narita M Miyatake M Takagi T Yajima Y Suzuki T 《Journal of neurochemistry》2006,97(5):1337-1348
The present study was undertaken to further investigate the role of glial cells in the development of the neuropathic pain-like state induced by sciatic nerve ligation in mice. At 7 days after sciatic nerve ligation, the immunoreactivities (IRs) of the specific astrocyte marker glial fibrillary acidic protein (GFAP) and the specific microglial marker OX-42, but not the specific oligodendrocyte marker O4, were increased on the ipsilateral side of the spinal cord dorsal horn in nerve-ligated mice compared with that on the contralateral side. Furthermore, a single intrathecal injection of activated spinal cord microglia, but not astrocytes, caused thermal hyperalgesia in naive mice. Furthermore, 5-bromo-2'-deoxyuridine (BrdU)-positive cells on the ipsilateral dorsal horn of the spinal cord were significantly increased at 7 days after nerve ligation and were highly co-localized with another microglia marker, ionized calcium-binding adaptor molecule 1 (Iba1), but neither with GFAP nor a specific neural nuclei marker, NeuN, in the spinal dorsal horn of nerve-ligated mice. The present data strongly support the idea that spinal cord astrocytes and microglia are activated under the neuropathic pain-like state, and that the proliferated and activated microglia directly contribute to the development of a neuropathic pain-like state in mice. 相似文献
11.
12.
13.
14.
Sung CS Wen ZH Chang WK Chan KH Ho ST Tsai SK Chang YC Wong CS 《Journal of neurochemistry》2005,94(3):742-752
We have reported recently that intrathecal (i.t.) injection of interleukin-1beta (IL-1beta), at a dose of 100 ng, induces inducible nitric oxide synthase (iNOS) expression and nitric oxide (NO) production in the spinal cord and results in thermal hyperalgesia in rats. This study further examines the role of mitogen-activated protein kinase (MAPK) in i.t. IL-1beta-mediated iNOS-NO cascade in spinal nociceptive signal transduction. All rats were implanted with an i.t. catheter either with or without an additional microdialysis probe. Paw withdrawal latency to radiant heat is used to assess thermal hyperalgesia. The iNOS and MAPK protein expression in the spinal cord dorsal horn were examined by western blot. The [NO] in CSF dialysates were also measured. Intrathecal IL-1beta leads to a time-dependent up-regulation of phosphorylated p38 (p-p38) MAPK protein expression in the spinal cord 30-240 min following IL-1beta injection (i.t.). However, neither the phosphorylated extracellular signal-regulated kinase (p-ERK) nor phosphorylated c-Jun NH2-terminal kinase (p-JNK) was affected. The total amount of p38, ERK, and JNK MAPK proteins were not affected following IL-1beta injection. Intrathecal administration of either selective p38 MAPK, or JNK, or ERK inhibitor alone did not affect the thermal nociceptive threshold or iNOS protein expression in the spinal cord. However, pretreatment with a p38 MAPK inhibitor significantly reduced the IL-1beta-induced p-p38 MAPK expression by 38-49%, and nearly completely blocked the subsequent iNOS expression (reduction by 86.6%), NO production, and thermal hyperalgesia. In contrast, both ERK and JNK inhibitor pretreatments only partially (approximately 50%) inhibited the IL-1beta-induced iNOS expression in the spinal cord. Our results suggest that p38 MAPK plays a pivotal role in i.t. IL-1beta-induced spinal sensitization and nociceptive signal transduction. 相似文献
15.
16.
p38通路是真核细胞转导细胞外信号到细胞内引起细胞反应的一类重要信号通路,它能够调控多种细胞内分子事件。p38是p38通路发挥生物学作用的末端激酶,它能够通过调控MyoD、Myf-5活性或表达、组蛋白修饰、染色体重塑、某些细胞分化相关mRNA的更替等方式影响肌肉分化进程。运动能够激活p38,p38可能通过NF-κB/IL-6/成肌调节因子(myogenic regulatory factor,MRF)及肌细胞专一增强因子2(muscle-specific enhancement factor2,MEF2)、过氧化物增殖物活化受体γ辅激活因子1α(peroxisome proliferator activated receptor γ coactivator-1α,PGC-1α)、葡萄糖转运蛋白4(glucose transporter 4,GLUT4)在运动介导的肌肉发生、线粒体发生、血糖摄取能力提高等几方面发挥作用。 相似文献
17.
Saito Y Shibayama H Tanaka H Tanimura A Kanakura Y 《Biochemical and biophysical research communications》2011,(2):303-307
Anamorsin (AM) plays crucial roles in hematopoiesis and embryogenesis. AM deficient (AM KO) mice die during late gestation; AM KO embryos are anemic and very small compared to wild type (WT) embryos. To determine which signaling pathways AM utilizes for these functions, we used murine embryonic fibroblast (MEF) cells generated from E-14.5 AM KO or WT embryos. Proliferation of AM KO MEF cells was markedly retarded, and PKCθ, PKCδ, and p38MAPK were more highly phosphorylated in AM KO MEF cells. Expression of cyclinD1, the target molecule of p38MAPK, was down-regulated in AM KO MEF cells. p38MAPK inhibitor as well as PKC inhibitor restored expression of cyclinD1 and cell growth in AM KO MEF cells. These data suggest that PKCθ, PKCδ, and p38MAPK activation lead to cell cycle retardation in AM KO MEF cells, and that AM may negatively regulate novel PKCs and p38MAPK in MEF cells. 相似文献
18.
目的:观察甲醛炎性痛及痛过敏过程中脊髓后角环氧化酶-2 (COX-2)表达的变化及其时间特征.方法:采用大鼠甲醛疼痛模型,用免疫组化法观察脊髓COX-2表达的变化.结果:与对照组相比,注射甲醛后4 h,1 d及3 d组脊髓后角Ⅰ-Ⅵ板层COX-2免疫反应阳性细胞的数目及染色深度均显著增加,以1 d组增加最为明显.结论:脊髓后角COX-2参与甲醛炎性痛及痛过敏. 相似文献
19.
20.
Wu XN Wang XK Wu SQ Lu J Zheng M Wang YH Zhou H Zhang H Han J 《The Journal of biological chemistry》2011,286(36):31501-31511
Cell growth is influenced by environmental stress. Mammalian target of rapamycin (mTOR), the central regulator of cell growth, can be positively or negatively regulated by various stresses through different mechanisms. The p38 MAP kinase pathway is essential in cellular stress responses. Activation of MK2, a downstream kinase of p38α, enhances mTOR complex 1 (mTORC1) activity by preventing TSC2 from inhibiting mTOR activation. The p38β-PRAK cascade targets Rheb to inhibit mTORC1 activity upon glucose depletion. Here we show the activation of p38β participates in activation of mTOR complex 1 (mTORC1) induced by arsenite but not insulin, nutrients, anisomycin, or H(2)O(2). Arsenite treatment of cells activates p38β and induces interaction between p38β and Raptor, a regulatory component of mTORC1, resulting in phosphorylation of Raptor on Ser(863) and Ser(771). The phosphorylation of Raptor on these sites enhances mTORC1 activity, and contributes largely to arsenite-induced mTORC1 activation. Our results shown here and in previous work demonstrate that the p38 pathway can regulate different components of the mTORC1 pathway, and that p38β can target different substrates to either positively or negatively regulate mTORC1 activation when a cell encounters different environmental stresses. 相似文献