首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hydrogen production by the dark fermentation of food wastes is an economic and environmentally friendly technology to produce the clean energy source as well as to treat the problematic wastes. However, the long-term operations of the continuous anaerobic reactor for fermentative hydrogen production were frequently unstable. In this study, the structure of microbial community within the anaerobic reactor during unstable hydrogen production was examined by denaturing gradient gel electrophoresis (DGGE) and terminal restriction fragment length polymorphism (T-RFLP) techniques. The changes in microbial community from H(2)-producing Clostridium spp. to lactic acid-producing Lactobacillus spp. were well coincident with the unexpected process failures and the changes of metabolites concentrations in the effluent of the anaerobic reactor. As the rate of hydrogen production decreased, effluent lactic acid concentration increased. Low rate of hydrogen production and changes in microbial community were related to the 'kimchi' content and storage temperature of food waste feed solution. After low temperature control of the storage tank of the feed solution, any significant change in microbial community within the anaerobic reactor did not occur and the hydrogen production was very stably maintained for a long time.  相似文献   

2.
3.
Summary The restriction of oxygen transfer in Ca-alginate beads used for the immobilization of microbial cells was applied to a coupled reductive and oxidative microbial degradation of the xenobiotic 4-chloro-2-nitrophenol (CNP). The conversion of CNP by Enterobacter cloacae under anaerobic conditions led to the formation of 4-chloro-2-aminophenol (CAP, 81%) and 4-chloro-2-acetaminophenol (CAAP, 16%) after 50 h incubation. CAP, the main reduction product, was further degraded under aerobic conditions by Alcaligenes sp. TK-2, a hybrid strain isolated by conjugative in-vivo gene transfer. Whereas both degradation steps excluded one another in homogeneous systems with free cells, a coupled reductive and oxidative degradation of CNP was observed in one aerated reactor system after co-immobilization of both strains in Ca alginate. The diameter of the alginate beads used for immobilization was recognized as one main factor determining the properties of this mixed culture system. Offprint requests to: H.-J. Rehm  相似文献   

4.
Reaction enthalpy for propionate degradationΔG0 is only negative when the partial pressure ofhydrogen pH2 is less than 10—4 bar. This means that for pH2 more than 10—4 bar, a total anaerobic degradation of propionate is impossible for thermodynamic reasons. Therefore, with increasing pH2, the anaerobic degradation rate of propionate via acetate is inhibited. There are two ways to investigate the inhibitory effect of pH2: to keep the concentration of hydrogen consuming bacteria low or to increase the mass transfer by feeding the hydrogen at higher flow rates. The author used an extended fixed bed reactor filled with polyurethane particles as a carrier for the bacteria, aerated with pure H2 gas. The results, compared with the literature by using model equations in order to standardize the data, correspond well: The addition of pure H2 gas has no observable effects on propionate degradation.In the fixed bed reactor with immobilized bacteria, it was not possible to reach an inhibitory concentration of H2 and high process stability could be maintained.  相似文献   

5.
When aerated suspensions of whole yeast cells were either made anaerobic or were supplied with substrate (glucose), changes in absorption occurred which indicated cytochrome reduction. No such change was observed on addition of substrate to anaerobic suspension of yeast. These results were confirmed by obsevations of changes in absorbance at a series of fixed wavelengths corresponding to the reduced absorption peaks of cytochromesa, b andc. NAD* on the other hand was reduced on addition of substrate under both aerobic and anaerobic conditions. These results are discussed in relation to the possible role of NAD* in the Pasteur Effect.  相似文献   

6.
To simulate production-scale conditions of gluconic acid fermentation by Gluconobacter oxydans, different experimental setups are presented in this study. From the determination of the time constants of a production-scale reactor, it can be concluded that mixing and oxygen transfer are the rate-limiting mechanisms. This results in oxygen concentration gradients which were simulated in a one-compartment reactor in which the oxygen concentration was fluctuated by a fluctuated gassing with air and nitrogen. It could be concluded that only very long periods of absence of oxygen (ca. 180 s) results in lower specific oxygen uptake rates by Gluconobacter oxydans. From scale-down studies carried out in a two-compartment system to simulate a production-scale reactor more accurately, it could be concluded that not only the residence time in the aerated part of the system is important, but the liquid flow in between the different parts of the reactor is also an essential parameter. It could also be concluded that the microorganisms are not influenced negatively by the fluctuated oxygen concentrations with respect to their maximal oxidation capacity. The two-compartment system can also be used for optimization experiments in which the "aerated" compartment was gassed with pure oxygen. From these experiments it was concluded that also a short residence of the cells at high oxygen concentrations diminished the growth and product formation rates. These experiments show the necessity of the scale-down experiments if optimization is carried out. The two-compartment system presented in this study is a very attractive tool for reliable scale-down experiments.  相似文献   

7.
Growth of Enterobacter cloacae on K+ citrate under aerated conditions (no detectable oxygen tension in the medium even though it was aerated) was slower (mean generation time, 130 min) than under aerobic conditions (mean generation time, 72 min), but with a faster utilization of citrate, resulting in a molar growth yield of 10.6 g (dry weight) of cells per mol of citrate utilized versus 40 g (dry weight) of cells per mol of citrate utilized for aerobic growth. The rapid utilization of citrate under aerated conditions was apparently due to the induction of citrate lyase and was supported by the finding that cells excreted acetate and a small amount of oxalacetate under aerated conditions, but not under aerobic conditions when the cells were devoid of citrate lyase activity. The activity of oxalacetate decarboxylase in aerated cells was slightly lower than in aerobic cells, indicating that little of the oxalacetate produced by the citrate lyase was metabolized by the decarboxylase. Oxalacetate was probably metabolized by malate dehydrogenase, previously shown to be present in anaerobic and aerobic cells. Thus, about 70% of the citrate was cleaved by the citrate lyase, resulting in little or no production of energy for growth. The remaining citrate was metabolized via the citric acid cycle under aerated conditions, since the cells contained alpha-ketoglutarate dehydrogenase at the same level as in aerobically grown cells. The presence of the other enzymes of the cycle was shown in earlier studies.  相似文献   

8.
It is widely accepted that cellulose is the rate-limiting substrate in the anaerobic digestion of organic solid wastes and that cellulose solubilisation is largely mediated by surface attached bacteria. However, little is known about the identity or the ecophysiology of cellulolytic microorganisms from landfills and anaerobic digesters. The aim of this study was to investigate an enriched cellulolytic microbial community from an anaerobic batch reactor. Chemical oxygen demand balancing was used to calculate the cellulose solubilisation rate and the degree of cellulose solubilisation. Fluorescence in situ hybridisation (FISH) was used to assess the relative abundance and physical location of three groups of bacteria belonging to the Clostridium lineage of the Firmicutes that have been implicated as the dominant cellulose degraders in this system. Quantitation of the relative abundance using FISH showed that there were changes in the microbial community structure throughout the digestion. However, comparison of these results to the process data reveals that these changes had no impact on the cellulose solubilisation in the reactor. The rate of cellulose solubilisation was approximately stable for much of the digestion despite changes in the cellulolytic population. The solubilisation rate appears to be most strongly affected by the rate of surface area colonisation and the biofilm architecture with the accepted model of first order kinetics due to surface area limitation applying only when the cellulose particles are fully covered with a thin layer of cells.  相似文献   

9.
Challenge of psychrophilic anaerobic wastewater treatment   总被引:45,自引:0,他引:45  
Psychrophilic anaerobic treatment is an attractive option for wastewaters that are discharged at moderate to low temperature. The expanded granular sludge bed (EGSB) reactor has been shown to be a feasible system for anaerobic treatment of mainly soluble and pre-acidified wastewater at temperatures of 5--10 degrees C. An organic loading rate (OLR) of 10--12 kg chemical oxygen demand (COD) per cubic meter reactor per day can be achieved at 10--12 degrees C with a removal efficiency of 90%. Further improvement might be obtained by a two-module system in series. Stabile methanogenesis was observed at temperatures as low as 4--5 degrees C. The specific activity of the mesophilic granular sludge was improved under psychrophilic conditions, which indicates that there was growth and enrichment of methanogens and acetogens in the anaerobic system. Anaerobic sewage treatment is a real challenge in moderate climates because sewage belongs to the 'complex' wastewater category and contains a high fraction of particulate COD. A two-step system consisting of either an anaerobic up-flow sludge bed (UASB) reactor combined with an EGSB reactor or an anaerobic filter (AF) combined with an anaerobic hybrid reactor (AH) is successful for anaerobic treatment of sewage at 13 degrees C with a total COD removal efficiency of 50% and 70%, respectively.  相似文献   

10.
A method is shown to be effective over a wide range of enzyme ratios for the simultaneous detection of the two isoenzymes of acetyl coenzyme A synthetase [acetate:coenzyme A ligase (AMP-forming); EC 6.2.1.1] in homogenates and cellular fractions of Saccharomyces cerevisiae. When this method was used, it was found that cells grown under anaerobic conditions contained only one variety of this enzyme, designated the nonaerobic synthetase, whereas cells grown with vigorous aeration contained principally the other, aerobic, synthetase. In cells grown as standing cultures (i.e., semi-aerobically), both enzymes were present and were found mainly in the extramitochondrial material of homogenates. When anaerobic cultures were aerated, the amount of aerobic enzyme increased steadily over a 24-h period, so that at the end of this time, aerated cells contained predominantly aerobic enzyme. During this same period, the amount of nonaerobic enzyme decreased. The percentage of aerobic enzyme that sedimented with the mitochondria increased steadily during this period of aeration, so that, at the end of 24 h of aeration, essentially all of the aerobic enzyme sedimented with the mitochondria. The nonaerobic enzyme was never found in this cellular compartment.  相似文献   

11.
Chlamydomonas reinhardtii is a green alga that can use the sun's energy to split water into O(2) and H(2). This is accomplished by means of a two-phase cycle, an aerobic growth phase followed by an anaerobic hydrogen production phase. The effects of process variables on hydrogen production are examined here. These variables include cell concentration, light intensity, and reactor design parameters that affect light transport and mixing. An optimum cell concentration and light intensity are identified, and two reactor designs are compared. The maximum hydrogen production observed in this study was 0.29 mL of hydrogen per milliliter of suspension. This was measured at atmospheric pressure during a 96 h production cycle. This corresponds to an average hydrogen production rate of 0.12 mmol/mL.h.  相似文献   

12.
A novel polyethylene glycol (PEG) gel was fabricated and used as a carrier to immobilize Clostridium sp. LS2 for continuous hydrogen production in an upflow anaerobic sludge blanket (UASB) reactor. Palm oil mill effluent (POME) was used as the substrate carbon source. The optimal amount of PEG-immobilized cells for anaerobic hydrogen production was 12% (w/v) in the UASB reactor. The UASB reactor containing immobilized cells was operated at varying hydraulic retention times (HRT) that ranged from 24 to 6 h at 3.3 g chemical oxygen demand (COD)/L/h organic loading rate (OLR), or at OLRs that ranged from 1.6 to 6.6 at 12 h HRT. The best volumetric hydrogen production rate of 336 mL H2/L/h (or 15.0 mmol/L/h) with a hydrogen yield of 0.35 L H2/g CODremoved was obtained at a HRT of 12 h and an OLR of 5.0 g COD/L/h. The average hydrogen content of biogas and COD reduction were 52% and 62%, respectively. The major soluble metabolites during hydrogen fermentation were butyric acid followed by acetic acid. It is concluded that the PEG-immobilized cell system developed in this work has great potential for continuous hydrogen production from real wastewater (POME) using the UASB reactor.  相似文献   

13.
Granules from a mesophilic upflow anaerobic sludge blanket reactor were disintegrated, and bacteria utilizing only hydrogen or formate or both hydrogen and formate were added to investigate the role of interspecies electron transfer during degradation of propionate and butyrate. The data indicate that the major electron transfer occurred via interspecies hydrogen transfer, while interspecies formate transfer may not be essential for interspecies electron transfer in this system during degradation of propionate and butyrate.  相似文献   

14.
Two-phase anaerobic digestion for production of hydrogen-methane mixtures   总被引:5,自引:0,他引:5  
An anaerobic digestion process to produce hydrogen and methane in two sequential stages was investigated, using two bioreactors of 2 and 15 L working volume, respectively. This relative volume ratio (and shorter retention time in the second, CH(4)-producing reactor) was selected, in part, to test the assumption that separation of phase can enhance metabolism in the second methane producing reactor. The reactor system was seeded with conventional anaerobic digester sludge, fed with a glucose-yeast extract--peptone medium and operated under conditions of relatively low mixing, to simulate full scale operation. A total of nine steady states were investigated, spanning a range of feed concentrations, dilution rates, feed carbon to nitrogen ratios and degree of integration of the two stages. The performance of this two-stage process and potential practical applications for the production of clean-burning hydrogen-methane mixtures are discussed.  相似文献   

15.
Two composting systems were compared on a laboratory scale as a bioredediation technology for degradation or immobilization of 2,4,6-trinitrotoluene (TNT) in contaminated soils. The first compost was aerated from the beginning whereas the second compost was only aerated after an anaerobic prephase of 65 days. In the first compost system the TNT concentration declined rapidly by 92% but, at the end, TNT could be partially recovered. During the anaerobic prephase of the second compost system, TNT was almost completely converted to aminodinitrotoluenes, which during the subsequent aeration almost entirely disappeared. In addition, the second compost generated less toxic material than the first one as confirmed by inhibition of bioluminescence ofVibrio fischeri. These data show that microbiological TNT-degradation systems can be successfully designed which are prerequisite for an efficient bioremediation of contaminated soils.  相似文献   

16.
Anaerobic growth of Klebsiella aerogenes NCDO 711 (NCTC 418) on citrate was dependent on the presence of Na+ in the medium, and fermentation of citrate was mediated via the fermentation pathway enzymes, citrate lyase and a Na+-dependent oxalacetate decarboxylase. This confirms the previous findings on strain NCTC 418. Growth under aerobic conditions was independent of Na+. The mean generation time for cells grown aerobically on either Na+ or K+ citrate medium was about 60 min, with a molar growth yield of about 40 g (dry weight) of cells per mol of citrate utilized. Citrate was apparently metabolized aerobically in both the Na+ and K+ citrate cells via the citric acid cycle, since cell extracts contained alpha-ketoglutarate dehydrogenase but not the citrate fermentation enzymes. The presence of theother enzymes of the citric acid cycle in K. aerogenes was shown in earlier studies. Under aerated conditions (no detectable oxygen tension in the culture), growth was faster on the Na+ citrate medium (mean generation time, 85 min) than on the K+ citrate medium (mean generation time, 120 min). Both cultures grew slower than under aerobic conditions, presumably because of oxygen limitation. Despite the faster growth rate, the molar growth yield of the aerated Na+ citrate culture was one-half that observed for the aerated K+ citrate culture. Citrate was metabolized via the citric acid cycle in cells grown in the K+ citrate medium under aerated conditions since alpha-ketoglutarate dehydrogenase, but not the fermentation enzymes, was detected in extracts prepared from these cells. Metabolism of citrate in the Na+ citrate medium under aerated conditions occurred via both the fermentation pathway (approximately 75 percent) and the citric acid cycle (about 25 percent), as evidenced by (i) the presence of the fermentation enzymes and alpha-ketoglutarate dehydrogenase in extracts of cells grown under these conditions, (ii) a molar growth yield which was intermediate between that obtained for anaerobic and aerated K+ citrate cultures, and (iii) the excretion of acetate, which also occurred in anaerobic cultures but not in aerated K+ citrate or aerobic cultures.  相似文献   

17.
Ascorbic acid at concentrations between 0.57 and 5.7 mM in aerated medium caused an eight fold increase in catalase activity in Escherchia coli. The hydrogen peroxide concentrations resulting from ascorbate oxidation were between 20 and 120 μM and hydrogen peroxide by itself caused a similar increase in catalase levels in both aerobic and anaerobic media. Three catalase activity bands visualized on polyacrylamide gels were increased. Chloramphenicol which inhibits protein synthesis, anaerobic medium and EDTA, which prevent ascorbate oxidation, and exogenous catalase, which removes hydrogen peroxide from the medium, all prevented the increase in catalase in response to ascorbate. Superoxide dismutase activity was not affected by ascorbate.  相似文献   

18.
A biological test system for mixing insufficiences, based on detection of hydrogen gas by oxygen-limited E. coli cells, was studied. It was characterized with respect to the relative oxygen uptake rate and the redox potential in the medium using a quantitative PdMOS-based hydrogen gas sensing system. Hydrogen gas was detected already at a relative oxygen uptake rate of 95%, but no other anaerobic products were formed in traceable amounts at this stage. It was not possible to correlate the relative oxygen uptake rate and the hydrogen production in a simple way. It was shown, however, that the specific production rate of hydrogen was linearly related to the redox potential during oxygen limitation.  相似文献   

19.
In situ biogas upgrading was conducted by introducing H2 directly to the anaerobic reactor. As H2 addition is associated with consumption of the CO2 in the biogas reactor, pH increased to higher than 8.0 when manure alone was used as substrate. By co-digestion of manure with acidic whey, the pH in the anaerobic reactor with the addition of hydrogen could be maintained below 8.0, which did not have inhibition to the anaerobic process. The H2 distribution systems (diffusers with different pore sizes) and liquid mixing intensities were demonstrated to affect the gas-liquid mass transfer of H2 and the biogas composition. The best biogas composition (75:6.6:18.4) was obtained at stirring speed 150 rpm and using ceramic diffuser, while the biogas in the control reactor consisted of CH4 and CO2 at a ratio of 55:45. The consumed hydrogen was almost completely converted to CH4, and there was no significant accumulation of VFA in the effluent. The study showed that addition of hydrogen had positive effect on the methanogenesis, but had no obvious effect on the acetogenesis. Both hydrogenotrophic methanogenic activity and the concentration of coenzyme F420 involved in methanogenesis were increased. The archaeal community was also altered with the addition of hydrogen, and a Methanothermobacter thermautotrophicus related band appeared in a denaturing gradient gel electrophoresis gel from the sample of the reactor with hydrogen addition. Though the addition of hydrogen increased the dissolved hydrogen concentration, the degradation of propionate was still thermodynamically feasible at the reactor conditions.  相似文献   

20.
A systematic investigation on the effects of auxotrophies on the performance of yeast in aerated fed-batch reactor was carried out. Six isogenic strains from the CEN.PK family of Saccharomyces cerevisiae, one prototroph and five auxotrophs, were grown in aerated fed-batch reactor using the same operative conditions and a proper nutritional supplementation. The performance of the strains, in terms of final biomass decreased with increasing the number of auxotrophies. Auxotrophy for leucine exerted a profound negative effect on the performance of the strains. Accumulation of reactive oxygen species (ROS) in the cells of the strain carrying four auxotrophies and its significant viability loss, were indicative of an oxidative stress response induced by exposure of cells to the environmental conditions. The mathematical model was fundamental to highlight how the carbon flux, depending on the number and type of auxotrophies, was diverted towards the production of increasingly large quantities of energy for maintenance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号