首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Caspase-8 is an essential component of death receptor-mediated apoptosis. Along with Fas-associated death domain protein, it is also essential for T cell proliferation in response to antigenic or mitogenic stimuli. To determine whether caspase-8 is also required for B cell proliferation, we generated mice with a B cell-specific Casp8 deficiency. Unlike T cells, caspase-8 was not required for Ag receptor-driven proliferation or Ab formation. Rather, Casp8-deficient B cells failed to proliferate in response to dsRNA and LPS, ligands for TLR3 and TLR4, respectively, but responded normally to the TLR9 agonist CpG DNA. Similarly, Ab production to trinitrophenol-LPS was selectively reduced in B cell-specific Casp8-deficient mice. The activation of NF-kappaB or IFN regulatory factor 3 was found to be unaffected by the loss of caspase-8, implicating it in a novel pathway important for some forms of innate immunity mediated by B cells.  相似文献   

4.
5.
6.
7.
8.
ADRP is associated with intracellular lipid droplets. We demonstrate the regulatory mechanism for ADRP expression in RAW264.7 macrophages. The ADRP mRNA expression was stimulated by PMA, and synergistically enhanced in association with its protein level in the presence of lipids. A proteasome inhibitor protected the protein from degradation under the lipid-free conditions. One of the possible sites of the PMA action was proved to be an Ets/AP-1 element in the promoter, since mutations of this site reduced the PMA-induced promoter activity, and ligation of this element led to a significant increase in the PMA-responsiveness of homologous or heterologous promoters. Mutations of this site diminished the synergistic effect on the promoter activity induced by PMA and oleic acid, suggesting a possible interaction between this site and the downstream PPARdelta site. EMSA revealed that PU.1 and AP-1 conjointly bound to this site. The juxtaposition of the two sequences was requisite for full activity, since spacer sequences between them decreased the PMA-induced activity. PI3 kinase inhibitor was found to reduce the PMA-induced mRNA expression and promoter activity in parallel with PU.1/AP-1 complex formation on EMSA. From these results, we concluded that the Ets/AP-1 site is an important cis-acting element that regulates the ADRP gene expression in macrophages.  相似文献   

9.
10.
RCY1, which encodes a coiled coil nucleotide-binding site leucine-rich repeat (LRR) class R protein, confers the hypersensitive response (HR) to a yellow strain of Cucumber mosaic virus (CMV[Y]) in Arabidopsis thaliana. Nicotiana benthamiana transformed with hemagglutinin (HA) epitope-tagged RCY1 (RCY1-HA) also exhibited a defense response accompanied by HR cell death and induction of defense-related gene expression in response to CMV(Y). Following transient expression of RCY1-HA by agroinfiltration, the defense reaction was induced in N. benthamiana leaves infected with CMV(Y) but not in virulent CMV(B2)-infected N. benthamiana leaves transiently expressing RCY1-HA or CMV(Y)-infected N. benthamiana leaves transiently expressing HA-tagged RPP8 (RPP8-HA), which is allelic to RCY1. This result suggests that Arabidopsis RCY1-conferred resistance to CMV(Y) could be reproduced in N. benthamiana leaves in a gene-for-gene manner. Expression of a series of chimeric constructs between RCY1-HA and RPP8-HA in CMV(Y)-infected N. benthamiana indicated that induction of defense responses to CMV(Y) is regulated by the LRR domain of RCY1. Interestingly, in CMV(Y)-infected N. benthamiana manifesting the defense response, the levels of both RCY1 and chimeric proteins harboring the RCY1 LRR domain were significantly reduced. Taken together, these data indicate that the RCY1-conferred resistance response to CMV(Y) is regulated by an LRR domain-mediated interaction with CMV(Y) and seems to be tightly associated with the degradation of RCY1 in response to CMV(Y).  相似文献   

11.
Telomere length is critical for chromosome stability that affects cell proliferation and survival. Telomere elongation by telomerase is inhibited by the telomeric protein, TRF1. Tankyrase-1 (TNKS1) poly(ADP-ribosyl)ates TRF1 and releases TRF1 from telomeres, thereby allowing access of telomerase to the telomeres. TNKS1-mediated poly(ADP-ribosyl)ation also appears to be crucial for regulating the mitotic cell cycle. In searching for proteins that interact with polo-like kinase-1 (Plk1) by using complex proteomics, we identified TNKS1 as a novel Plk1-binding protein. Here, we report that Plk1 forms a complex with TNKS1 in vitro and in vivo, and phosphorylates TNKS1. Phosphorylation of TNKS1 by Plk1 appears to increase TNKS1 stability and telomeric poly(ADP-ribose) polymerase (PARP) activity. By contrast, targeted inhibition of Plk1 or mutation of phosphorylation sites decreased the stability and PARP activity of TNKS1, leading to distort mitotic spindle-pole assembly and telomeric ends. Taken together, our results provide evidence of a novel molecular mechanism in which phosphorylation of TNKS1 by Plk1 may help regulate mitotic spindle assembly and promote telomeric chromatin maintenance.  相似文献   

12.
13.

Background  

Systemic acquired resistance (SAR) is induced in non-inoculated leaves following infection with certain pathogenic strains. SAR is effective against many pathogens. Salicylic acid (SA) is a signaling molecule of the SAR pathway. The development of SAR is associated with the induction of pathogenesis related (PR) genes. Arabidopsis n on-expressor of PR1 (NPR1) is a regulatory gene of the SA signal pathway [13]. SAR in soybean was first reported following infection with Colletotrichum trancatum that causes anthracnose disease. We investigated if SAR in soybean is regulated by a pathway, similar to the one characterized in Arabidopsis.  相似文献   

14.
15.
Infiltration of activated monocytes into the brain is a prerequisite for the development of various neurological disorders such as HIV-associated dementia, multiple sclerosis, and other inflammatory processes. In these pathologies, the chemokine SDF-1alpha (CXCL12) is over-expressed and might attract monocytes into the CNS. We demonstrate here that SDF-1alpha stimulates migration of monocytes through its receptor, CXCR4, and decreases monocyte adherence to surfaces coated with ICAM-1, a ligand for beta(2) integrins. SDF-1alpha also decreases monocyte adherence to brain microvascular endothelial cells (BMVEC) that are activated with TNF-alpha, IL-1beta, or recombinant envelope glycoprotein from HIV-1, which increase BMVEC expression of ICAM-1. The decreased adherence is linked to down-regulation on monocytes of the activation-dependent epitope of the beta(2) integrin LFA-1 by SDF-1alpha. Knockdown of Lyn in monocytes using small interfering RNA decreases SDF-1alpha-mediated migration and prevents the inhibition of monocyte attachment to ICAM-1 and activated BMVEC. Thus, in SDF-1alpha-stimulated monocytes, Lyn acts as a positive regulator of migration and a negative regulator of adhesion to BMVEC through the LFA-1 integrin. These results provide a novel Lyn-mediated signaling mechanism for the regulation of monocyte movement at the blood-brain barrier.  相似文献   

16.
17.
18.
We tested the hypothesis that host resistance to Campylobacter jejuni is Nramp1 dependent. Following intraperitoneal (IP) inoculation of Nramp1+/+ and isogenic Nramp1-deficient (Nramp1-/-) mice C. jejuni primarily associated with mac1-positive cells in liver tissue. A significant reduction of C. jejuni was observed in Nramp1+/+ mice 4 days post-infection (PI) (liver) and 8 days PI cecum-colon. In contrast, Nramp1-/- mice showed no significant reduction of C. jejuni and instead had a chronic inflammatory response and significant histopathological lesions 30 days PI. Differential cytokine profiles were observed in C. jejuni infected Nramp1+/+ and Nramp1-/- primary dendritic cells. Taken together these data indicate that Nramp1 is critical for host resistance to C. jejuni.  相似文献   

19.
20.
Reversible modifications of target proteins by small ubiquitin-like modifier (SUMO) proteins are involved in many cellular processes in yeast and animals. Yet little is known about the function of sumoylation in plants. Here, we show that the SIZ1 gene, which encodes an Arabidopsis SUMO E3 ligase, regulates innate immunity. Mutant siz1 plants exhibit constitutive systemic-acquired resistance (SAR) characterized by elevated accumulation of salicylic acid (SA), increased expression of pathogenesis-related (PR) genes, and increased resistance to the bacterial pathogen Pseudomonas syringae pv. tomato (Pst) DC3000. Transfer of the NahG gene to siz1 plants results in reversal of these phenotypes back to wild-type. Analyses of the double mutants, npr1 siz1, pad4 siz1 and ndr1 siz1 revealed that SIZ1 controls SA signalling. SIZ1 interacts epistatically with PAD4 to regulate PR expression and disease resistance. Consistent with these observations, siz1 plants exhibited enhanced resistance to Pst DC3000 expressing avrRps4, a bacterial avirulence determinant that responds to the EDS1/PAD4-dependent TIR-NBS-type R gene. In contrast, siz1 plants were not resistant to Pst DC3000 expressing avrRpm1, a bacterial avirulence determinant that responds to the NDR1-dependent CC-NBS-type R gene. Jasmonic acid (JA)-induced PDF1.2 expression and susceptibility to Botrytis cinerea were unaltered in siz1 plants. Taken together, these results demonstrate that SIZ1 is required for SA and PAD4-mediated R gene signalling, which in turn confers innate immunity in Arabidopsis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号