首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
PIN-FORMED 1 regulates cell fate at the periphery of the shoot apical meristem   总被引:13,自引:0,他引:13  
The process of organ positioning has been addressed, using the pin-formed 1 (pin1) mutant as a tool. PIN1 is a transmembrane protein involved in auxin transport in Arabidopsis. Loss of function severely affects organ initiation, and pin1 mutants are characterised by an inflorescence meristem that does not initiate any flowers, resulting in the formation of a naked inflorescence stem. This phenotype, combined with the proposed role of PIN1 in hormone transport, makes the mutant an ideal tool to study organ formation and phyllotaxis, and here we present a detailed analysis of the molecular modifications at the shoot apex caused by the mutation. We show that meristem structure and function are not severely affected in the mutant. Major alterations, however, are observed at the periphery of the pin1 meristem, where organ initiation should occur. Although two very early markers of organ initiation, LEAFY and AINTEGUMENTA, are expressed at the periphery of the mutant meristem, the cells are not recruited into distinct primordia. Instead a ring-like domain expressing those primordium specific genes is observed around the meristem. This ring-like domain also expresses a boundary marker, CUP-SHAPED COTYLEDON 2, involved in organ separation, showing that the zone at the meristem periphery has a hybrid identity. This implies that PIN1 is not only involved in organ outgrowth, but that it is also necessary for organ separation and positioning. A model is presented in which PIN1 and the local distribution of auxin control phyllotaxis.  相似文献   

2.
Three short-day inductive cycles bring about inhibition followed by transitional enhancement of growth, not only in roots and leaves but also in different zones of shoot apical meristem, as shown by measurement of DNA synthesis using3H-thymidine autoradiography. The first inductive cycle resulted in marked inhibition of the cells of the central zone (CZ), rib meristem (RM), and peripheral zone (PZ). Subsequent enhancement of DNA synthesis occurs in RM during the second inductive cycle, but in CZ only in the third cycle. The growth activation in PZ is counteracted by decrease in apical dominance which results in further inhibition of leaf primordia and increases in bud primordia. In plants induced only by one cycle, which later reverse the vegetative pattern of growth and differentiation, increased DNA synthesis in RM and CZ was not observed. The significance of inhibitory and stimulatory processes in particular zones of the shoot apex is discussed considering flower morphogenesis.  相似文献   

3.
Thirty-five species belonging to various dicotyledonous families were investigated to study the origin, development, and probable function of the shell zone, which is defined as an arcuate zone of cambiform cells delimiting the early axillary bud meristem. It is present in the majority of the investigated plants and five intergrading patterns of origin are described: (i) from the parenchymatized derivatives of the cells of the peripheral meristem of the shoot apex, adaxial to the bud meristem, (ii) from the peripheral meristem of the shoot apex along with the initiation of the early bud meristem, (iii) from the adaxial cells of the bud meristem, (iv) from the derivatives of the cells of the bud meristem at its base, and (v) partly from the parenchymatized cells of the peripheral meristem adaxial to the bud and partly from the adaxial derivatives of the bud meristem. The shell zone loses its identity at different stages of bud development in various species. Its cells ultimately contribute to the ground meristem, procambium, and pith cells of the axis. In Cuminum cyminum and lpomoea cairica the shell zone contributes in bringing about the axillary position of the bud from its early lateral position. In Solarium melongena, derivatives of the shell zone initiate the internodal elongation between the flower or inflorescence and the shoot apex, ultimately shifting the bud to an extra-axillary position on the internode.  相似文献   

4.
The ontogeny of Epilobium hirsutum grown under natural summer photoperiod in a glasshouse was divided into vegetative, early transitional, transitional, and floral stages. Bijugate phyllotaxy, common to both the vegetative and early transitional stages, is transformed into spiral phyllotaxy during the transitional stage by an initial change in the divergence angle of a single primordium inserted at a unique level on the shoot. Leaf primordia subsequently are inserted in a spiral arrangement in the indeterminate floral shoot apex. The early transitional shoot apical meristem is about 1.5 times the volume of the vegetative meristem but expands at about two-thirds the relative plastochron rate of volume increment of the vegetative meristem. There are progressive decreases in the plastochron and relative plastochron rates of radial and vertical shoot growth through ontogeny. Relative chronological rates of shoot growth, however, are not altered during ontogeny. Spiral transformation results from changes in the relative points of insertion of leaf primordia on the shoot meristem. These changes are accompanied by an increased rate of primordia initiation on a more circular shoot meristem. The change in phyllotaxy during ontogeny is similar to that which was artificially induced by chemical modification of auxin concentration gradients in the shoot apex, with the additional feature that there is an initial increase in the volume of the shoot meristem prior to the natural spiral transformation. Size of the shoot apical meristem, however, appears to have little influence on Epilobium phyllotaxy; but the geometric shape of the meristem is well correlated with bijugate to spiral transformations. This suggests that geometric parameters of the shoot meristem should be considered in theoretical models of phyllotaxy.  相似文献   

5.
Pineapple plants ‘Smooth Cayenne’ were made to flower by treatment with acetylene. The organization of the vegetative shoot apex is similar to that of many investigated angiosperms in that it shows a zonate pattern, viz., apical zone, peripheral zone, and central-core rib meristem. The latter zone is weakly developed. Cytological changes at the shoot apex occur as early as 3 days after treatment; these involve nuclear changes and an increase in ribonucleic acid (RNA) in the cytoplasm of cells of the apical zone. A marked increase in the height of the apex occurs by the 9th day; this is preceded by rib meristem activity in the central core. All component parts of the inflorescence are present and in various stages of development by the 21st day at which time vegetative scales and “crown” leaves are initiated.  相似文献   

6.
Hooked apex stolons and initial swelling stolons of potato plants were treated with 3 x 10-8 mol l-1 jasmonic acid (JA) to study the effect of this compound on histology, cell expansion and tissue differentiation. In hooked apex stolons, JA application increased the meristem thickness and reduced the length of the leaf primordia, whereas in initial swelling stolons narrowing of the apical region, absence of leaf primordia and swelling of the subapical meristem were evident. Early vascular tissue differentiation was observed in response to JA treatment, especially of xylem elements from regions proximal to the tunic. Protoxylem elements, such as tracheal elements, were present with thin primary cell walls. The cell area was measured in two zones: zone I, central mother cells situated immediately under the tunic; and zone II, rib meristem cells. JA caused a four- and six-fold increase in cell area in both zones in hooked apex stolons and initial swelling stolons, respectively. Thus, tuber formation is concluded to occur as a consequence of increased cell expansion, a reduction in the length of leaf primordia, enlargement of meristems, and early vascular tissue differentiation.  相似文献   

7.
Vernalized seeds of Pinus lambertiana were scarified and planted in perlite. At 5, 8, 10, 13 and 16 days after planting, seedlings were selected for morphological examination and histochemical study. The shoot apical meristem consisted of a relatively homogeneous population of cells at 5 days. Cytohistological zonation was observed in the meristem by the eighth day and needle primordia initiation began at this time. Acid phosphatase (AP) activity was high in the extreme tip of the apex at 5 days. At 8 days AP activity was intense in the peripheral zone but weak in the apical initial and central mother cell zones. The apical meristem of the 10–16-day-old seedlings exhibited high AP activity in the peripheral zone only during the early stages of needle primordia initiation. The distribution of cytoplasmic and nuclear protein-bound SH was correlated with cytohistological zonation. Protein-bound SH was distributed relatively uniformly at 5 days, but by the eighth day the 4 cytohistological zones contained differential quantities. Succinic dehydrogenase (SD) activity was observed throughout the apex at 5 days, but by the eighth day the apical initial and central mother cell zones exhibited differentially greater levels of SD activity. Irradiation with 500 R of X-rays at 7 days after planting completely inhibited needle primordia initiation and disrupted the cytohistological zonation of the apex. Correlated with the inhibition of needle primordia initiation was the loss of SD activity in the apical initial and central mother cell zones. Irradiation also resulted in the gradual loss of protein-bound SH from the cytoplasm of the apical initial, central mother cell and peripheral zone.  相似文献   

8.
Cellular parameters of the shoot apical meristem in Arabidopsis.   总被引:9,自引:3,他引:6       下载免费PDF全文
P Laufs  O Grandjean  C Jonak  K Kiêu    J Traas 《The Plant cell》1998,10(8):1375-1390
The shoot apical meristem (SAM) is a small group of dividing cells that generate all of the aerial parts of the plant. With the goal of providing a framework for the analysis of Arabidopsis meristems at the cellular level, we performed a detailed morphometric study of actively growing inflorescence apices of the Landsberg erecta and Wassilewskija ecotypes. For this purpose, cell size, spatial distribution of mitotic cells, and the mitotic index were determined in a series of optical sections made with a confocal laser scanning microscope. The results allowed us to identify zones within the inflorescence SAM with different cell proliferation rates. In particular, we were able to define a central area that was four to six cells wide and had a low mitotic index. We used this technique to compare the meristem of the wild type with the enlarged meristems of two mutants, clavata3-1 (clv3-1) and mgoun2 (mgo2). One of the proposed functions of the CLV genes is to limit cell division rates in the center of the meristem. Our data allowed us to reject this hypothesis, because the mitotic index was reduced in the inflorescence meristem of the clv3-1 mutant. We also observed a large zone of slowly dividing cells in meristems of clv3-1 seedlings. This zone was not detectable in the wild type. These results suggest that the central area is increased in size in the mutant meristem, which is in line with the hypothesis that the CLV3 gene is necessary for the transition of cells from the central to the peripheral zone. Genetic and microscopic analyses suggest that mgo2 is impaired in the production of primordia, and we previously proposed that the increased size of the mgo2 meristem could be due to an accumulation of cells at the periphery. Our morphometric analysis showed that mgo2 meristems, in contrast to those of clv3-1, have an enlarged periphery with high cell proliferation rates. This confirms that clv3-1 and mgo2 lead to meristem overgrowth by affecting different aspects of meristem function.  相似文献   

9.
An investigation was made of the anatomical structure of the shoot apex ofSenecio vulgaris L. a photoperiodically neutral plant, and compared with the formation of successive leaf primordia along the axis up to the initiation of the terminal inflorescence. In the shoot apex of a germinating plant a central zone can first be distinguished from the peripheral zone which is composed of small and intensely stained cells. Later, a rib meristem appears. At the time of the initiation of the middle (the largest) leaves, the shoot apex has a distinct small central zone and a well developed peripheral zone and rib meristem. Between these zones there is a group of cells dividing in all directions, the subcentral zone. At the time of initiation of the last leaves, the central zone extends to the flanks and gradually ceases to be distinguishable. At the same time, the subcentral zone increases in size. This is caused first by cell division and later, with the initiation of the last, most reduced leaves, by enlargement of the cells. Vacuolization in the inner part of the apex and the arrangement of the superficial cells in rows parallel to the surface of the apex, is a preparatory step to the initiation of the inflorescence.  相似文献   

10.
The structure, growth and mitotic activity of 211 shoot apices of developing sprouts of Syringa oblata var. affinis Lingelsh. in longitudinal sections and 67 in transverse sections have been studied with the view to understanding the nature of zonation patterns and cytogenesis of the apical meristems during a double plastochron. The external morphology and the anatomical structure of the apices in 4 plastochronic stage-early, middle, late Ⅰ and late Ⅱ stages are described. In the shoot apices examined, especially those at late plastochronic stage, the following zones may be delimited: Zone of tunica initials, zone of corpus initials, peripheral zone and zone of rib meristem. The location and orientation of mitotic figures observed in longisections of the apices in 4 plastochronic stages are plotted in diagrams and the mitotic frequency has been calculated. Information obtained from these investigations reveals that the tunica and corpus inititals constitute an active region of the apex, but their mitotic activity changes periodically within the double plastochron. In the middle plastochronic stage when the apex is at its minimal area and the cells of peripheral zone and rib meristem zone have been completely transformed into constituent parts of foliar primordia and the subjacent tissues of the stem and the pith mother cells respectively, the mitotic frequency of the initials is at its maximium and its intensity of mitotic activity is not much lower than that of any other meristematic zone at any stage. When the apical dome is reformed by the activity of these initials in late plastochronic stages, the mitotic frequency of the initials gradually drops and the region of high mitotic frequency shifts to the flank of the apex, the peripheral zone. Anticlinal divisions are predominant in this zone. On the other hand, those cells directly left behind by the corpus initials, which constitute the rib meristem, are vacuolated and marked by the pre- dominance of transverse divisions. Thus the entire zonation pattern reappears. In the next early plastochronic stage, the mitotic frequency of the tunica and corpus initials drops to its mimimium, but other regions of the apex still maintain a high mitotic frequency. It may be concluded that the tunica and corpus initials form a cytogenerative center of the shoot, and the cytohistological zonation is actually a result of the fact that different regions of apical meristems are different in mitotic activety, different in state of cell differentiation and different in their function in morphogenesis.  相似文献   

11.
Vegetative development in the Arabidopsis shoot apex follows both sequential and repetitive steps. Early in development, the young vegetative meristem is flat and has a rectangular shape with bilateral symmetry. The first pair of leaf primordia is radially symmetrical and is initiated on opposite sides of the meristem. As development proceeds, the meristem changes first to a bilaterally symmetrical trapezoid and then to a radially symmetrical dome. Vegetative development from the domed meristem continues as leaves are initiated in a repetitive manner. Abnormal development of the vegetative shoot apex is described for a number of mutants. The mutants we describe fall into at least three classes: (1) lesions in the shoot apex that do not show an apparent alteration in the shoot apical meristem, (2) lesions in the apical meristem that also (directly or indirectly) alter leaf primordia, and (3) lesions in the apical meristem that alter meristem size and leaf number but not leaf morphology. These mutations provide tools both to genetically analyze vegetative development of the shoot apex and to learn how vegetative development influences floral development.  相似文献   

12.
Background and Aims The arrangement of flowers in inflorescence shoots of Arabidopsis thaliana represents a regular spiral Fibonacci phyllotaxis. However, in the cuc2 cuc3 double mutant, flower pedicels are fused to the inflorescence stem, and phyllotaxis is aberrant in the mature shoot regions. This study examined the causes of this altered development, and in particular whether the mutant phenotype is a consequence of defects at the shoot apex, or whether post-meristematic events are involved.Methods The distribution of flower pedicels and vascular traces was examined in cross-sections of mature shoots; sequential replicas were used to investigate the phyllotaxis and geometry of shoot apices, and growth of the young stem surface. The expression pattern of CUC3 was analysed by examining its promoter activity.Key Results Phyllotaxis irregularity in the cuc2 cuc3 double mutant arises during the post-meristematic phase of shoot development. In particular, growth and cell divisions in nodes of the elongating stem are not restricted in the mutant, resulting in pedicel–stem fusion. On the other hand, phyllotaxis in the mutant shoot apex is nearly as regular as that of the wild type. Vascular phyllotaxis, generated almost simultaneously with the phyllotaxis at the apex, is also much more regular than pedicel phyllotaxis. The most apparent phenotype of the mutant apices is a higher number of contact parastichies. This phenotype is associated with increased meristem size, decreased angular width of primordia and a shorter plastochron. In addition, the appearance of a sharp and deep crease, a characteristic shape of the adaxial primordium boundary, is slightly delayed and reduced in the mutant shoot apices.Conclusions The cuc2 cuc3 double mutant displays irregular phyllotaxis in the mature shoot but not in the shoot apex, thus showing a post-meristematic effect of the mutations on phyllotaxis. The main cause of this effect is the formation of pedicel–stem fusions, leading to an alteration of the axial positioning of flowers. Phyllotaxis based on the position of vascular flower traces suggests an additional mechanism of post-meristematic phyllotaxis alteration. Higher density of flower primordia may be involved in the post-meristematic effect on phyllotaxis, whereas delayed crease formation may be involved in the fusion phenotype. Promoter activity of CUC3 is consistent with its post-meristematic role in phyllotaxis.  相似文献   

13.
The aim of the work was to report morphological changes whichoccur in the shoot apex during the morphogenetic switch to floweringin the model long day (LD) plant, Sinapis alba. During the floraltransition induced by 1 LD the growth rate of all componentsof the shoot apex is modified profoundly. The earliest changes,detected at 24 h after start of LD, include a decrease in plastochronduration and an increase of growth of leaf primordia. One daylater, the meristem dome starts to increase in volume, apicalinternodes have an increased height and there is a precociousoutgrowth of axillary meristems. All these changes precede initiationof flower primordia, which starts at about 60 h after the startof LD. Later changes include meristem doming, a decrease inthe plastochron ratio and a shift to a more complex phyllotaxis.All the changes, except the decreased plastochron ratio, arecharacteristics of an apex with an increased tempo of growth.The stimulation of longitudinal growth (height of apical intemodes)is more marked and occurs earlier than the reduction of radialgrowth (plastochron ratio). Key words: Axillary meristem, internode growth, leaf growth, plastochron ratio, plastochron duration  相似文献   

14.
15.
The influence of the shoot apex upon leaf and bud formationin the fern Dryopteris aristata has been investigated by furtherexperiments on puncturing the apical cell. When the apical cellgroup is damaged, leaf primordia, which may be orientated abnormally,continue to be formed on the meristem, but one or more budsmay also arise. The observations reported here indicate thata zone at the periphery of the apical meristem is particularlyreactive when the apical cell group is damaged, the majorityof buds being induced in this region. The extent of damage tothe apex may affect the sequence of organogenesis: when damageis extensive buds tend to be formed immediately, subsequentprimordia developing as leaves; when the damage is confinedto the apical cell, or extends to only a few of its segments,bud formation tends to be delayed. It is concluded that the effect of the apical cell on organformation is exercised through the growth and organization ofthe apex as a whole.  相似文献   

16.
The changes that occur in the shoot apex of the banana, as itpasses from the vegetative to the flowering stage, are described.The crucial events occur well before floral primordia are evident,and they require a redistribution of activity in the variousgrowing regions. The vegetative shoot apex is in a central depressionin the rhizome; there is virtually no internodal growth in theaxis, the most active growth is in the leaf bases; vegetativebuds do not form in the leaf axils but only appear adventitiouslyfar from the tip of the shoot. With the onset of flowering thisis changed; growth in the axis itself, previously suppressed,occurs and flower buds arise as primordia in the axils of subtendingbracts. The bracts do not show the market growth in their baseswhich is so characteristic of leaves. Thus, the shoot apex risesto the level of the rhizome and then above it; as it does so,its tip changes in shape from a broad flattened some to a pointedcone. At the transitional stage, more activity occurs in thecells of the mantle, or tunica, which now consists of 3 to 4layers over the central dome. Below, in the central or mothercell zone of the corpus, which was quiescent in the vegetativeshoot, the cells spring into greater activity, becoming moreprotoplasmic and stain more deeply. Directly below this regionin the rib meristem, cells show transverse divisions. Bractprimordia occur high on the flanks of the apex, and, thoughthey originate in the manner of leaves, their subsequent growthis different. Flower primordia occur even in the axils of bractsclose to the shoot tip. Thus, the problem now is to designatethe source, nature, and mode of action of the stimuli whichinitiate and control this quite different distribution of growthin the floral, as contrasted with the vegetative, shoot. Thesignificance of the previously more quiescent central, or mothercell zone, of the apex as the source of such stimuli, is stressed.Thus, flowering first requires that the limiting controls whichapply to the vegetative shoot be released, and, secondly, thatthe apex of the shoot, rather than the leaf base, becomes themain centre of growth and development.  相似文献   

17.
In this study we investigated Arabidopsis thaliana (L.) Heynh. inflorescence development by characterizing morphological changes at the shoot apex during the transition to flowering. Sixteen-hour photoperiods were used to synchronously induce flowering in vegetative plants grown for 30 d in non-inductive 8-h photoperiods. During the first inductive cycle, the shoot apical meristem ceased producing leaf primordia and began to produce flower primordia. The differentiation of paraclades (axillary flowering shoots), however, did not occur until after the initiation of multiple flower primordia from the shoot apical meristem. Paraclades were produced by the basipetal activation of buds from the axils of leaf primordia which had been initiated prior to photoperiodic induction. Concurrent with the activation of paraclades was the partial suppression of paraclade-associated leaf primordia, which became bract leaves. The suppression of bract-leaf primordia and the abrupt initiation of flower primordia during the first inductive photoperiod is indicative of a single phase change during the transition to flowering in photoperiodically induced Arabidopsis. Morphogenetic changes characteristic of the transition to flowering in plants grown continuously in 16-h photoperiods were qualitatively equivalent to the changes observed in plants which were photoperiodically induced after 30 d. These results suggest that Arabidopsis has only two phases of development, a vegetative phase and a reproductive phase; and that the production of flower primordia, the differentiation of paraclades from the axils of pre-existing leaf primordia and the elongation of internodes all occur during the reproductive phase.  相似文献   

18.
Vegetative seedlings of the Ceres strain Brassica campestris L., a quantitative, long-day plant, were induced to flower by exposure to a 16-hr, long-day cycle. Cytohistological and cytohistochemical changes associated with inflorescence development were examined. Developing shoot apices were classified in vegetative, transitional, and reproductive stages. The vegetative apex possessed a biseriate tunica, central zone, peripheral zone and pith-rib meristem. The transitional stage at 48 hr was marked by an increase in size and by a stratification of the upper cell layers of the shoot apex with a concurrent decrease of apical cytohistochemical zonation. The reproductive stage was initiated at 58 hr by periclinal cell divisions in the 3rd and 4th cell layers of the flank region. Cytohistochemical zonation in the vegetative apical meristem was restored in the floral apex. An “intermediate developmental” phase was not observed between the vegetative and reproductive stage.  相似文献   

19.
Impatiens balsamina L. was induced to flower by exposure to5 short days and then made to revert to vegetative growth byreturn to long days. After 9 long days reverted plants wereinduced to re-flower by returning them to short days. Petalinitiation began immediately and seven primordia already presentdeveloped into petals instead of into predominantly leaf-likeorgans. However, the arrangement of primordia at the shoot apex,their rate of initiation and size at initiation remained unchangedfrom the reverted apex, as did apical growth rate and the lengthof stem frusta at initiation. The more rapid flowering of thereverted plants than of plants when first induced, and the lackof change in apical growth pattern, imply that the revertedapices remain partially evoked, and that the apical growth patternand phyllotaxis typical of the flower, and already present inthe reverted plants, facilitate the transition to flower formation. Impatiens balsamina, flower reversion, partial evocation, shoot meristem, determination, leaf development  相似文献   

20.
Uridine-3H incorporation and RNA concentration were investigated in different parts of the shoot apical meristem ofChenopodium rubrum using autoradiography and cytophotometry. A single inductive cycle was sufficient to bring about postinductive first events in the shoot apex but not for complete flower differentiation. The initial activation of RNA synthesis manifested itself in all zones of the apex. The first increase was more conspicuous in the peripheral than in the central zone. The indications of the first events in the apices after a single inductive cycle disappear prior to morphological reversal to the vegetative state. Induction by three short days led to rapid flower differentiation. The increase in RNA synthesis and concentration was most conspicuous in the central zone in this case. The ratio of RNA synthesis and content between bud and leaf primordia (B/L) also change in relation to photoperiodic induction. In vegetative plants the B/L ratio was low while after induction it increased. The shifts in activity of RNA synthesis observed in the shoot apical meristem are related to the changes in growth activity of the different parts of the apex. The growth ratios in the apices bear the character of growth correlations. The change in the growth correlations following photoperiodic induction together with the total activation of RNA synthesis are considered to represent one of the first events of the transition to the reproductive state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号