首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
The human CR1 gene is expressed specifically in hematopoietic cells. It is suggested that some cell-type specific factors which involve in gene-specific activation or repression exist in cells according to the result that the gene expression varies differently depend on differentiation stage. Here, we demonstrate that the integrity of a polyomavirus enhancer core sequence, 5'-TGTGGT-3', is critical to the human CR1 promoter activity. AML1 is a site-specific DNA-binding protein that recognizes the enhancer core motif TGTGGT. We show that the AML1 binds specifically to this site and activates the human CR1 promoter. Furthermore, we demonstrate that the Ets binding site (GGAA) located 2 bp upstream of the AML1 site is also involved in the regulation of the human CR1 promoter activity. Point mutations of either the AML1 or the Ets binding site that abolish the binding of the respective factors result in significant decreases of the human CR1 promoter activity. These results suggest that AML1 and Ets proteins direct the expression of the human CR1 promoter.  相似文献   

7.
8.
9.
10.
11.
12.
13.
14.
The leukemia and lymphoma disease locus Evi12 was mapped to the noncoding region of a novel gene, Gnn (named for Grp94 neighboring nucleotidase), that is located immediately upstream of the Grp94/Tra1 gene on mouse chromosome 10. The Gnn gene is conserved in mice and humans. Expression of fusion constructs between GFP and Gnn cDNA isoforms in HEK-293 cells showed that Gnn proteins are located mainly in the cytoplasm. Immunoblotting experiments demonstrated the presence of multiple Gnn protein isoforms in most organs, with the lowest levels of expression of the protein detected in bone marrow and spleen. The Evi12-containing leukemia cell line NFS107 showed high levels of expression of a approximately 150-kDa Gnn isoform (Gnn107) that was not observed in control cell lines. Overexpression may be due to the viral insertion in Evi12. The Gnn107 protein is probably encoded by a Gnn cDNA isoform that is expressed exclusively in NFS107 cells and that includes sequences of TU12B1-TY, a putative protein with homology to 5'-nucleotidase enzymes. Interestingly, using Affymetrix gene expression data of a cohort of 285 patients with acute myeloid leukemia (AML), we found that GNN/TU12B1-TY expression was specifically increased in two AML clusters. One cluster consisted of all AML patients with a t(8;21) translocation, and the second cluster consisted of AML patients with a normal karyotype carrying a FLT3 internal tandem duplication. These findings suggest that we identified a novel proto-oncogene that may be causally linked to certain types of human leukemia.  相似文献   

15.
The t(8;21)(q22;q22) translocation, which fuses the ETO gene on human chromosome 8 with the AML1 gene on chromosome 21 (AML1-ETO), is one of the most frequent cytogenetic abnormalities associated with acute myelogenous leukemia (AML). It is seen in approximately 12 to 15% of AML cases and is present in about 40% of AML cases with a French-American-British classified M2 phenotype. We have generated a murine model of the t(8;21) translocation by retroviral expression of AML1-ETO in purified hematopoietic stem cells (HSC). Animals reconstituted with AML1-ETO-expressing cells recapitulate the hematopoietic developmental abnormalities seen in the bone marrow of human patients with the t(8;21) translocation. Primitive myeloblasts were increased to approximately 10% of bone marrow by 10 months posttransplant. Consistent with this observation was a 50-fold increase in myeloid colony-forming cells in vitro. Accumulation of late-stage metamyelocytes was also observed in bone marrow along with an increase in immature eosinophilic myelocytes that showed abnormal basophilic granulation. HSC numbers in the bone marrow of 10-month-posttransplant animals were 29-fold greater than in transplant-matched control mice, suggesting that AML1-ETO expression overrides the normal genetic control of HSC pool size. In summary, AMLI-ETO-expressing animals recapitulate many (and perhaps all) of the developmental abnormalities seen in human patients with the t(8;21) translocation, although the animals do not develop leukemia or disseminated disease in peripheral tissues like the liver or spleen. This suggests that the principal contribution of AML1-ETO to acute myeloid leukemia is the inhibition of multiple developmental pathways.  相似文献   

16.
17.
Primary genetic abnormalities of leukemia cells have important prognostic significance in childhood acute leukemia. In the last two years 30 newly diagnosed or recurrent childhood ALL bone marrow samples were analyzed for chromosomal abnormalities with conventional G-banding and interphase-fluorescence in situ hybridization (I-FISH) using probes to detect BCR/ABL fusions, cryptic TEL/AML1 and MLL rearrangements and p16(9p21) tumor suppressor gene deletions. G-banded karyotype analysis found clonal chromosomal aberrations in 50% of cases. With the use of complementary I-FISH techniques, ALL-specific structural and numerical changes could be identified in 70% of the patients. Nine cases (30%) had subtle chromosomal aberrations with prognostic importance that had not been detected in G-banded analysis. Conventional G-banding yielded additional information (rare and complex structural aberrations) in 19% of patients. The most common aberration (30%) was AML1 copy number increase present in G-banded hyperdiploid karyotype as a chromosome 21 tetrasomy in the majority of cases; one case displayed 5-6 copies and in another case amplification of AML1 gene on der(21) was combined with TEL/AML1 fusion of the homologue AML1 gene and deletion of the remaining TEL allele. High hiperdiploidy was detected in 6 cases, in one patient with normal G-banding karyotype. TEL/AML1 fusion signals were identified in four patients. Deletion of p16 locus was found in eight cases (23%), of which only two had cytogenetically visible rearrangements. G-banding in combination with I-FISH has produced major improvements in the sensitivity and accuracy of cytogenetic analysis of ALL patients and this method helps to achieve a more precise identification of different risk categories in order to choose the optimal treatment.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号