首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have identified four mutations in each of the breast cancer-susceptibility genes, BRCA1 and BRCA2, in French Canadian breast cancer and breast/ovarian cancer families from Quebec. To identify founder effects, we examined independently ascertained French Canadian cancer families for the distribution of these eight mutations. Mutations were found in 41 of 97 families. Six of eight mutations were observed at least twice. The BRCA1 C4446T mutation was the most common mutation found, followed by the BRCA2 8765delAG mutation. Together, these mutations were found in 28 of 41 families identified to have a mutation. The odds of detection of any of the four BRCA1 mutations was 18.7x greater if one or more cases of ovarian cancer were also present in the family. The odds of detection of any of the four BRCA2 mutations was 5.3x greater if there were at least five cases of breast cancer in the family. Interestingly, the presence of a breast cancer case <36 years of age was strongly predictive of the presence of any of the eight mutations screened. Carriers of the same mutation, from different families, shared similar haplotypes, indicating that the mutant alleles were likely to be identical by descent for a mutation in the founder population. The identification of common BRCA1 and BRCA2 mutations will facilitate carrier detection in French Canadian breast cancer and breast/ovarian cancer families.  相似文献   

2.
To define the prevalence and relative contributions of BRCA1 and BRCA2 mutations among African American families with breast cancer, we analyzed 28 DNA samples from patients identified through two oncology clinics. The entire coding regions of BRCA1 and BRCA2 were screened by protein truncation test, heteroduplex analysis, or single-stranded conformation polymorphism followed by DNA sequencing of variant bands. Deleterious protein-truncating BRCA1 and BRCA2 mutations were identified in five patients or 18% of the entire cohort. Only 8% (1 of 13) of women with a family history of breast cancer, but no ovarian cancer, had mutations. The mutation rates were higher for women from families with a history of breast cancer and at least one ovarian cancer (three of six, 50%). One woman with a family history of undocumented cancers was also found to carry a deleterious mutation in BRCA2. The spectrum of mutations was unique in that one novel BRCA1 mutation (1625del5) and three novel BRCA2 mutations (1536del4, 6696delTC, and 7795delCT) were identified. No recurrent mutations were identified in this cohort, although one BRCA2 (2816insA) mutation had been previously reported. In addition, two BRCA1 and four BRCA2 missense mutations of unknown significance were identified, one of which was novel. Taken together with our previous report on recurrent mutations seen in unrelated families, we conclude that African Americans have a unique mutation spectrum in BRCA1 and BRCA2 genes, but recurrent mutations are likely to be more widely dispersed and therefore not readily identifiable in this population.  相似文献   

3.
We searched for criteria that could indicate breast cancer families with a high prior probability of being caused by the breast/ovarian cancer susceptibility locus BRCA1 on chromosome 17. To this end, we performed a linkage study with 59 consecutively collected Dutch breast cancer families, including 16 with at least one case of ovarian cancer. We used an intake cut-off of at least three first-degree relatives with breast and/or ovarian cancer at any age. Significant evidence for linkage was found only among the 13 breast cancer families with a mean age at diagnosis of less than 45 years. An unexpectedly low proportion of the breast-ovarian cancer families were estimated to be linked to BRCA1, which could be due to a founder effect in the Dutch population. Given the expected logistical problems in clinical management now that BRCA1 has been identified, we propose an interim period in which only families with a strong positive family history for early onset breast and/or ovarian cancer will be offered BRCA1 mutation testing. More recent work has indicated that RUL09 is probably due to BRCA2 (multipoint lod score of 1.17), while in families RUL47 and RUL49 a frameshift mutation in BRCA1 has been evidenced. Each of these two latter families contain an early-onset sporadic breast cancer patient, explaining their negative lod scores with 17q-markers.  相似文献   

4.
In order to identify the spectrum of BRCA2 mutations in African Americans, breast or ovarian cancer patients from 74 independent families at elevated risk of germline mutations were investigated. The entire coding regions and flanking introns of BRCA2 were screened for germline mutations by single-stranded conformation polymorphism, protein truncation test, or denaturing high performance liquid chromatography followed by DNA sequencing. Eight distinct protein-truncating mutations were detected in six female patients (average age of onset of breast cancer: 37.6 years) and two male patients, but not in 163 unrelated disease-free controls. Two (1993delAA, 8643delAT) of the eight pathogenic mutations observed in African Americans have not been previously described. The other six pathogenic mutations (1882delT, 1991delATAA, 2001delTTAT, 2816insA, 4075delGT, 4088delA) have been detected in Caucasians; only the 2816insA mutation has been reported previously in African Americans. There were no significant differences in the frequency of deleterious BRCA2 mutations in African Americans compared with Caucasians. Six rare variations, not previously reported, were identified in five breast cancer patients but not in 163 disease-free control subjects. Of 11 different polymorphisms identified in high-risk African-American breast cancer patients, four may be unique to African Americans. An intron 10 polymorphism observed in patients was not detected in 163 disease-free African-American control subjects; this difference is statistically significant. Since many different pathogenic mutations and variants of unknown significance are observed in African Americans, BRCA2 genetic testing in high-risk African-American families must include the entire coding and flanking non-coding regions of the gene.  相似文献   

5.
A low proportion of BRCA2 mutations in Finnish breast cancer families.   总被引:4,自引:1,他引:3  
One hundred breast cancer families were identified at the Helsinki University Central Hospital in Finland and were screened for germ-line mutations in the coding regions and splice boundaries of the BRCA2 gene. Eight families (8%) were found to carry five different mutations, all of which are predicted to prematurely truncate the protein product. These BRCA2 families have early-onset breast cancer (mean and median age = 49 years), with four of the eight families including ovarian cancer but with no families including male breast cancer. A wide spectrum of other cancers also is seen in these families. Three mutations were identified in more than one family, and haplotype analysis in the families suggested a common founder for each recurrent mutation. One recurrent mutation, 999del5, previously has been noted as a common mutation in Iceland. The relationship between the Icelandic 999del5 mutation and the Finnish 999del5 mutation was explored by comparison of families from both countries. A common haplotype covering a minimal region intragenic to the BRCA2 gene was shared between the Icelandic and the Finnish mutation carriers.  相似文献   

6.
In order to evaluate the role of inherited BRCA2 mutations in American families--particularly the appearance in America of European founder mutations--the BRCA2 coding sequence, 5' UTR, and 3' UTR were screened in 22 Caucasian American kindreds with four or more cases of breast or ovarian cancer. Six mutations were found that cause a premature-termination codon; four of them have been reported elsewhere, and two are novel. In the four families with previously seen mutations, the distinct lineages at high risk of cancer were of Dutch, German, Irish, and Ashkenazi Jewish ancestry; mutations in Europe reflect these ancestries. The families with novel mutations were Puerto Rican Hispanic (exon 9 deletion 995delCAAAT) and Ashkenazi Jewish (exon 11 deletion 6425delTT). Among female BRCA2-mutation carriers, risks of breast cancer were 32% by age 50 years, 67% by age 70 years, and 80% by age 90 years, yielding a lifetime risk similar to that for BRCA1 but an older distribution of ages at onset. BRCA2 families also included multiple cases of cancers of the male breast (six cases), ovary (three cases), fallopian tube (two cases), pancreas (three cases), bladder (two cases), and prostate (two cases). Among 17 Ashkenazi Jewish families with four or more breast or ovarian cancers, 9 families (including 3 with ovarian cancer and 1 with male breast cancer) carried none of the three ancient mutations in BRCA1 or BRCA2. To date, both BRCA2 and BRCA1 have been screened by SSCA, supplemented by the protein-truncation test, in 48 families with four or more breast or ovarian cancers. Mutations have been detected in BRCA1 in 33 families, in BRCA2 in 6 families, and in neither gene in 9 families, suggesting both the probable cryptic nature of some mutations and the likelihood of at least one other BRCA gene.  相似文献   

7.
Nine different germ-line mutations in the BRCA1 breast and ovarian cancer susceptibility gene were identified in 15 of 47 kindreds from southern Sweden, by use of SSCP and heteroduplex analysis of all exons and flanking intron region and by a protein-truncation test for exon 11, followed by direct sequencing. All but one of the mutations are predicted to give rise to premature translation termination and include seven frameshift insertions or deletions, a nonsense mutation, and a splice acceptor site mutation. The remaining mutation is a missense mutation (Cys61Gly) in the zinc-binding motif. Four novel Swedish founding mutations were identified: the nucleotide 2595 deletion A was found in five families, the C 1806 T nonsense mutation in three families, the 3166 insertion TGAGA in three families, and the nucleotide 1201 deletion 11 in two families. Analysis of the intragenic polymorphism D17S855 supports common origins of the mutations. Eleven of the 15 kindreds manifesting BRCA1 mutations were breast-ovarian cancer families, several of them with a predominant ovarian cancer phenotype. The set of 32 families in which no BRCA1 alterations were detected included 1 breast-ovarian cancer kindred manifesting clear linkage to the BRCA1 region and loss of the wild-type chromosome in associated tumors. Other tumor types found in BRCA1 mutation/haplotype carriers included prostatic, pancreas, skin, and lung cancer, a malignant melanoma, an oligodendroglioma, and a carcinosarcoma. In all, 12 of 16 kindreds manifesting BRCA1 mutation or linkage contained ovarian cancer, as compared with only 6 of the remaining 31 families (P<.001). The present study confirms the involvement of BRCA1 in disease predisposition for a subset of hereditary breast cancer families often characterized by ovarian cancers.  相似文献   

8.
Genetic heterogeneity in hereditary breast cancer: role of BRCA1 and BRCA2.   总被引:7,自引:4,他引:3  
The common hereditary forms of breast cancer have been largely attributed to the inheritance of mutations in the BRCA1 or BRCA2 genes. However, it is not yet clear what proportion of hereditary breast cancer is explained by BRCA1 and BRCA2 or by some other unidentified susceptibility gene(s). We describe the proportion of hereditary breast cancer explained by BRCA1 or BRCA2 in a sample of North American hereditary breast cancers and assess the evidence for additional susceptibility genes that may confer hereditary breast or ovarian cancer risk. Twenty-three families were identified through two high-risk breast cancer research programs. Genetic analysis was undertaken to establish linkage between the breast or ovarian cancer cases and markers on chromosomes 17q (BRCA1) and 13q (BRCA2). Mutation analysis in the BRCA1 and BRCA2 genes was also undertaken in all families. The pattern of hereditary cancer in 14 (61%) of the 23 families studied was attributed to BRCA1 by a combination of linkage and mutation analyses. No families were attributed to BRCA2. Five families (22%) provided evidence against linkage to both BRCA1 and BRCA2. No BRCA1 or BRCA2 mutations were detected in these five families. The BRCA1 or BRCA2 status of four families (17%) could not be determined. BRCA1 and BRCA2 probably explain the majority of hereditary breast cancer that exists in the North American population. However, one or more additional genes may yet be found that explain some proportion of hereditary breast cancer.  相似文献   

9.
Mutations in the BRCA1 and BRCA2 genes profoundly increase the risk of developing breast and/or ovarian cancer among women. To explore the contribution of BRCA1 and BRCA2 mutations in the development of hereditary breast cancer among Indian women, we carried out mutation analysis of the BRCA1 and BRCA2 genes in 61 breast or ovarian cancer patients from south India with a positive family history of breast and/or ovarian cancer. Mutation analysis was carried out using conformation-sensitive gel electrophoresis (CSGE) followed by sequencing. Mutations were identified in 17 patients (28.0%); 15 (24.6%) had BRCA1 mutations and two (3.28%) had BRCA2 mutations. While no specific association between BRCA1 or BRCA2 mutations with cancer type was seen, mutations were more often seen in families with ovarian cancer. While 40% (4/10) and 30.8% (4/12) of families with ovarian or breast and ovarian cancer had mutations, only 23.1% (9/39) of families with breast cancer carried mutations in the BRCA1 and BRCA2 genes. In addition, while BRCA1 mutations were found in all age groups, BRCA2 mutations were found only in the age group of ≤40 years. Of the BRCA1 mutations, there were three novel mutations (295delCA; 4213T→A; 5267T→G) and three mutations that have been reported earlier. Interestingly, 185delAG, a BRCA1 mutation which occurs at a very high frequency in Ashkenazi Jews, was found at a frequency of 16.4% (10/61). There was one novel mutation (4866insT) and one reported mutation in BRCA2. Thus, our study emphasizes the importance of mutation screening in familial breast and/or ovarian cancers, and the potential implications of these findings in genetic counselling and preventive therapy.  相似文献   

10.
We have undertaken a hospital-based study, to identify possible BRCA1 and BRCA2 founder mutations in the Polish population. The study group consisted of 66 Polish families with cancer who have at least three related females affected with breast or ovarian cancer and who had cancer diagnosed, in at least one of the three affected females, at age <50 years. A total of 26 families had both breast and ovarian cancers, 4 families had ovarian cancers only, and 36 families had breast cancers only. Genomic DNA was prepared from the peripheral blood leukocytes of at least one affected woman from each family. The entire coding region of BRCA1 and BRCA2 was screened for the presence of germline mutations, by use of SSCP followed by direct sequencing of observed variants. Mutations were found in 35 (53%) of the 66 families studied. All but one of the mutations were detected within the BRCA1 gene. BRCA1 abnormalities were identified in all four families with ovarian cancer only, in 67% of 27 families with both breast and ovarian cancer, and in 34% of 35 families with breast cancer only. The single family with a BRCA2 mutation had the breast-ovarian cancer syndrome. Seven distinct mutations were identified; five of these occurred in two or more families. In total, recurrent mutations were found in 33 (94%) of the 35 families with detected mutations. Three BRCA1 abnormalities-5382insC, C61G, and 4153delA-accounted for 51%, 20%, and 11% of the identified mutations, respectively.  相似文献   

11.
Germ-line mutations of the BRCA1 gene are responsible for a substantial proportion of families with multiple cases of early-onset breast and/or ovarian cancer. Since the isolation of BRCA1 last year, >65 distinct mutations scattered throughout the coding region have been detected, making analysis of the gene time consuming and technically challenging. We have developed a multiplex heteroduplex analysis that is designed to analyze one-quarter of the coding sequence in a single-step screening procedure and that will detect approximately 50% of all BRCA1 mutations so far reported in breast/ovarian cancer families. We have used this technique to analyze BRCA1 in 162 families with a history of breast and/or ovarian cancer and identified 12 distinct mutations in 35 families.  相似文献   

12.
We have analyzed 61 German breast and breast/ovarian cancer families for BRCA1 mutations using single-strand conformation polymorphism analysis (SSCP) followed by sequencing. Forty-seven of the families had at least three cases (at least two under 60 years) and 14 families had only two cases of breast/ovarian cancer (at least one under 50 years). Twenty-eight families were breast/ovarian and 33 were breast cancer-only families. Eighteen mutations in BRCA1 were detected in 11/28 breast/ovarian cancer families and 7/33 breast cancer families and none in the families with only two cases. We identified 17 truncation mutations (8 frameshift, 7 nonsense and 2 splice variants) and one missense mutation. Seven of these are novel and two, the 5382insC and 5622C→T mutations, occurred in two apparently unrelated families. The genotype of the two families with the 5382insC mutation is compatible with the rare haplotype segregating with the 5382insC mutation in different populations, further supporting its European origin. One unclassified missense alteration, R841W, was found in one family but did not segregate with the disease, suggesting that it is more likely a polymorphism. We also report and discuss the sequence of several new unclassified single-nucleotide changes first identified by SSCP. Of the 18 mutations, 13 occurred in the 3′ third of the gene (end of exon 11–24) and ovarian cancers were found in eight of these families. Received: 5 February 1998 / Accepted: 7 April 1998  相似文献   

13.
An account of familial aggregation in breast/ovarian cancer has become possible with the identification of BRCA1 germ-line mutations. We evaluated, for 249 individuals registered with the Institut Curie in Paris, the prior probability that an individual carried a mutation that predisposes to these diseases. We chose 160 women for BRCA1 analysis: 103 with a family history of breast cancer and 57 with a family history of breast-ovarian cancer. To detect small mutations, we generated and analyzed 35 overlapping genomic PCR products that cover the coding portion of the gene, by using denaturing gradient gel electrophoresis. Thirty-eight truncating mutations (32 frameshifts, 4 nonsense mutations, and 2 splice variants) were observed in 15% of women with a family history of breast cancer only and in 40% of those with a history of breast-ovarian cancer. Twelve of 25 distinct truncating mutations identified were novel and unique. Most BRCA1 mutations that had been reported more than five times in the Breast Cancer Information Core were present in our series. One mutation (5149del4) observed in two apparently unrelated families most likely originates from a common ancestor. The position of truncating mutations did not significantly affect the ratio of the risk of breast cancer to that of ovarian cancer. In addition, 15 DNA variants (14 missense mutations and 1 neutral mutation) were identified, 9 of which were novel. Indirect evidence suggests that seven of these mutations are deleterious.  相似文献   

14.
15.
Several BRCA1 mutations have now been found to occur in geographically diverse breast and ovarian cancer families. To investigate mutation origin and mutation-specific phenotypes due to BRCA1, we constructed a haplotype of nine polymorphic markers within or immediately flanking the BRCA1 locus in a set of 61 breast/ovarian cancer families selected for having one of six recurrent BRCA1 mutations. Tests of both mutations and family-specific differences in age at diagnosis were not significant. A comparison of the six mutations in the relative proportions of cases of breast and ovarian cancer was suggestive of an effect (P = .069), with 57% of women presumed affected because of the 1294 del 40 BRCA1 mutation having ovarian cancer, compared with 14% of affected women with the splice-site mutation in intron 5 of BRCA1. For the BRCA1 mutations studied here, the individual mutations are estimated to have arisen 9-170 generations ago. In general, a high degree of haplotype conservation across the region was observed, with haplotype differences most often due to mutations in the short-tandem-repeat markers, although some likely instances of recombination also were observed. For several of the instances, there was evidence for multiple, independent, BRCA1 mutational events.  相似文献   

16.
The mutations 185delAG, 188del11, and 5382insC in the BRCA1 gene and 6174delT in the BRCA2 gene were analyzed in 199 Ashkenazi and 44 non-Ashkenazi Jewish unrelated patients with breast and/or ovarian cancer. Of the Jewish Ashkenazi women with ovarian cancer, 62% (13/21) had one of the target mutations, as did 30% (13/43) of women with breast cancer alone diagnosed before the age 40 years and 10% (15/141) of those with breast cancer diagnosed after the age 40 years. Age at ovarian cancer diagnosis was not associated with carrier status. Of 99 Ashkenazi patients with no family history of breast and/or ovarian cancer, 10% carried one of the mutations; in two of them the mutation was proved to be paternally transmitted. One non-Ashkenazi Jewish ovarian cancer patient from Iraq carried the 185delAG mutation. Individual mutation frequencies among breast cancer Ashkenazi patients were 6.7% for 185delAG, 2.2% for 5382insC, and 4.5% for 6174delT, among ovarian cancer patients; 185delAG and 6174delT were about equally common (33% and 29%, respectively), but no ovarian cancer patient carried the 5382insC. More mutations responsible for inherited breast and ovarian cancer probably remain to be found in this population, since 79% of high-incidence breast cancer families and 35% of high-incidence breast/ovarian cancer families had none of the three known founder mutations.  相似文献   

17.
Germ-line BRCA1 and BRCA2 mutations account for most of familial breast-ovarian cancer. In Ashkenazi Jews, there is a high population frequency (approximately 2%) of three founder mutations: BRCA1 185delAG, BRCA1 5382insC, and BRCA2 6174delT. This study examined the frequency of these mutations in a series of Ashkenazi women with ovarian cancer unselected for family history, compared with the frequency of these mutations in families ascertained on the basis of family history of at least two affected women. Penetrance was compared, both according to the method of family ascertainment (i.e., on the basis of an unselected ovarian cancer proband vs. on the basis of family history) and for the BRCA1 founder mutations compared with the BRCA2 6174delT mutation. There was a high frequency (10/22; [45%]) of germ-line mutations in Ashkenazi women with ovarian cancer, even in those with minimal or no family history (7/18 [39%]). In high-risk Ashkenazi families, a founder mutation was found in 59% (25/42). Families with any case of ovarian cancer were significantly more likely to segregate a founder mutation than were families with site-specific breast cancer. Penetrance was higher in families ascertained on the basis of family history than in families ascertained on the basis of an unselected proband, but this difference was not significant. Penetrance of BRCA1 185delAG and BRCA1 5382insC was significantly higher than penetrance of BRCA2 6174delT (hazard ratio 2.1 [95% CI 1.2-3.8]; two-tailed P = .01). Thus, the high rate of germ-line BRCA1/BRCA2 mutations in Ashkenazi women and families with ovarian cancer is coupled with penetrance that is lower than previously estimated. This has been shown specifically for the BRCA2 6174delT mutation, but, because of ascertainment bias, it also may be true for BRCA1 mutations.  相似文献   

18.
The frequency of genomic rearrangements in BRCA1 was assessed in 42 American families with breast and ovarian cancer who were seeking genetic testing and who were subsequently found to be negative for BRCA1 and BRCA2 coding-region mutations. An affected individual from each family was tested by PCR for the exon 13 duplication (Puget et al. 1999a) and by Southern blot analysis for novel genomic rearrangements. The exon 13 duplication was detected in one family, and four families had other genomic rearrangements. A total of 5 (11. 9%) of the 42 families with breast/ovarian cancer who did not have BRCA1 and BRCA2 coding-region mutations had mutations in BRCA1 that were missed by conformation-sensitive gel electrophoresis or sequencing. Four of five families with BRCA1 genomic rearrangements included at least one individual with both breast and ovarian cancer; therefore, 4 (30.8%) of 13 families with a case of multiple primary breast and ovarian cancer had a genomic rearrangement in BRCA1. Families with genomic rearrangements had prior probabilities of having a BRCA1 mutation, ranging from 33% to 97% (mean 70%) (Couch et al. 1997). In contrast, in families without rearrangements, prior probabilities of having a BRCA1 mutation ranged from 7% to 92% (mean 37%). Thus, the prior probability of detecting a BRCA1 mutation may be a useful predictor when considering the use of Southern blot analysis for families with breast/ovarian cancer who do not have detectable coding-region mutations.  相似文献   

19.
20.
The aim of the study was to optimize the criteria for the BRCA1 and BRCA2 gene testing and to improve oncogenetic counseling in the Stockholm region. Screening for inherited breast cancer genes is laborious and a majority of tested samples turn out to be negative. The frequencies of mutations in the BRCA1 and BRCA2 genes differ across populations. Between 1997 and 2000, 160 families with breast and/or ovarian cancer were counseled and screened for mutations in the two genes. Twenty-five BRCA1 and two BRCA2 disease-causing mutations were found. Various factors associated with the probability of finding a BRCA1 mutation in the families were estimated. Age of onset in different generations and other malignancies were also studied. Families from our region in which both breast and ovarian cancer occur were likely to carry a BRCA1 mutation (34%). In breast-only cancer families, mutations were found only in those with very early onset. All breast- only cancer families with a mutation had at least one case of onset before 36 years of age and a young median age of onset (<43 years). Other malignancies than breast and ovarian cancers did not segregate in the BRCA1 families and surveillance for other malignancies is not needed, in general. Decreasing age of onset with successive generations was common and must be taken into account when surveillance options are considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号