首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Candida alimentaria, Candida deformans, Candida galli, and Candida phangngensis have been recently reported to be the close relatives of Yarrowia lipolytica. To explore this clade of yeasts, we sequenced the mitochondrial genome (mtDNA) of these four species and compared it with the mtDNA of Y.?lipolytica. The five mtDNAs exhibit a similar architecture and a high level of similarity of protein coding sequences. Genome sizes are variable, ranging from 28?017?bp in C.?phangngensis to 48?508?bp in C.?galli, mainly because of the variations in intron size and number. All introns are of group I, except for a group II intron inserted in the cob gene of a single species, C.?galli. Putative endonuclease coding sequences were present in most group I introns, but also twice as free-standing ORFs in C.?galli. Phylogenetic relationships of the five species were explored using protein alignments. No close relative of the Yarrowia clade could be identified, but protein and rRNA gene orders were partially conserved in the mtDNA of Candida salmanticensis.  相似文献   

2.
Protein introns are recently discovered genetic elements whose intervening sequences are removed from a precursor protein by an unusual protein splicing reaction. This involves the excision of a central spacer molecule, the protein intron, and the religation of the amino- and carboxy-terminal fragments of the precursor. The recA gene of Mycobacterium tuberculosis contains one such element and we now show that the other major mycobacterial pathogen, Mycobacterium leprae, also possesses a protein intron in its recA, although other mycobacterial recA genes do not. However, these two protein introns are different in size, sequence and location of insertion of their coding sequences into the recAs of M. tuberculosis and M. leprae, indicating that acquisition of the protein introns has occurred independently in the two species, and thus suggesting that there has been selection for splicing in the maturation of RecA in the pathogenic mycobacteria. The M. leprae protein intron provides an example of conditional protein splicing, splicing occurring in M. leprae itself but not when expressed in Escherichia coli, unlike most previously described protein introns. These observations suggest that protein introns may perform a function for their host, rather than being just selfish elements.  相似文献   

3.
Intron length distributions and gene prediction   总被引:2,自引:1,他引:1  
Roy SW  Penny D 《Nucleic acids research》2007,35(14):4737-4742
  相似文献   

4.
Most research concerning the evolution of introns has largely considered introns within coding sequences (CDSs), without regard for introns located within untranslated regions (UTRs) of genes. Here, we directly determined intron size, abundance, and distribution in UTRs of genes using full-length cDNA libraries and complete genome sequences for four species, Arabidopsis thaliana, Drosophila melanogaster, human, and mouse. Overall intron occupancy (introns/exon kbp) is lower in 5' UTRs than CDSs, but intron density (intron occupancy in regions containing introns) tends to be higher in 5' UTRs than in CDSs. Introns in 5' UTRs are roughly twice as large as introns in CDSs, and there is a sharp drop in intron size at the 5' UTR-CDS boundary. We propose a mechanistic explanation for the existence of selection for larger intron size in 5' UTRs, and outline several implications of this hypothesis. We found introns to be randomly distributed within 5' UTRs, so long as a minimum required exon size was assumed. Introns in 3' UTRs were much less abundant than in 5' UTRs. Though this was expected for human and mouse that have intron-dependent nonsense-mediated decay (NMD) pathways that discourage the presence of introns within the 3' UTR, it was also true for A. thaliana and D. melanogaster, which may lack intron-dependent NMD. Our findings have several implications for theories of intron evolution and genome evolution in general.  相似文献   

5.
We describe the complete sequence of the gene encoding mouse NF-M, the middle-molecular-mass neurofilament protein. The coding sequence is interrupted by two intervening sequences which align perfectly with the first two intervening sequences in the gene encoding NF-L (the low-molecular-mass neurofilament protein); there is no intron in the gene encoding NF-M corresponding to the third intron in NF-L. Therefore, both the number of introns and their arrangement in the genes coding NF-L and NF-M contrast sharply with the number and arrangement of introns in the genes of known sequence, encoding other members of the intermediate filament multigene family (desmin, vimentin, glial fibrillary acidic protein and the acidic and basic keratins); with the exception of a single truncated keratin gene that lacks an encoded tailpiece, these genes all contain eight introns, of which at least six are placed at homologous locations. Assuming the existence of a primordial intermediate filament gene containing most (if not all) the introns found in contemporary non-neurofilament intermediate filament genes, it seems likely that an RNA-mediated transposition event was involved in the generation of an ancestral gene encoding the NF polypeptides. A combination of insertional transposition and gene-duplication events could then explain the anomalous number and placement of introns within these genes. Consistent with this notion, we show that the genes encoding NF-M and NF-L are linked.  相似文献   

6.
We have determined the nucleotide sequence of two short introns (respectively 215 and 90 nucleotides) in the chick alpha 2-collagen (type I) gene as well as parts of the adjacent exons. For one of these introns we find that the 5' end of U1 RNA is complementary not only to the two ends of the intron but also to one end of the intron and sequences inside this intron. These complementarities predict three potential internal splicing sites. By S1 mapping experiments we find three discrete RNA precursors in which different portions of this intron have been deleted. The sizes of the deleted segments are in good agreement with the location of the predicted splicing points inside the intron. The DNA sequence indicates that removal of one portion of the intron should still allow the subsequent elimination of the rest of the intron and the correct splicing of the coding segments located at each end of the intron. The new introns created by the first splicing events contain sequences at each end which are also complementary to U1 RNA. Our data indicate that in the intron which we have examined the sequences at the 3' end of the intron are removed before those at the 5' end.  相似文献   

7.
Selective constraints on intron evolution in Drosophila   总被引:5,自引:0,他引:5  
Parsch J 《Genetics》2003,165(4):1843-1851
Intron sizes show an asymmetrical distribution in a number of organisms, with a large number of "short" introns clustered around a minimal intron length and a much broader distribution of longer introns. In Drosophila melanogaster, the short intron class is centered around 61 bp. The narrow length distribution suggests that natural selection may play a role in maintaining intron size. A comparison of 15 orthologous introns among species of the D. melanogaster subgroup indicates that, in general, short introns are not under greater DNA sequence or length constraints than long introns. There is a bias toward deletions in all introns (deletion/insertion ratio is 1.66), and the vast majority of indels are of short length (<10 bp). Indels occurring on the internal branches of the phylogenetic tree are significantly longer than those occurring on the terminal branches. These results are consistent with a compensatory model of intron length evolution in which slightly deleterious short deletions are frequently fixed within species by genetic drift, and relatively rare larger insertions that restore intron length are fixed by positive selection. A comparison of paralogous introns shared among duplicated genes suggests that length constraints differ between introns within the same gene. The janusA, janusB, and ocnus genes share two short introns derived from a common ancestor. The first of these introns shows significantly fewer indels than the second intron, although the two introns show a comparable number of substitutions. This indicates that intron-specific selective constraints have been maintained following gene duplication, which preceded the divergence of the D. melanogaster species subgroup.  相似文献   

8.
We conducted a genome-wide analysis of the roles of mutation and selection in sculpting intron size in the fungal pathogen Cryptococcus neoformans. We find that deletion rate is positively associated with intron length and that insertion rate exhibits a weak negative association with intron length. These patterns suggest that long introns as well as extremely short introns in this unusually intron-rich fungal genome are in mutation-selection disequilibrium and that the proportion of constrained functional sequence in introns does not scale linearly with size. We find that untranslated region introns are longer than coding-region introns and that first introns are substantially longer than subsequent introns, suggesting heterogeneous distribution of constrained functional sequence and/or selective pressures on intron size within genes. In contrast to Drosophila, we find a positive correlation between d(N) and first intron or last intron length and a negative correlation between d(N) and internal intron length. This contrasting pattern may indicate that terminal introns and internal introns are differentially subject to hypothesized selection pressures modulating intron size and provides further evidence of widespread selective constraints on noncoding sequences.  相似文献   

9.
Multiple introns have been found in a gene from a ciliated protozoan. This Tetrahymena thermophila gene (cnjB) is large (7.5 kb mRNA) and active only during conjugation, the organism's sexual cycle. Six introns ranging in size from 62 bp to 676 bp were found when we sequenced a 3.1 kb segment of the cnjB gene together with its corresponding cDNA. We estimate, by extrapolation of our current data, a total of approximately 30 introns in this gene with a total gene size (introns plus exons) of 15 kb or more. The number of introns is surprising given the scarcity of introns in ciliate genes examined to date. Our findings constitute the first example of multiple introns in a ciliate gene. Having the sequence of several introns has allowed us to construct consensus sequences for T. thermophila mRNA introns. The 5' and 3' intron junctions resemble those of general nuclear mRNA (GT/AG rule is followed) but differences are seen. In particular, stretches of 10 or more adenines and thymines are found adjacent to the conserved GT and AGs at the junctions. Unusual aspects of the coding region of this gene are discussed.  相似文献   

10.
Irimia M  Roy SW 《PLoS genetics》2008,4(8):e1000148
The presence of spliceosomal introns in eukaryotes raises a range of questions about genomic evolution. Along with the fundamental mysteries of introns' initial proliferation and persistence, the evolutionary forces acting on intron sequences remain largely mysterious. Intron number varies across species from a few introns per genome to several introns per gene, and the elements of intron sequences directly implicated in splicing vary from degenerate to strict consensus motifs. We report a 50-species comparative genomic study of intron sequences across most eukaryotic groups. We find two broad and striking patterns. First, we find that some highly intron-poor lineages have undergone evolutionary convergence to strong 3' consensus intron structures. This finding holds for both branch point sequence and distance between the branch point and the 3' splice site. Interestingly, this difference appears to exist within the genomes of green alga of the genus Ostreococcus, which exhibit highly constrained intron sequences through most of the intron-poor genome, but not in one much more intron-dense genomic region. Second, we find evidence that ancestral genomes contained highly variable branch point sequences, similar to more complex modern intron-rich eukaryotic lineages. In addition, ancestral structures are likely to have included polyT tails similar to those in metazoans and plants, which we found in a variety of protist lineages. Intriguingly, intron structure evolution appears to be quite different across lineages experiencing different types of genome reduction: whereas lineages with very few introns tend towards highly regular intronic sequences, lineages with very short introns tend towards highly degenerate sequences. Together, these results attest to the complex nature of ancestral eukaryotic splicing, the qualitatively different evolutionary forces acting on intron structures across modern lineages, and the impressive evolutionary malleability of eukaryotic gene structures.  相似文献   

11.
12.
Reductions in genome size and complexity are a hallmark of obligate symbioses. The mitochondrial genome displays clear examples of these reductions, with the ancestral alpha‐proteobacterial genome size and gene number having been reduced by orders of magnitude in most descendent modern mitochondrial genomes. Here, we examine patterns of mitochondrial evolution specifically looking at intron size, number, and position across 58 species from 21 genera of lichenized Ascomycete fungi, representing a broad range of fungal diversity and niches. Our results show that the cox1gene always contained the highest number of introns out of all the mitochondrial protein‐coding genes, that high intron sequence similarity (>90%) can be maintained between different genera, and that lichens have undergone at least two instances of complete, genome‐wide intron loss consistent with evidence for genome streamlining via loss of parasitic, noncoding DNA, in Phlyctis boliviensisand Graphis lineola. Notably, however, lichenized fungi have not only undergone intron loss but in some instances have expanded considerably in size due to intron proliferation (e.g., Alectoria fallacina and Parmotrema neotropicum), even between closely related sister species (e.g., Cladonia). These results shed light on the highly dynamic mitochondrial evolution that is occurring in lichens and suggest that these obligate symbiotic organisms are in some cases undergoing recent, broad‐scale genome streamlining via loss of protein‐coding genes as well as noncoding, parasitic DNA elements.  相似文献   

13.
Liverwort Pellia borealis is an allopolyploid species that originated after the hybridization and chromosome doubling of two cryptic species; Pellia epiphylla species N and Pellia epiphylla species S. A sequence comparison of chloroplast tRNAUCCGly, tRNAUUULys gene introns, the mitochondrial tRNAGCUSer gene intron, and the first intron of the coxIII gene in the case of three liverwort species studied revealed that the chloroplast and mitochondrial sequences are identical in P. borealis and P. epiphylla species N but different from homologous P. epiphylla species S sequences. Both mitochondria and chloroplasts of P. borealis were thus inherited from one parent- P. epiphylla species N. Studies on 14 different populations of P. borealis gave the same result. These are the first data on organellar transmission in liverworts, the earliest land plants. Moreover, we show that the intron sequences of some organellar genes, until now not used in any systematic studies, could be very good markers in studying taxonomic relationships in closely related species and reconstructing historical events.  相似文献   

14.
Protein splicing is a series of enzymatic events involving intramolecular protein breakage, rejoining and intron homing, in which introns are able to promote the recombinative transposition of their own coding sequences. Eukaryotic and prokaryotic spliced proteins have conserved similar gene structure, but little amino acid identity. The genes coding for these spliced proteins contain internal in-frame introns that encode polypeptides that apparently self-excise from the resulting host protein sequences. Excision of the ‘protein intron’ is coupled with joining of the two flanking protein regions encoded by exons of the host gene. Some introns of this type encode DNA endonucleases, related to Group I RNA intron gene products, that stimulate gene conversion and self-transmission.  相似文献   

15.
A general model for the evolution of nuclear pre-mRNA introns   总被引:5,自引:0,他引:5  
We present an overview of the evolution of eukaryotic split gene structure and pre-mRNA splicing mechanisms. We have drawn together several seemingly conflicting ideas and we show that they can all be incorporated in a single unified theory of intron evolution. The resulting model is consistent with the notion that introns, as a class, are very ancient, having originated in the "RNA world"; it also supports the concept that introns may have played a crucial role in the construction of many eukaryotic genes and it accommodates the idea that introns are related to mobile insertion elements. Our conclusion is that introns could have a profound effect on the course of eukaryotic gene evolution, but that the origin and maintenance of intron sequences depends, largely, on natural selection acting on the intron sequences themselves.  相似文献   

16.
Calreticulin (CRT) is a calcium-binding protein and has many functions in eukaryotic cells. CRT is possibly involved in parasite host immune system evasion. To better understand the molecular basis of CRT in ticks, we cloned and sequenced 4 full-length complementary DNAs (cDNAs) from the hard tick species, Dermacentor variabilis, Haemaphysalis longicornis, Ixodes scapularis, and Rhipicephalus sanguineus, using the technique of rapid amplification of cDNA ends. The deduced amino acid sequences share high identities (between 77 and 98%) with 3 known tick CRT sequences. The major characteristics of known CRTs are observed in all 4 of our deduced tick CRTs. These include 3 major domains, a signal peptide sequence at the beginning of the coding region, 2 triplets of conserved regions, cysteine sites providing disulfide bridges for N-terminal folding, and a nuclear localization signal. Remarkably, the replacement of the endoplasmic reticulum retention signal KDEL by HEEL, which is believed to be associated with secretion of CRT into the host during feeding and was previously recorded only in 2 ticks and a hookworm, is also present in all 4 of our tick putative CRTs. In addition, the CRT gene is potentially useful for tick phylogenetic reconstruction.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号