首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Negative costimulatory signals mediated via cell surface molecules such as CTLA-4 and programmed death 1 (PD-1) play a critical role in down-modulating immune responses and maintaining peripheral tolerance. However, their role in alloimmune responses remains unclear. This study examined the role of these inhibitory pathways in regulating CD28-dependent and CD28-independent CD4 and CD8 alloreactive T cells in vivo. CTLA-4 blockade accelerated graft rejection in C57BL/6 wild-type recipients and in a proportion of CD4(-/-) but not CD8(-/-) recipients of BALB/c hearts. The same treatment led to prompt rejection in CD28(-/-) and a smaller proportion of CD4(-/-)CD28(-/-) mice with no effect in CD8(-/-)CD28(-/-) recipients. These results indicate that the CTLA-4:B7 pathway provides a negative signal to alloreactive CD8(+) T cells, particularly in the presence of CD28 costimulation. In contrast, PD-1 blockade led to accelerated rejection of heart allografts only in CD28(-/-) and CD8(-/-)CD28(-/-) recipients. Interestingly, PD-1 ligand (PD-L1) blockade led to accelerated rejection in wild-type mice and in all recipients lacking CD28 costimulation. This effect was accompanied by expansion of IFN-gamma-producing alloreactive T cells and enhanced generation of effector T cells in rejecting allograft recipients. Thus, the PD-1:PD-L1 pathway down-regulates alloreactive CD4 T cells, particularly in the absence of CD28 costimulation. The differential effects of PD-1 vs PD-L1 blockade support the possible existence of a new receptor other than PD-1 for negative signaling through PD-L1. Furthermore, PD-1:PD-L1 pathway can regulate alloimmune responses independent of an intact CD28/CTLA-4:B7 pathway. Harnessing physiological mechanisms that regulate alloimmunity should lead to development of novel strategies to induce durable and reproducible transplantation tolerance.  相似文献   

2.
We investigated the effect of CD137 costimulatory blockade in the development of murine acute and chronic graft-vs-host diseases (GVHD). The administration of anti-CD137 ligand (anti-CD137L) mAb at the time of GVHD induction ameliorated the lethality of acute GVHD, but enhanced IgE and anti-dsDNA IgG autoantibody production in chronic GVHD. The anti-CD137L mAb treatment efficiently inhibited donor CD8(+) T cell expansion and IFN-gamma expression by CD8(+) T cells in both GVHD models and CD8(+) T cell-mediated cytotoxicity against host-alloantigen in acute GVHD. However, a clear inhibition of donor CD4(+) T cell expansion and activation has not been observed. On the contrary, in chronic GVHD, the number of CD4(+) T cells producing IL-4 was enhanced by anti-CD137L mAb treatment. This suggests that the reduction of CD8(+) T cells producing IFN-gamma promotes Th2 cell differentiation and may result in exacerbation of chronic GVHD. Our results highlight the effective inactivation of CD8(+) T cells and the lesser effect on CD4(+) T cell inactivation by CD137 blockade. Intervention of the CD137 costimulatory pathway may be beneficial for some selected diseases in which CD8(+) T cells are major effector or pathogenic cells. Otherwise, a combinatorial approach will be required for intervention of CD4(+) T cell function.  相似文献   

3.
Recent studies indicate important roles for CTLA-4 engagement in T cells, and for TGF-beta production in the immunopathogenesis of murine kalaazar or visceral leishmaniasis, but a functional link between these two pathways in helping intracellular parasite growth is unknown. Here we report that Ag or anti-CD3 activation of splenic CD4+ T cells from visceral leishmaniasis leads to intense CTLA-4-mediated TGF-beta1 production, as assessed either by CTLA-4 blockade or by direct CTLA-4 cross-linkage. Production of TGF-beta1 accounted for the reciprocal regulation of IFN-gamma production by CTLA-4 engagement. Following CD4+ T cell activation, intracellular growth of Leishmania chagasi in cocultured splenic macrophages required both CTLA-4 function and TGF-beta1 secretion. Cross-linkage of CTLA-4 markedly increased L. chagasi replication in cocultures of infected macrophages and activated CD4+ T cells, and parasite growth could be completely blocked with neutralizing anti-TGF-beta1 Ab. Exogenous addition of rTGF-beta1 restored parasite growth in cultures protected from parasitism by CTLA-4 blockade. These results indicate that the negative costimulatory receptor CTLA-4 is critically involved in TGF-beta production and in intracellular parasite replication seen in murine kalaazar.  相似文献   

4.
5.
The balance between pro-inflammatory and regulatory immune responses in determining optimal T cell activation is vital for the successful resolution of microbial infections. This balance is maintained in part by the negative regulators of T cell activation, CTLA-4 and PD-1/PD-L, which dampen effector responses during chronic infections. However, their role in acute infections, such as malaria, remains less clear. In this study, we determined the contribution of CTLA-4 and PD-1/PD-L to the regulation of T cell responses during Plasmodium berghei ANKA (PbA)-induced experimental cerebral malaria (ECM) in susceptible (C57BL/6) and resistant (BALB/c) mice. We found that the expression of CTLA-4 and PD-1 on T cells correlates with the extent of pro-inflammatory responses induced during PbA infection, being higher in C57BL/6 than in BALB/c mice. Thus, ECM develops despite high levels of expression of these inhibitory receptors. However, antibody-mediated blockade of either the CTLA-4 or PD-1/PD-L1, but not the PD-1/PD-L2, pathways during PbA-infection in ECM-resistant BALB/c mice resulted in higher levels of T cell activation, enhanced IFN-γ production, increased intravascular arrest of both parasitised erythrocytes and CD8+ T cells to the brain, and augmented incidence of ECM. Thus, in ECM-resistant BALB/c mice, CTLA-4 and PD-1/PD-L1 represent essential, independent and non-redundant pathways for maintaining T cell homeostasis during a virulent malaria infection. Moreover, neutralisation of IFN-γ or depletion of CD8+ T cells during PbA infection was shown to reverse the pathologic effects of regulatory pathway blockade, highlighting that the aetiology of ECM in the BALB/c mice is similar to that in C57BL/6 mice. In summary, our results underscore the differential and complex regulation that governs immune responses to malaria parasites.  相似文献   

6.
Although IFN-gamma is the archetypal Th1 cytokine, its role in CTL maturation is uncertain. We used an in vivo mouse model of CTL development, parent-into-F(1) acute graft-vs-host disease (AGVHD), to evaluate this issue. In AGVHD, transfer of naive parental T cells into F(1) hosts stimulates the development of allospecific CTL effectors that eliminate host lymphocytes, particularly B cells. Complete elimination of IFN-gamma, using IFN-gamma-deficient donors and administering anti-IFN-gamma mAb, suppressed B cell elimination, down-regulated TNF-alpha production, and enhanced Th2 cytokine production, but did not allow the B cell expansion characteristic of chronic GVHD (CGVHD). Because complete CTL inhibition results in full-blown CGVHD that is IFN-gamma independent, these observations indicate that IFN-gamma elimination only partially blocks CTL development. IFN-gamma elimination did not inhibit donor T cell engraftment or activation in the AGVHD model, but almost completely blocked Fas/Fas ligand (FasL) gene expression, protein up-regulation, and Fas/FasL-mediated CTL killing. In contrast, IFN-gamma elimination only partially inhibited perforin gene expression and perforin-mediated CTL activity. The contributions of IFN-gamma to CTL development were indirect, because IFN-gamma receptor-deficient donor cells differentiated normally into allospecific CTLs. Consistent with the view that the Fas/FasL and perforin pathways each mediate CTL killing in AGVHD, the absence of both perforin and IFN-gamma (perforin knockout donor cells and anti-IFN-gamma mAb) converted AGVHD to CGVHD. Thus, both IFN-gamma-dependent induction of Fas/FasL and IFN-gamma-independent induction of perforin contribute to CTL-mediated elimination of host B cells in AGVHD. Suppression of both pathways is required for typical CGVHD development.  相似文献   

7.
Infusion of donor antiviral T cells can provide protective immunity for recipients of hemopoietic progenitor cell transplants, but may cause graft-vs-host disease (GVHD). Current methods of separating antiviral T cells from the alloreactive T cells that produce GVHD are neither routine nor rapid. In a model of lethal murine CMV (MCMV) infection following MHC-mismatched bone marrow transplantation, infusion of MCMV-immune donor lymphocytes pretreated with the DNA cross-linking compound amotosalen prevented MCMV lethality without producing GVHD. Although 95% of mice receiving 30 x 10(6) pretreated donor lymphocytes survived beyond day +100 without MCMV disease or GVHD, all mice receiving equivalent numbers of untreated lymphocytes rapidly died of GVHD. In vitro, amotosalen blocked T cell proliferation without suppressing MCMV peptide-induced IFN-gamma production by MCMV-primed CD8(+) T cells. In vivo, pretreated lymphocytes reduced hepatic MCMV load by 4-log(10) and promoted full hemopoietic chimerism. Amotosalen-treated, MCMV tetramer-positive memory (CD44(high)) CD8(+) T cells persisted to day +100 following infusion, and expressed IFN-gamma when presented with viral peptide. Pretreated T cells were effective at preventing MCMV lethality over a wide range of concentrations. Thus, amotosalen treatment rapidly eliminates the GVHD activity of polyclonal T cells, while preserving long-term antiviral and graft facilitation effects, and may be clinically useful for routine adoptive immunotherapy.  相似文献   

8.
9.
Graft-versus-host disease (GVHD) is initiated by APCs that prime alloreactive donor T cells. In antipathogen responses, Ag-bearing APCs receive signals through pattern-recognition receptors, including TLRs, which induce the expression of costimulatory molecules and production of inflammatory cytokines, which in turn mold the adaptive T cell response. However, in allogeneic hematopoietic stem cell transplantation (alloSCT), there is no specific pathogen, alloantigen is ubiquitous, and signals that induce APC maturation are undefined. To investigate APC activation in GVHD, we used recipient mice with hematopoietic cells genetically deficient in pathways critical for APC maturation in models in which host APCs are absolutely required. Strikingly, CD8-mediated and CD4-mediated GVHD were similar whether host APCs were wild-type or deficient in MyD88, TRIF, or MyD88 and TRIF, which excludes essential roles for TLRs and IL-1β, the key product of inflammasome activation. Th1 differentiation was if anything augmented when APCs were MyD88/TRIF(-/-), and T cell production of IFN-γ did not require host IL-12. GVHD was also intact when APCs lacked the type I IFNR, which amplifies APC activation pathways that induce type I IFNs. Thus in GVHD, alloreactive T cells can be activated when pathways critical for antipathogen T cell responses are impaired.  相似文献   

10.
T cell activation and function are critically regulated by positive and negative costimulatory molecules. Aberrant expression and function of costimulatory molecules have been associated with persistent activation of self-reactive T cells in autoimmune diseases such as rheumatoid arthritis (RA). In this study, initial analysis of costimulatory molecules led to the unexpected observation that, in addition to CD80, several negative regulators (e.g., CTLA-4, programmed death-1 (PD-1), and PD ligand-1) were overexpressed in synovial T cells and macrophages derived from RA patients as opposed to controls. The expression of CD80 and PD ligand-1 on monocytes could be induced in vitro by IFN-gamma and TNF-alpha that were produced abundantly in RA-derived synovial fluid (SF). Furthermore, the soluble form of negative costimulatory molecules occurred at high concentrations in sera and SF of RA patients and correlated with titers of rheumatoid factor in RA patients. In particular, the levels of soluble PD-1 were found to correlate significantly with those of TNF-alpha in SF derived from RA patients. Detailed characterization of soluble PD-1 revealed that it corresponded to an alternative splice variant (PD-1Deltaex3) and could functionally block the regulatory effect of membrane-bound PD-1 on T cell activation. Our data indicate a novel pathogenic pathway in which overexpression of negative costimulatory molecules to restrict synovial inflammation in RA is overruled by the excessive production of soluble costimulatory molecules.  相似文献   

11.
Viral persistence is associated with hierarchical antiviral CD8 T cell exhaustion with increased programmed death-1 (PD-1) expression. In HCV persistence, HCV-specific CD8 T cells from the liver (the site of viral replication) display increased PD-1 expression and a profound functional impairment that is not reversed by PD-1 blockade alone. Here, we report that the inhibitory receptor cytotoxic T lymphocyte-associated antigen-4 (CTLA-4) is preferentially upregulated in PD-1+ T cells from the liver but not blood of chronically HCV-infected patients. PD-1/CTLA-4 co-expression in intrahepatic T cells was associated with a profound HCV-specific effector dysfunction that was synergistically reversed by combined PD-1/CTLA-4 blockade in vitro, but not by blocking PD-1 or CTLA-4 alone. A similar effect was observed in circulating HCV-specific CD8 T cells with increased PD-1/CTLA-4 co-expression during acute hepatitis C. The functional response to combined blockade was directly associated with CTLA-4 expression, lost with CD28-depletion and CD4-independent (including CD4+FoxP3+ Tregs). We conclude that PD-1 and CTLA-4 pathways both contribute to virus-specific T cell exhaustion at the site of viral replication by a redundant mechanism that requires combined PD-1/CTLA-4 blockade to reverse. These findings provide new insights into the mechanisms of virus-specific T cell dysfunction, and suggest that the synergistic effect by combined inhibitory receptor blockade might have a therapeutic application against chronic viral infection in vivo, provided that it does not induce autoimmunity.  相似文献   

12.
Induction of T cell anergy in the absence of CTLA-4/B7 interaction   总被引:11,自引:0,他引:11  
Immunologic tolerance in T lymphocytes is maintained through both thymic and peripheral contributions. One peripheral tolerance mechanism is the induction of T cell anergy, a form of nonresponsiveness resulting from incomplete T cell activation, such as stimulation through the TCR in the absence of costimulation. Recent reports have suggested that engagement of the inhibitory receptor CTLA-4 by its B7 ligand is critical for the initiation of anergy. We tested the importance of CTLA-4 in anergy induction in primary T cells with an in vitro anergy system. Using both CTLA-4/B7-blocking agents and CTLA-4-deficient T cells, we found that T cell anergy can be established in the absence of CTLA-4 expression and/or function. Even in the absence of CTLA-4 signal transduction, T cells activated solely through TCR ligation lose the ability to proliferate as a result of autocrine IL-2 production upon subsequent receptor engagement. Thus, CTLA-4 signaling is not required for the development of T cell anergy.  相似文献   

13.
The balance between positive and negative signals plays a key role in determining T cell function. CTL-associated Ag-4 is a surface receptor that can inhibit T cell responses induced upon stimulation of the TCR and its CD28 coreceptor. Little is known regarding the signaling mechanisms elicited by CTLA-4. In this study we analyzed CTLA-4-mediated inhibition of TCR signaling in primary resting human CD4(+) T cells displaying low, but detectable, CTLA-4 cell surface expression. CTLA-4 coligation with the TCR resulted in reduced downstream protein tyrosine phosphorylation of signaling effectors and a striking inhibition of extracellular signal-regulated kinase 1/2 activation. Analysis of proximal TCR signaling revealed that TCR zeta-chain phosphorylation and subsequent zeta-associated protein of 70 kDa (ZAP-70) tyrosine kinase recruitment were not significantly affected by CTLA-4 engagement. However, the association of p56(lck) with ZAP-70 was inhibited following CTLA-4 ligation, correlating with reduced actions of p56(lck) in the ZAP-70 immunocomplex. Moreover, CTLA-4 ligation caused the selective inhibition of CD3-mediated phosphorylation of the positive regulatory ZAP-70 Y319 site. In addition, we demonstrate protein tyrosine phosphatase activity associated with the phosphorylated CTLA-4 cytoplasmic tail. The major phosphatase activity was attributed to Src homology protein 2 domain-containing tyrosine phosphatase 1, a protein tyrosine phosphatase that has been shown to be a negative regulator of multiple signaling pathways in hemopoietic cells. Collectively, our findings suggest that CTLA-4 can act early during the immune response to regulate the threshold of T cell activation.  相似文献   

14.
PD-1 is an immunoinhibitory receptor that belongs to the CD28/CTLA-4 family. B7-H1 (PD-L1) and B7-DC (PD-L2), which belong to the B7 family, have been identified as ligands for PD-1. Paradoxically, it has been reported that both B7-H1 and B7-DC co-stimulate or inhibit T cell proliferation and cytokine production. To determine the role of B7-H1 and B7-DC in T cell-APC interactions, we examined the contribution of B7-H1 and B7-DC to CD4+ T cell activation by B cells, dendritic cells, and macrophages using anti-B7-H1, anti-B7-DC, and anti-PD-1 blocking mAbs. Anti-B7-H1 mAb and its Fab markedly inhibited the proliferation of anti-CD3-stimulated naive CD4+ T cells, but enhanced IL-2 and IFN-gamma production in the presence of macrophages. The inhibition of T cell proliferation by anti-B7-H1 mAb was abolished by neutralizing anti-IFN-gamma mAb. Coculture of CD4+ T cells and macrophages from IFN-gamma-deficient or wild-type mice showed that CD4+ T cell-derived IFN-gamma was mainly responsible for the inhibition of CD4+ T cell proliferation. Anti-B7-H1 mAb induced IFN-gamma-mediated production of NO by macrophages, and inducible NO synthase inhibitors abrogated the inhibition of CD4+ T cell proliferation by anti-B7-H1 mAb. These results indicated that the inhibition of T cell proliferation by anti-B7-H1 mAb was due to enhanced IFN-gamma production, which augmented NO production by macrophages, suggesting a critical role for B7-H1 on macrophages in regulating IFN-gamma production by naive CD4+ T cells and, hence, NO production by macrophages.  相似文献   

15.
The role of the p38 MAPK pathway in Th1 development has been controversial, because indirect manipulations of either upstream p38 activators or modifiers of p38 activity have had variable effects on IFN-gamma production in CD4+ T cells. Uncertainties regarding the specificity of pharmacologic inhibition or p38 dominant negative mutants diminish the strength of conclusions about the role of the p38alpha isoform in Th1 development. Also, the effects of some upstream p38 activators, such as MAPK kinase 3, on Th1 development are not as strong as the effects of other manipulations, such as the expression of a dominant negative p38 mutant. Finally, embryonic lethality has prevented a direct examination of p38alpha-deficient T cells. To test the requirement for p38alpha in Th1 differentiation, we generated Ag-specific p38alpha+/- and p38alpha-/- CD4+ T cells using RAG2-/- blastocyst complementation and retroviral expression of the DO11.10 TCR. IFN-gamma production in response to TCR signaling is normal in p38alpha-/- T cells cultured in Th1 conditions, implying normal Th1 development. However, p38alpha-/- Th1 cells have a much greater defect in IFN-gamma secretion stimulated by IL-12/IL-18 compared with TCR-induced IFN-gamma secretion. These results suggest that the activity of p38alpha in Th1 cells is relatively restricted to acting in one of two alternative pathways (i.e., cytokine induced) that can induce the production of IFN-gamma in differentiated Th1 cells, but that p38alpha is not required for the process of Th1 commitment and development itself.  相似文献   

16.
ICOS costimulation requires IL-2 and can be prevented by CTLA-4 engagement   总被引:32,自引:0,他引:32  
We investigated the relationship between ICOS, CD28, CTLA-4, and IL-2 to gain a better understanding of this family of costimulatory receptors in the immune response. Using magnetic beads coated with anti-CD3 and varying amounts of anti-ICOS and anti-CTLA-4 Abs, we show that CTLA-4 ligation blocks ICOS costimulation. In addition to inhibiting cellular proliferation, CTLA-4 engagement prevented ICOS-costimulated T cells from producing IL-4, IL-10, and IL-13. Both an indirect and direct mechanism of CTLA-4's actions were examined. First, CTLA-4 engagement on resting cells was found to indirectly block ICOS costimulation by interferring with the signals needed to induce ICOS cell surface expression. Second, on preactivated cells that had high levels of ICOS expression, CTLA-4 ligation blocked the ICOS-mediated induction of IL-4, IL-10, and IL-13, suggesting an interference with downstream signaling pathways. The addition of IL-2 not only overcame both mechanisms, but also greatly augmented the level of cellular activation suggesting synergy between ICOS and IL-2 signaling. This cooperation between ICOS and IL-2 signaling was explored further by showing that the minimum level of IL-2 produced by ICOS costimulation was required for T cell proliferation. Finally, exogenous IL-2 was required for sustained growth of ICOS-costimulated T cells. These results indicate that stringent control of ICOS costimulation is maintained initially by CTLA-4 engagement and later by a requirement for exogenous IL-2.  相似文献   

17.
Delayed lymphocyte infusions (DLIs) are used to treat relapse occurring post bone marrow transplantation (BMT) and to increase the donor chimerism in recipients receiving nonmyeloablative conditioning. As compared with donor lymphocytes given early post-BMT, DLIs are associated with a reduced risk of graft-vs-host disease (GVHD). The mechanism(s) responsible for such resistance have remained incompletely defined. We now have observed that host T cells present 3 wk after lethal total body irradiation, at the time of DLI, contribute to DLI-GVHD resistance. The infusion of donor splenocytes on day 0, a time when host bone marrow (BM)-derived T cells are absent, results in greater expansion than later post-BMT when host and donor BM-derived T cells coexist. Selective depletion of host T cells with anti-Thy1 allelic mAb increased the GVHD risk of DLI, indicating that a Thy1(+) host T cell regulated DLI-GVHD lethality. The conditions by which host T cells are required for optimal DLI resistance were determined. Recipients unable to express CD28 or 4-1BB were as susceptible to DLI-GVHD as anti-Thy1 allelic mAb-treated recipients, indicating that CD28 and 4-1BB are critical to DLI-GVHD resistance. Recipients deficient in both perforin and Fas ligand but not individually were highly susceptible to DLI-GVHD. Recipients that cannot produce IFN-gamma were more susceptible to DLI-GVHD, whereas those deficient in IL-12 or p55 TNFRI were not. Collectively, these data indicate that host T cells, which are capable of generating antidonor CTL effector cells, are responsible for the impaired ability of DLI to induce GVHD. These same mechanisms may limit the efficacy of DLI in cancer therapy under some conditions.  相似文献   

18.
We examined the role of the PD-1 pathway on the activation of naive, memory, and recently activated human CD4+ T cells to test whether they responded differently. PD-1 ligand blockade modestly enhanced the percentage of responding T cells and production of IFN-gamma in a primary response to myelin basic protein (MBP) in normal donors. PD-1 ligand blockade strongly enhanced proliferation and cytokine production by memory or recently activated T cells (tetanus toxoid and MBP). Blockade of PD-L1 alone had more effect than PD-L2, consistent with its higher expression on ex vivo dendritic cells; furthermore, anti-PD-L1 plus anti-PD-L2 resulted in the greatest enhancement. Moreover, PD-L1-Ig inhibited anti-CD3 induced activation of naive, memory, and recently activated CD4+ T cells. Together, our data demonstrated PD-1 functioned as a negative regulatory pathway on naive T cells during a primary response, and more potently, on memory or recently activated T cells during a secondary response.  相似文献   

19.
Blockade with B7 antagonists interferes with CD28:B7 and CTLA-4:B7 interactions, which may have opposing effects. We have examined the roles of CD28:B7 and CTLA-4:B7 on in vivo alloresponses. A critical role of B7:CD28 was demonstrated by markedly compromised expansion of CD28-deficient T cells and diminished graft-versus-host disease lethality of limited numbers of purified CD4+ or CD8+ T cells. When high numbers of T cells were infused, the requirement for CD28:B7 interaction was lessened. In lethally irradiated recipients, anti-CTLA-4 mAb enhanced in vivo donor T cell expansion, but did not affect, on a per cell basis, anti-host proliferative or CTL responses of donor T cells. Graft-versus-host lethality was accelerated by anti-CTLA-4 mAb infusion given early post-bone marrow transplantation (BMT), mostly in a CD28-dependent fashion. Donor T cells obtained from anti-CTLA-4 mAb-treated recipients were skewed toward a Th2 phenotype. Enhanced T cell expansion in mAb-treated recipients was strikingly advantageous in the graft-versus-leukemia effects of delayed donor lymphocyte infusion. In two different systems, anti-CTLA-4 mAb enhanced the rejection of allogeneic T cell-depleted marrow infused into sublethally irradiated recipients. We conclude that blockade of the selective CD28-B7 interactions early post-BMT, which preserve CTLA-4:B7 interactions, would be preferable to blocking both pathways. For later post-BMT, the selective blockade of CTLA-4:B7 interactions provides a potent and previously unidentified means for augmenting the GVL effect of delayed donor lymphocyte infusion.  相似文献   

20.
CTLA-4 (CD152) is thought to be a negative regulator of T cell activation. Little is known about the function of CTLA-4 in Th2-type immune responses. We have investigated the effect of initial treatment with anti-CTLA-4 mAb on murine chronic graft-vs-host disease. Transfer of parental BALB/c splenocytes into C57BL/6 x BALB/c F1 mice induced serum IgE production, IL-4 expression by donor CD4+ T cells, and host allo-Ag-specific IgG1 production at 6-9 wk after transfer. Treatment with anti-CTLA-4 mAb for the initial 2 wk significantly reduced IgE and IgG1 production and IL-4 expression. Analysis of the splenic phenotype revealed the enhancement of donor T cell expansion, especially within the CD8 subset, and the elimination of host cells early after anti-CTLA-4 mAb treatment. This treatment did not affect early IFN-gamma expression by CD4+ and CD8+ T cells and anti-host cytolytic activity. Thus, blockade of CTLA-4 greatly enhanced CD8+ T cell expansion, and this may result in the regulation of consequent Th2-mediated humoral immune responses. These findings suggest a new approach for regulating IgE-mediated allergic immune responses by blockade of CTLA-4 during a critical period of Ag sensitization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号