首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The objective of the study was to examine the relationship(s) between the size and the geometry of the capillary network in the flight muscle of pigeon (Columbia livia). To this end, we used morphometry to analyze the degree of anisotropy (i.e., orientation) of capillaries with respect to the axis of the muscle fibers in perfusion-fixed samples of pigeon pectoralis muscles with large difference in capillary density. Capillary number per fiber cross-sectional area (range, 1,491-5,680 mm-2) depended on fiber size (aerobic fibers, 304-782 microns 2; glycolytic, 1,785-2,444 microns 2), as well as sarcomere length (1.69-2.20 microns), and the relative sectional area of aerobic and glycolytic fibers (aerobic, 42-84% of total fiber area). The degree of tortuosity of capillaries, i.e., their bending or sinuosity relative to the muscle fiber axis, was primarily a function of sarcomere length. In spite of large differences in capillary density, capillary orientation at a given sarcomere length was remarkably similar among samples. In addition to capillaries running parallel to the muscle fiber axis, a unique arrangement of branches running perpendicular to the muscle fiber axis was found in all samples. This arrangement yielded a large circumferential distribution of capillary surface around the muscle fibers. Compared to mammalian limb muscles examined over a 10-fold range of capillary density (range, 450-4,670 mm-2), the degree of anisotropy of capillaries was greater in all samples of pigeon M. pectoralis. In the pigeon, there was no increase in the amount of capillary surface area available for exchange per microvessel as a result of a greater degree of capillary tortuosity in samples with larger capillary density (capillary number per fiber cross-sectional area greater than 4,000 mm-2), as compared to samples with a capillary density less than 4,000 mm-2.  相似文献   

2.
To determine the potential range of diaphragm sarcomere lengths in situ and the effect of changes in sarcomere length on capillary and fiber geometry, rat diaphragms were perfusion fixed in situ with glutaraldehyde at different airway pressures and during electrical stimulation. The lengths of thick (1.517 +/- 0.007 microns) and thin (1.194 +/- 0.048 microns) filaments were not different from those established for rat limb muscle. Morphometric techniques were used to determine fiber cross-sectional area, sarcomere length, capillary orientation, and capillary length and surface area per fiber volume. All measurements were referenced to sarcomere length, which averaged 2.88 +/- 0.08 microns at -20 to -25 cmH2O airway pressure (residual volume) and 2.32 +/- 0.05 microns at +20 to +26 cmH2O airway pressure (total lung capacity). The contribution of capillary tortuosity and branching to total capillary length was dependent on sarcomere length and varied from 5 to 22%, consistent with that shown previously for mammalian limb muscles over this range of sarcomere lengths. Capillary length per fiber volume [Jv(c,f)] was significantly greater at residual volume (3,761 +/- 193 mm-2) than at total lung capacity (3,142 +/- 118 mm-2) and correlated with sarcomere length [l; r = 0.628, Jv(c,f) = 876l + 1,156, P less than 0.01; n = 18]. We conclude that the diaphragm is unusual in that the apparent in situ minimal sarcomere length is greater than 2.0 microns.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
The relationship between capillarity and oxidative capacity in the soleus muscle of rats and guinea pigs injected with triiodothyronine (T3) or with saline for up to 4 weeks was studied. The rats' soleus weight and FCSA were not affected by T3, but the guinea pigs that received T3 had smaller muscle weight and FCSA than the controls. The activities of cytochrome c oxidase and citrate synthase were significantly (41 and 65%) higher in the T3 than in the control rats. T3 administration did not affect the activities of these enzymes in the soleus of the guinea pigs. Capillary density (CD) was higher in T3 rats (892 +/- 80 vs 622 +/- 54 caps/mm2), and in T3 guinea pigs (1219 +/- 95 vs 739 +/- 142 caps/mm2). The higher CD in T3 rats was due to growth of new microvessels, while in the T3 guinea pigs it was due to a reduction in FCSA. Mean and maximal diffusion distances evaluated by the closest individual method were reduced by 2.02 and 3.37 microns in rats, and by 3.73 and 6.16 microns in guinea pigs. The magnitude of the reduction in diffusion distances brought about by the increased capillary density was partially offset by a concomitant change in the capillary arrangement from an ordered (hexagonal), towards a random distribution. These results seem to indicate that skeletal muscle capillarity is not necessarily determined by the oxidative capacity of the fibers.  相似文献   

4.
The anatomic size of the capillary-to-fiber (C/F) interface plays an important role in O(2) flux from blood to tissue by determining the surface area available for diffusion and is maintained in relative proportion to fiber mitochondrial volume across a wide range of muscle aerobic capacity. In the present study, we examined an estimate of the anatomic size of the C/F interface [the quotient of the individual C/F ratio and fiber perimeter, C/F perimeter exchange (CFPE) index] and fiber oxidative capacity in different skeletal muscles, or muscle regions, to test the hypothesis that capillarization would be maintained in relative excess of reduced fiber oxidative capacity in aged muscles. The right gastrocnemius, plantaris, and soleus muscles from young adult (8 mo old) and late middle-aged (28-30 mo old) Fischer 344 x Brown Norway F1 hybrid rats were excised for evaluation of flux through electron transport chain complexes I-III and/or morphometric estimation of capillarization. Muscle mass was lower in the gastrocnemius muscles of the older animals (2,076 +/- 32 vs. 1,825 +/- 47 mg in young adult vs. late middle-aged, respectively; mean +/- SE) but not the plantaris or soleus muscles. Fibers were smaller in the white region of gastrocnemius muscles but larger in the red region of gastrocnemius muscles of the older animals. There was no difference in the number of capillaries around a fiber, the individual C/F ratio, or the CFPE index between groups for any muscle/region, whereas flux through complexes I-III was reduced by 29-43% in late middle-aged animals. Thus the greater quotient of indexes of anatomic capillarity (individual C/F ratio or CFPE index) and fiber oxidative capacity in soleus and the white region of gastrocnemius muscles, but not in the red region of gastrocnemius muscles of the older animals, shows that anatomic capillarity is maintained in relative excess of oxidative capacity in some muscle regions in late middle-aged rats.  相似文献   

5.
Capillary orientation (anisotropy) was compared in hindlimb muscles of mammals of different size and/or different aerobic capacity (dog, goat, pony, and calf). All muscles were fixed by vascular perfusion at sarcomere lengths ranging from 1.5 to 2.7 micron. The ratios of capillary counts per fiber cross-sectional area on two sets of sections (0 and 90 degrees) to the muscle fiber axis were used to estimate capillary anisotropy and the coefficient c(K,0) relating 1) capillary counts on transverse sections (a commonly used parameter to assess muscle capillarity) and 2) capillary length per volume of fiber (i.e., capillary length density). Capillary orientation parallel to the muscle fiber axis decreased substantially with muscle fiber shortening. In muscles fixed at sarcomere lengths of 2.69 microns (dog vastus intermedius) and 1.52 microns (dog gastrocnemius), capillary tortuosity and branching added 7 and 64%, respectively, to capillary length density. The data obtained in this study are highly consistent with the previously demonstrated relationship between capillary anisotropy and sarcomere length in extended vs. contracted rat muscles, by use of the same method. Capillary anisotropy in mammalian locomotory muscles is curvilinearly related to sarcomere length. No systematic difference was found in capillary tortuosity with either body size, athletic ability, or aerobic capacity. Capillary tortuosity is a consequence of fiber shortening rather than an indicator of the O2 requirements of the tissue.  相似文献   

6.
The objective was to examine whether muscle structural capacity for O2 flux (i.e., capillary-to-fiber surface ratio) relative to fiber mitochondrial volume deteriorates with the muscle atrophy of aging in predominantly slow- (soleus, S) and fast-twitch (extensor digitorum longus, EDL) muscles of old (24 mo) and very old (35 mo) F344BN rats compared with adult (12 mo old). Wet muscle mass decreased 29% (196 +/- 4 to 139 +/- 5 mg) in S and 22% (192 +/- 3 to 150 +/- 3 mg) in EDL between 12 and 35 mo of age, without decline in body mass. Capillary density increased 65% (1,387 +/- 54 to 2,291 +/- 238 mm(-2)) in S and 130% (964 +/- 95 to 2,216 +/- 311 mm(-2)) in EDL, because of the muscle fiber atrophy, whereas capillary per fiber number remained unchanged. Altered capillary geometry, i.e., lesser contribution of tortuosity and branching to capillary length, was found in S at 35 compared with 12 and 24 mo, and not in EDL. Accounting for capillary geometry revealed 55% (1,776 +/- 78 to 2,750 +/- 271 mm(-2)) and 113% (1,194 +/- 112 to 2,540 +/- 343 mm(-2)) increases in capillary length-to-fiber volume ratio between 12 and 35 mo of age in S and EDL, respectively. Fiber mitochondrial volume density was unchanged over the same period, causing mitochondrial volume per micrometer fiber length to decrease in proportion to the fiber atrophy in both muscles. As a result of the smaller fiber mitochondrial volume in the face of the unchanged capillary-to-fiber number ratio, capillary-to-fiber surface ratio relative to fiber mitochondrial volume not only did not deteriorate, but in fact increased twofold in both muscles between 12 and 35 mo of age, independent of their different fiber type.  相似文献   

7.
The relationship between exercise-induced focal muscle fiber degeneration and changes in capillary morphology was investigated in male Wistar rats. Untrained animals ran on a treadmill for 1 h at submaximal intensity and were killed 0, 6, or 24 h after running. Nonexercised rats served as controls. In situ perfused soleus muscles were prepared for electron microscopy. Micrographed cross sections were quantitatively analyzed for parameters indicative of capillary blood flow or transcapillary exchange. Capillary lumina were ovally rather than circularly shaped, and no indications for obstruction of blood flow at the capillary level were found. Endothelial cells and their organelles had a normal appearance in all groups. However, immediately after exercise, capillaries showed a decreased thickness of their endothelium and basal membrane, probably caused by dehydration. Six hours after exercise, muscle fibers were swollen (28% increase in cross-sectional area), resulting in a slightly increased diffusion distance. This fiber swelling was not associated with an increase in muscle water content, a finding for which no explanation could be found. Twenty-four hours after the animals ran, capillaries located near degenerated muscle fibers had an increased cross-sectional luminal area and an increased luminal circumference. This effect decreased gradually with increasing distance from the degenerated fiber area. The present morphometric results do not support the hypothesis that changes in capillary morphology primarily contribute to exercise-induced focal muscle fiber degeneration.  相似文献   

8.
The effects of changes in oxygen supply and oxygen demands on fiber cross-sectional areas, capillary densities and capillary to fiber ratios were determined in three skeletal muscles of rat. The muscles examined were the vastus lateralis, soleus, and diaphragm. Reduced oxygen supply was produced by subjecting rats to ambient hypoxia, and increased oxygen demands were produced by subjecting rats to low ambient temperatures or treatment with thyroxin. Capillaries were visualized by injecting fluorescent dyes into the circulation. Muscles were quick frozen at resting lengths to preserve normal fiber geometry and were subsequently sectioned on a cryostat. All of the muscles sampled from animals in the experimental groups had elevated capillary densities. However, capillary to fiber ratios were not increased significantly in any muscle, for any experimental condition. Thus, all of the observed differences in capillarity were due to changes in the intrinsic rate of muscle fiber growth. Further, the relations of capillary density and capillary to fiber ratio to fiber area were the same as those obtained during normal maturation, suggesting that capillary growth is closely linked to the intrinsic rate of fiber growth.  相似文献   

9.
The aim of this study was to determine whether capillarity in the denervated and reinnervated rat extensor digitorum longus muscle (EDL) is scaled by muscle fiber oxidative potential. We visualized capillaries adjacent to a metabolically defined fiber type and estimated capillarity of fibers with very high oxidative potential (O) vs fibers with very low oxidative potential (G). Capillaries and muscle fiber types were shown by a combined triple immunofluorescent technique and the histochemical method for NADH-tetrazolium reductase. Stacks of images were captured by a confocal microscope. Applying the Ellipse program, fibers were outlined, and the diameter, perimeter, cross-sectional area, length, surface area, and volume within the stack were calculated for both fiber types. Using the Tracer plug-in module, capillaries were traced within the three-dimensional (3D) volume, the length of capillaries adjacent to individual muscle fibers was measured, and the capillary length per fiber length (Lcap/Lfib), surface area (Lcap/Sfib), and volume (Lcap/Vfib) were calculated. Furthermore, capillaries and fibers of both types were visualized in 3D. In all experimental groups, O and G fibers significantly differed in girth, Lcap/Sfib, and Lcap/Vfib, but not in Lcap/Lfib. We conclude that capillarity in the EDL is scaled by muscle fiber size and not by muscle fiber oxidative potential. (J Histochem Cytochem 57:437–447, 2009)  相似文献   

10.
Twenty 4-week-old Wistar rats exercised voluntarily in running wheels each day for 45 days. Fibre type composition, fibre cross-sectional area and the number of capillaries around a fibre of the slow-twitch soleus and fast-twitch plantaris muscles were examined and compared with animals which had no access to running wheels. The exercise group had a higher percentage of fast-twitch oxidative glycolytic (FOG) fibres and a lower percentage of fast-twitch glycolytic (FG) fibres in the deep portion of the plantaris muscle. The area of FOG fibres in the surface portion of the plantaris muscle was also greater in the exercise group. In the exercised animals, there was a positive relationship between the running distance and the area of FOG fibres in both the deep and surface portions of the plantaris muscle. In addition, the running distance correlated positively with the percentage of FOG fibres and negatively with that of FG fibres in the deep portion of the plantaris muscle. There were no relationships between the running distance and fibre type composition, or fibre area and capillary supply in the soleus muscle. These results suggested that the increase in the percentage and area of FOG fibres in the fast-twitch muscle was closely related to voluntary running.  相似文献   

11.
Tibialis anterior muscle biopsies from moderately active men and women (21-30 yr; n = 30) were examined to determine potential gender differences in capillarization. The fiber type proportions [type I (T1) approximately 73%] were unaffected by gender. The men (M) had significantly (P < 0.001) larger fibers than the women (W), with a greater gender effect for type II (T2) fibers (P < 0.001). The M and W had similar capillary densities (CD approximately 390 capillaries/mm2), but the capillaries-to-fiber ratio (C/F) was higher in the M (M = 2.20 +/- 0.35, W = 1.66 +/- 0.32; P < 0.01). Capillary contacts (CC) were higher in T2 than T1 for the M (P < 0.01), but not W, and M had greater CC (P < 0.001). Both fiber area per capillary (FA/C) and fiber perimeter per capillary (FP/C) indicated that T1 fibers had greater capillarization than T2 fibers (P < 0.001). There were no gender differences in T1 FA/C and T2 FA/C or T1 FP/C, but a gender difference existed for T2 FP/C (M = 60.5 +/- 10.9, W = 70.6 +/- 13.4; P < 0.01). The gender difference for C/F could be explained by fiber size; however, the physiological implications of the difference in T2 FP/C remains to be determined. In conclusion, despite gender differences for fiber size, overall, capillarization was similar between the men and women.  相似文献   

12.
Summary In European woodmice the amount and intensity of daily activity was compared to oxygen uptake and to the potential for oxidative metabolism of heart and skeletal muscle. One group of animals was inactivated by exposition to light during night time; another group of animals was trained by enforced running on a treadmill. The oxidative potential of the muscle tissue was assessed by morphometry of capillaries and mitochondria. A novel sampling technique was used which allowed us to obtain morphological data related to single muscles, to muscle groups, and finally to whole body muscle mass.Reducing the spontaneous activity by ten fold had no effect on oxygen uptake nor on capillaries or mitochondria in locomotory muscles. Mitochondrial volume was reduced, however, in heart and diaphragm. Enforced running increased the weight specific maximal oxygen uptake significantly. It also increased the mitochondrial volume in heart and diaphragm as well as in M. tibialis anterior. Capillary densities were neither affected by training nor by inactivation. A significant correlation was found between the capillary density and the volume density of mitochondria in all muscles analysed morphometrically. For the whole skeletal muscle mass of a European woodmouse the inner mitochondrial membranes were estimated to cover 30 m2. The oxygen consumption per unit time and per unit volume of muscle mitochondrion was found to be identical in all groups of animals (4.9 ml O2 min–1 cm–3).Symbols S v (im,m) surface area of inner mitochondrial membranes per unit mitochondrial volume - V v (mt, f) volume density of mitochondria (mitochondrial volume per fiber volume) - V (mt) total mitochondrial volume - V (f) muscle volume - N A (c, f) capillary density - (f) mean fiber cross-sectional area  相似文献   

13.
Skeletal muscle blood flow is reduced and O(2) extraction is increased at rest in chronic heart failure (CHF). Knowledge of red blood cell (RBC) flow distribution within the capillary network is necessary for modeling O(2) delivery and exchange in this disease. Intravital microscopy techniques were used to study the in vivo spinotrapezius muscle microcirculation in rats with CHF 7 wk after myocardial infarction and in sham-operated controls (sham). A decrease in mean muscle fiber width from 51.3 +/- 1.9 microm in sham to 42.6 +/- 1.4 microm in CHF rats (P < 0.01) resulted in an increased lineal density of capillaries in CHF rats (P < 0.05). CHF reduced (P < 0.05) the percentage of capillaries supporting continuous RBC flow from 87 +/- 5 to 66 +/- 5%, such that the lineal density of capillaries supporting continuous RBC flow remained unchanged. The percentage of capillaries supporting intermittent RBC flow was increased in CHF rats (8 and 27% in sham and CHF, respectively, P < 0.01); however, these capillaries contributed only 2.3 and 3.3% of the total RBC flux in sham and CHF rats, respectively. In continuously RBC-perfused capillaries, RBC velocity (252 +/- 20 and 144 +/- 9 microm/s in sham and CHF, respectively, P < 0.001) and flux (21.4 +/- 2.4 and 9.4 +/- 1.1 cells/s in sham and CHF, respectively, P < 0.01) were markedly reduced in CHF compared with sham rats. Capillary "tube" hematocrit remained unchanged (0.22 +/- 0.02 and 0.19 +/- 0.02 in sham and CHF, respectively, P > 0.05). We conclude that CHF causes spinotrapezius fiber atrophy and reduces the number of capillaries supporting continuous RBC flow per fiber. Within these capillaries supporting continuous RBC flow, RBC velocity and flux are reduced 45-55%. This decreases the potential for O(2) delivery but enhances fractional O(2) extraction by elevating RBC capillary residence time. The unchanged capillary tube hematocrit suggests that any alterations in muscle O(2) diffusing properties in CHF are mediated distal to the RBC.  相似文献   

14.
Muscle weakness and effort intolerance are common in maintenance hemodialysis (MHD) patients. This study characterized morphometric, histochemical, and biochemical properties of limb muscle in MHD patients compared with controls (CTL) with similar age, gender, and ethnicity. Vastus lateralis muscle biopsies were obtained from 60 MHD patients, 1 day after dialysis, and from 21 CTL. Muscle fiber types and capillaries were identified immunohistochemically. Individual muscle fiber cross-sectional areas (CSA) were quantified. Individual fiber oxidative capacities were determined (microdensitometric assay) to measure succinate dehydrogenase (SDH) activity. Mean CSAs of type I, IIA, and IIX fibers were 33, 26, and 28% larger in MHD patients compared with CTL. SDH activities for type I, IIA, and IIX fibers were reduced by 29, 40, and 47%, respectively, in MHD. Capillary to fiber ratio was increased by 11% in MHD. The number of capillaries surrounding individual fiber types were also increased (type I: 9%; IIA: 10%; IIX: 23%) in MHD patients. However, capillary density (capillaries per unit muscle fiber area) was reduced by 34% in MHD patients, compared with CTL. Ultrastuctural analysis revealed swollen mitochondria with dense matrix in MHD patients. These results highlight impaired oxidative capacity and capillarity in MHD patients. This would be expected to impair energy production as well as substrate and oxygen delivery and exchange and contribute to exercise intolerance. The enlarged CSA of muscle fibers may, in part, be accounted for by edema. We speculate that these changes contribute to reduce limb strength in MHD patients by reducing specific force.  相似文献   

15.
Comparisons of soleus and extensor digitorum longus (EDL) muscles from male Sprague-Dawley rats (350-400 g) after 7 days of weightlessness, 7 and 14 days of whole body suspension (WBS), and 7 days of recovery from WBS and from vivarium controls were made. Muscle mass loss of approximately 30% was observed in soleus after 7 and 14 days of WBS. Measurement of slow- and fast-twitch fibers showed significant alterations. Reductions in cross-sectional areas and increases in fiber densities in soleus after spaceflight and WBS were related to previous findings of muscle atrophy during unloading. Capillary density also showed a marked increase with unloading. Seven days of weightlessness were sufficient to effect a 20 and 15% loss in absolute muscle mass in soleus and EDL, respectively. However, the antigravity soleus was more responsive in terms of cross-sectional area reductions. After 7 days of recovery from WBS, with normal ambulatory loading, the parameters studied showed a reversal to control levels. Muscle plasticity, in terms of fiber and capillary responses, indicated differences in responses in the two types of muscles and further amplified that antigravity posture muscles are highly susceptible to unloading. Studies of recovery from spaceflight for both muscle metabolism and microvascular modifications are further justified.  相似文献   

16.
The purposes of this study were 1) to determine satellite cell mitotic activity and myofiber nuclear density in the soleus muscle of aged rats and 2) to examine the effect of exercise training on these same parameters. Twenty-four-month-old specific pathogen-free female Fischer 344 rats were assigned to either a training or a control group. The trained group performed 10 wk of progressive treadmill running that resulted in a significant increase (P less than or equal to 0.05) in vastus lateralis muscle malate dehydrogenase activity compared with control rats. Training produced a doubling of soleus muscle satellite cell mitotic activity (trained 1.28 +/- 0.33, control 0.52 +/- 0.13 thymidine-labeled satellite cells per 1,000 nuclei; P less than or equal to 0.05). Training also resulted in a doubling in the number of damaged fibers in the soleus muscle (P less than or equal to 0.05). Mean myofiber nuclear density was unaltered by exercise training but varied as a function of soleus muscle fiber size. Nuclear density of a subpopulation of small fibers (cross-sectional area less than one standard deviation below the mean cross-sectional area of all fibers examined) was significantly higher (P less than or equal to 0.05) than in other fibers in the soleus muscle. A high nuclear density and small size suggest that these fibers were immature. In addition, the soleus muscle from trained rats had significantly more (P less than or equal to 0.05) small fibers with high nuclear density than muscle from control animals.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
The effects of aging on muscle microvascular structure and function may play a key role in performance deficits and impairment of O2 exchange within skeletal muscle of senescent individuals. To determine the effects of aging on capillary geometry, red blood cell (RBC) hemodynamics, and hematocrit in a muscle of mixed fiber type, spinotrapezius muscles from Fischer 344 x Brown Norway hybrid rats aged 6-8 mo [young (Y); body mass 421 +/- 10 g, n = 6] and 26-28 mo [old (O); 561 +/- 12 g, n = 6] were observed by high-resolution transmission light microscopy under resting conditions. The percentage of RBC-perfused capillaries (Y: 78 +/- 3%; O: 75 +/- 2%) and degree of tortuosity and branching (Y: 13 +/- 2%; O: 13 +/- 2%, additional capillary length) were not different in O vs. Y muscles. Lineal density of RBC-perfused capillaries in O was significantly reduced (Y: 30.7 +/- 1.8, O: 22.8 +/- 3.1 capillaries/mm; P < 0.05). However, RBC-perfused capillaries from O rats (n = 78) exhibited increased RBC velocity (VRBC) (Y: 219 +/- 12, O: 310 +/- 14 microm/s; P < 0.05) and RBC flux (FRBC) (Y: 27 +/- 2, O: 41 +/- 2 RBC/s; P < 0.05) vs. Y rats (n = 66). Thus O2 delivery per unit of muscle was not different between groups (Y: 894 +/- 111, O: 887 +/- 118 RBC. s-1. mm muscle-1). Capillary hematocrit was not different in Y vs. O rats (Y: 26 +/- 1%, O: 28 +/- 1%: P > 0.05). These data indicate that in resting spinotrapezius muscle, aging decreases the lineal density of RBC-perfused capillaries while increasing mean VRBC and FRBC within those capillaries. Whereas muscle conductive O2 delivery and capillary hematocrit were unchanged, elevated VRBC reduces capillary RBC transit time and may impair the diffusive transport of O2 from blood to myocyte particularly under exercise conditions.  相似文献   

18.
Muscle fiber type composition and capillary supply in rat diaphragm were investigated after 14 weeks of endurance training: body weight and muscle fiber area were significantly decreased, the muscle fiber type composition, capillary to fiber ratio and number of capillaries around each fiber type were unchanged, and the capillary density and number of capillaries around each fiber relative to fiber type areas were significantly increased. These small fiber areas and increased capillary supplies in the trained rats would facilitate oxygen transport to all parts of the muscle fiber during exercise. It is concluded that the changes observed in the trained rat diaphragm appear to enhance the capacity for oxidative metabolism.  相似文献   

19.
Muscle structure and performance capacity of Himalayan Sherpas   总被引:5,自引:0,他引:5  
The ultrastructure of the vastus lateralis muscle of Sherpas from Nepal [5 males; age 28 +/- 2.8 (SD) yr, indirect maximal O2 consumption 48.5 +/- 5.4 ml.kg(-1).min(-1)] was assessed and compared with those of sedentary lowlanders and of Caucasian climbers before and after high-altitude exposure. The mean cross-sectional area of the fibers was 3,186 +/- 521 microns2, i.e., similar to those of Caucasian elite high-altitude climbers (3,108 +/- 303 microns2) and a group of climbers after a 6- to 8-wk sojourn at 5,000-8,600 m (3,360 +/- 580 microns2) but significantly (P less than 0.05) smaller than that of unacclimatized climbers (4,170 +/- 710 microns2) and slightly, although not significantly, lower than that of sedentary lowlanders (3,640 +/- 260 microns2). The number of capillaries per square millimeter of muscle cross section was 467 +/- 22, not significantly smaller than those of climbers on return from a Himalayan expedition (538 +/- 89) and elite high-altitude climbers (542 +/- 127) but significantly (P less than 0.05) greater than that of sedentary lowlanders (387 +/- 25). The volume density of mitochondria was 3.96 +/- 0.54%, significantly (P less than 0.05) less than the values found for any other investigated group, including sedentary subjects at sea level (4.74 +/- 0.30%). It is concluded that Sherpas, like acclimatized Caucasian climbers, are characterized by 1) facilitated convective and diffusive muscle O2 flow conditions and 2) a higher maximal O2 consumption-to-mitochondrial volume ratio than lowlanders despite a reduced mitochondrial volume density.  相似文献   

20.
Little is known about the mechanisms responsible for the adaptation and changes in the capillary network of hindlimb unweighting (HU)-induced atrophied skeletal muscle, especially the coupling between functional and structural alterations of intercapillary anastomoses and tortuosity of capillaries. We hypothesized that muscle atrophy by HU leads to the apoptotic regression of the capillaries and intercapillary anastomoses with their functional alteration in hemodynamics. To clarify the three-dimensional architecture of the capillary network, contrast medium-injected rat soleus muscles were visualized clearly using a confocal laser scanning microscope, and sections were stained by terminal deoxynucleotidyltransferase-mediated dUTP nick-end labeling (TUNEL) and with anti-von Willebrand factor. In vivo, the red blood cell velocity of soleus muscle capillaries were determined with a pencil-lens intravital microscope brought into direct contact with the soleus surface. After HU, the total muscle mass, myofibril protein mass, and slow-type myosin heavy chain content were significantly lower. The number of capillaries paralleling muscle fiber and red blood cells velocity were higher in atrophied soleus. However, the mean capillary volume and capillary luminal diameter were significantly smaller after HU than in the age-matched control group. In addition, we found that the number of anastomoses and the tortuosity were significantly lower and TUNEL-positive endothelial cells were observed in atrophied soleus muscles, especially the anastomoses and/or tortuous capillaries. These results indicate that muscle atrophy by HU generates structural alterations in the capillary network, and apoptosis appears to occur in the endothelial cell of the muscle capillaries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号