首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
聚合物胶束作为药物载体具有良好的稳定性和生物相容性,提高疏水性药物溶解性等优势,是一类很有应用潜力的药物传输系统。本研究以合成的共价键连D-甘露糖的双亲性聚合物分子(PGMA-Mannose)为药物载体,包载抗癌药物阿霉素(DOX)制备具有甘露糖受体靶向性和pH敏感药物释放特性的新型载药聚合物胶束。利用激光共聚焦显微镜和MTT细胞毒性评价方法对载药胶束的细胞内吞摄取和毒性进行评价。实验结果表明,载药胶束能特异性识别人乳腺癌细胞MDA-MB-231表面过度表达的甘露糖受体,被癌细胞大量摄取并在细胞溶酶体酸性环境内释放药物,而载药胶束在表面甘露糖受体低表达的HEK293细胞中只有少量摄取。与原药DOX相比,该载药胶束对癌细胞的毒性显著提高,而对正常细胞的毒性较低。因此,该PGMA-Mannose聚合物胶束有望成为一种新型的靶向药物输送系统应用于癌症的治疗。  相似文献   

2.
Magnetic nanoparticles for targeted vascular delivery   总被引:1,自引:0,他引:1  
Magnetic targeting has shown promise to improve the efficacy and safety of different classes of therapeutic agents by enabling their active guidance to the site of disease and minimizing dissemination to nontarget tissues. However, its translation into clinic has proven difficult because of inherent limitations of traditional approaches inapplicable for deep tissue targeting in human subjects and a need for developing well-characterized and fully biocompatible magnetic carrier formulations. A novel magnetic targeting scheme based on the magnetizing effect of deep-penetrating uniform fields is presented as an example of a strategy providing a potentially clinically viable solution for preventing injury-triggered reobstruction of stented blood vessels (in-stent restenosis). The design of optimized magnetic carrier formulations and experimental results showing the feasibility of uniform field-controlled targeting for site-specific vascular delivery of small-molecule pharmaceuticals, biotherapeutics, and cells are discussed in the context of antirestenotic therapy. The versatility of this approach applicable to different classes of therapeutic agents exerting their antirestenotic effects through distinct mechanisms prompts exploring the utility of uniform field-mediated magnetic stent targeting for combination therapies with enhanced efficiencies and improved safety profiles. Additional improvements in terms of site specificity and protracted carrier retention at the site of injury may be expected from the development and use of magnetic carriers exhibiting affinity for arterial wall-specific antigens.  相似文献   

3.
Recent research and clinical evidence suggest that thalidomide could potentially be used to treat inflammation associated with Crohn's disease. However, systemic side effects associated with large doses of this drug have limited its widespread use. Treatment, with thalidomide would prove more efficacious if the drug could be delivered directly to target areas in the gut, thereby reducing systemic circulation. Microcapsule encapsulation could enable direct delivery of the drug. To assess the latter, we designed and tested drug-targeting release characteristics of alginate-poly-l-lysine-alginate (APA) microcapsules in simulated gastrointestinal environments. The results show that APA capsules enabled delivery of thalidomide in the middle and distal portions of the small intestine. We also compared the APA membrane formulation with an earlier designed alginate chitosan (AC) membrane thalidomide formulation. The results show that both APA and AC capsules allow for successful delivery of thalidomide in the gut and could prove beneficial in the treatment of Crohn's disease. However, further research is required.  相似文献   

4.
The polymeric functionalization of superparamagnetic iron oxides nanoparticles is developed for cancer targeting capability and magnetic resonance imaging. Here the nanoparticles (NP) are decorated through the adsorption of a polymeric layer around the particle surface for the formation of core-shell. The synthesized magnetic nanoparticles (MNPs) are conjugated with fluorescent dye, targeting ligand, and drug molecules for improvement of target specific diagnostic and possible therapeutics applications. In this investigation doxorubicin was loaded into the shell of the MNPs and release study was carried out at different pH. The core-shell structure of magnetic NP coated chitosan matrix was visualized by TEM observation. The cytotoxicity of these magnetic NPs is investigated using MTT assay and receptor mediated internalization by HeLa and NIH3T3 cells are studied by fluorescence microscopy. Moreover, compared with T2-weighted magnetic resonance imaging (MRI) in the above cells, the synthesized nanoparticles are showed stronger contrast enhancements towards cancer cells.  相似文献   

5.
The application of nanotechnology in medicine, known as nanomedicine, has introduced a plethora of nanoparticles of variable chemistry and design considerations for cancer diagnosis and treatment. One of the most important field is the design and development of pharmaceutical drugs, based on targeted drug delivery system (TDDS). Being inspired by physio-chemical properties of nanoparticles, TDDS are designed to safely reach their targets and specifically release their cargo at the site of disease for enhanced therapeutic effects, thereby increasing the drug tissue bioavailability. Nanoparticles have the advantage of targeting cancer by simply being accumulated and entrapped in cancer cells. However, even after rapid growth of nanotechnology in nanomedicine, designing an effective targeted drug delivery system is still a challenging task. In this review, we reveal the recent advances in drug delivery approach with a particular focus on gold nanoparticles. We seek to expound on how these nanomaterials communicate in the complex environment to reach the target site, and how to design the effective TDDS for complex environments and simultaneously monitor the toxicity on the basis of designing such delivery complexes. Hence, this review will shed light on the research, opportunities and challenges for engineering nanomaterials with cancer biology and medicine to develop effective TDDS for treatment of cancer.  相似文献   

6.
Carbohydrates on cell surfaces contribute a variety of communications between the cell and its environment, and they have been assumed to act as markers for cellular recognition. In this research, 2-methacryloyloxyethyl phosphorylcholine (MPC) polymer nanoparticles, which can react with specific carbohydrates of target cells, were newly prepared to serve as novel drug carriers. A water-soluble MPC polymer bearing hydrazide groups (PMBH) was synthesized by conventional radical polymerization. The MPC polymer showed amphiphilic nature and worked as an emulsifier to form nanoparticles. The nanoparticles covered with PMBH were prepared by the solvent evaporation method and exhibited monodispersity. They were approximately 200 nm in diameter and -2.0 mV in surface potential. According to a surface analysis of the nanoparticles, phosphorylcholine and hydrazide groups were observed, and the surface was fully covered with PMBH. Unnatural carbohydrates having ketone groups on human cervical carcinoma cell (HeLa) surfaces were expressed by treatment with levulinoyl mannosamine (ManLev). When the PMBH nanoparticles were in contact with the ManLev-treated HeLa cells, they accumulated in the cells. In contrast, the nanoparticles were not observed in native HeLa cells (without unnatural carbohydrates). These results indicate that the hydrazide groups of the nanoparticles selectively reacted to the ketone groups of the carbohydrates on the cell surface. The PMBH nanoparticles immobilized with anticancer drugs such as doxorubicin or paclitaxel were in contact with either ManLev-treated or untreated HeLa cells. The viability of the ManLev-treated HeLa cells was effectively reduced, but that of the untreated cells was preserved. This indicated that the anticancer drugs were selectively delivered to the ManLev-treated cells. Nonspecific cellular uptake of the nanoparticles was effectively reduced by MPC polymer coating. Furthermore, the immobilization processes of the drugs differed because of the solubility of the drugs. In conclusion, cellular-specific drug delivery by means of the novel nanoparticles was demonstrated with the selective reaction between unnatural carbohydrates on the cell surface and the hydrazide groups bearing the phosphorylcholine polymer nanoparticles.  相似文献   

7.
To minimize the side effect of chemotherapy, a novel reduction/pH dual-sensitive drug nanocarrier, based on PEGylated dithiodipropionate dihydrazide (TPH)-modified hyaluronic acid (PEG-SS-HA copolymer), was developed for targeted delivery of doxorubicin (DOX) to hepatocellular carcinoma. The copolymer was synthesized by reductive amination via Schiff's base formation between TPH-modified HA and galactosamine-conjugated poly(ethylene glycol) aldehyde/methoxy poly(ethylene glycol) aldehyde. Conjugation of DOX to PEG-SS-HA copolymer was accomplished through the hydrazone linkage formed between DOX and PEG-SS-HA, and confirmed by FTIR and 1H NMR spectra. The polymer–DOX conjugate could self-assemble into spherical nanoparticles (∼150 nm), as indicated by TEM and DLS. In vitro release studies showed that the DOX-loaded nanoparticles could release DOX rapidly under the intracellular levels of pH and glutathiose. Cellular uptake experiments demonstrated that the nanoparticles could be efficiently internalized by HepG2 cells. These results indicate that the PEG-SS-HA copolymer holds great potential for targeted intracellular delivery of DOX.  相似文献   

8.
Superparamagnetic iron oxide nanoparticles (SPIONs) are in clinical use for disease detection by MRI. A major advancement would be to link therapeutic drugs to SPIONs in order to achieve targeted drug delivery combined with detection. In the present work, we studied the possibility of developing a versatile synthesis protocol to hierarchically construct drug-functionalized-SPIONs as potential anti-cancer agents. Our model biocompatible SPIONs consisted of an iron oxide core (9-10 nm diameter) coated with polyvinylalcohols (PVA/aminoPVA), which can be internalized by cancer cells, depending on the positive charges at their surface. To develop drug-functionalized-aminoPVA-SPIONs as vectors for drug delivery, we first designed and synthesized bifunctional linkers of varied length and chemical composition to which the anti-cancer drugs 5-fluorouridine or doxorubicin were attached as biologically labile esters or peptides, respectively. These functionalized linkers were in turn coupled to aminoPVA by amide linkages before preparing the drug-functionalized-SPIONs that were characterized and evaluated as anti-cancer agents using human melanoma cells in culture. The 5-fluorouridine-SPIONs with an optimized ester linker were taken up by cells and proved to be efficient anti-tumor agents. While the doxorubicin-SPIONs linked with a Gly-Phe-Leu-Gly tetrapeptide were cleaved by lysosomal enzymes, they exhibited poor uptake by human melanoma cells in culture.  相似文献   

9.

Background

Iron nanoparticles (INPs) are usually prepared from inorganic sources, but we have prepared it from goat blood using incineration method. These INPs are then coated with chitosan (C) and coupled with folic acid (F) to form bionanocomposite for folate receptors.

Methods

The bionanocomposite was characterized for its physicochemical properties and cancer cell targeting studies using Fourier transform infrared spectroscopy, transmission electron microscopy, Zeta potential analysis, scanning electron microscopy–energy dispersive X-ray spectroscopy and magnetic resonance imaging analyses.

Results

The results have shown that the particle size of the INP-CF was found to be 80–300 nm and confirmed the presence of chitosan and folic acid in the bionanocomposite. Cancer and normal mouse embryonic cell line study confirmed the internalization of INP-CF and this phenomenon was also supported by physicochemical studies.

Conclusion

Thus, nanobiocomposite prepared using natural sources as a raw material will be beneficial compared to commercially available synthetic sources and can be used as receptor targeting agent for cancer treatment. This nanobiocomposite when coupled with substances such as monoclonal antibodies might act as a theranostic nanoagent for cancer therapy in the years to come.

General significance

The prepared novel nanobiocomposite containing INPs isolated from natural source may be used as multifunctional agent due its paramagnetic property apart from its drug delivery effect.  相似文献   

10.
A carrier is inserted into the appropriate organelles (nucleus) in successful medication transport, crucial to achieving very effective illness treatment. Cell-membrane targeting is the major focus of using nuclei to localize delivery. It has been demonstrated that high quantities of anticancer drugs can be injected directly into the nuclei of cancer cells, causing the cancer cells to die and increasing the effectiveness of chemotherapy. There are several effective ways to functionalize Nanoparticles (NPs), including changing their chemical makeup or attaching functional groups to their surface to increase their ability to target organelles. To cause tumor cells to apoptosis, released medicines must engage with molecular targets on particular organelles when their concentration is high enough. Targeted medication delivery studies will increasingly focus on organelle-specific delivery.  相似文献   

11.
12.
Dynamics of magnetoliposomes binding to the tumor cells and the efficiency of their recognition for targeted drug delivery is largely determined by physical interaction. In this paper we assess the strength of magnetic dipole interaction that occurs between endogenous magnetic nanoparticles in tumor cells and exogenous magnetic nanoparticles as a component of magnetoliposomes, and compare it with the forces of specific binding of the antigen-antibody complex. To assess the strength of magnetic dipole interaction the model of chains of identical particles was used, and an order of magnitude, 10?9 N, was obtained. Thus, the indicated force has an order of magnitude close to the forces of specific binding, and even more. The force of magnetic dipole interaction between a magnetically marked dosage form and tumor cells is virtually the additional specific binding force — “passive targeting” for targeted drug delivery in consequence of the fact that tumor cells tend to contain the number of biogenic nanoparticles of magnetite (Fe3O4) by an order of magnitude greater than normal.  相似文献   

13.
The goal of this work is to make an injectable physically and chemically cross-linking NIPAAm-based copolymer system for endovascular embolization. A copolymer with N-isopropylacrylamide (NIPAAm) and hydroxyethyl methacrylate (HEMA) was synthesized and converted to poly(NIPAAm-co-HEMA-acrylate) functionalized with olefins. When poly(NIPAAm-co-HEMA-acrylate) was mixed with pentaerythritol tetrakis 3-mercaptopropionate (QT) stoichiometrically in a 0.1 N PBS solution of pH 7.4, it formed a temperature-sensitive hydrogel with low swelling through the Michael-type addition reaction and showed improved elastic properties at low frequency compared to physical gelation. This material could be useful for applications requiring water-soluble injection but lower swelling and lower creep properties than available with other soluble in-situ-gelling materials.  相似文献   

14.
15.
An injectable, in situ physically and chemically crosslinkable gellan hydrogel is synthesized via gellan thiolation. The thiolation does not alter the gellan's unique 3-D conformation, but leads to a lower phase transition temperature under physiological conditions and stable chemical crosslinking. The synthesis and hydrogels are characterized by (1)H NMR, FT-IR, CD, or rheology measurements. The injectability and the tissue culture cell viability is also tested. The thiolated gellan hydrogel exhibits merits, such as ease for injection, quick gelation, lower gelling temperature, stable structure, and nontoxicity, which make it promising in biomedicine and bioengineering as an injectable hydrogel.  相似文献   

16.
Quercetin (QT) is a potential chemotherapeutic drug with low solubility that seriously limits its clinical use. The aim of this study was enhancing cellular penetration of QT by sterol containing solid lipid nanoparticles (SLNs) which make bilayers fluent for targeting hepatocellular carcinoma cells. Three variables including sterol type (cholesterol, stigmasterol and stigmastanol), drug and sterol content were studied in a surface response D-optimal design for preparation of QT-SLNs by emulsification solvent evaporation method. The studied responses included particle size, zeta potential, drug loading capacity and 24?h release efficiency (RE24%). Scanning electron and atomic force microscopy were used to study the morphology of QT-SLNs and their thermal behavior was studied by DSC analysis. Cytotoxicity of QT-SLNs was determined by MTT assay on HepG-2 cells and cellular uptake by fluorescence microscopy method. Optimized QT-SLNs obtained from cholesterol and QT with the ratio of 2:1 that showed particle size of 78.0?±?7.0?nm, zeta potential of??22.7?±?1.3?mV, drug loading efficiency of 99.9?±?0.5% and RE24 of 56.3?±?3.4%. IC50 of QT in cholesterol SLNs was about six and two times less than free QT and phytosterol SLNs, respectively, and caused more accumulation of QT in HepG2 cells. Blank phytosterol SLNs were toxic on cells.  相似文献   

17.
The relative difference in polymeric architectures of dendrimer and linear bis(poly(ethylene glycol)) (PEG) polymer in conjugation with paclitaxel has been described. Paclitaxel, a poorly soluble anticancer drug, was covalently conjugated with PAMAM G4 hydroxyl-terminated dendrimer and bis(PEG) polymer for the potential enhancement of drug solubility and cytotoxicity. Both conjugates were characterized by 1NMR, HPLC, and MALDI/TOF. In addition, molecular conformations of dendrimer, bis(PEG), paclitaxel, and its polymeric conjugates were studied by molecular modeling. Hydrolysis of the ester bond in the conjugate was analyzed by HPLC using esterase hydrolyzing enzyme. In vitro cytotoxicity of dendrimer, bis(PEG), paclitaxel, and polymeric conjugates containing paclitaxel was evaluated using A2780 human ovarian carcinoma cells. Cytotoxicity increased by 10-fold with PAMAM dendrimer-succinic acid-paclitaxel conjugate when compared with free nonconjugated drug. Data obtained indicate that the nanosized dendritic polymer conjugates can be used with good success as anticancer drug carriers.  相似文献   

18.
There is considerable interest in the sub‐cellular targeting and delivery of biomolecules, therapeutic and imaging agents, and nanoparticles and nanoparticle conjugates into organelles for therapeutic and imaging purposes. To date, a number of studies have used sorting peptides for targeted delivery of cargo into different cell organelles but not into lysosomes. In this study, the delivery of 13‐nm gold nanoparticles across the cell membrane followed by targeted localisation into the lysosomes of a mammalian cell line was examined using novel combinations of cell‐penetrating peptides and lysosomal sorting peptides conjugated to the nanoparticles. Using a combination of fluorescence spectroscopy, fluorescence microscopy and transmission electron microscopy techniques, we show that these nanoconjugates were efficiently and selectively delivered into the lysosomes with minimal cytotoxic effects. This novel targeted delivery system may underpin the development of a new strategy for the treatment of lysosomal storage diseases by exploiting the large surface area of nanoparticles to deliver drugs or replacement enzymes directly to the lysosomes. Copyright © 2012 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

19.
Molecular vehicles for targeted drug delivery   总被引:2,自引:0,他引:2  
Targeted drug delivery by cell-specific cytokines and antibodies promises greater drug efficacy and reduced side effects. We describe a novel strategy for assembly of drug delivery vehicles that does not require chemical modification of targeting proteins. The strategy relies on a noncovalent binding of standardized "payload" modules to targeting proteins expressed with a "docking" tag. The payload modules are constructed by linking drug carriers to an adapter protein capable of binding to a docking tag. Using fragments of bovine ribonuclease A as an adapter protein and a docking tag, we have constructed vascular endothelial growth factor (VEGF) based vehicles for gene delivery and for liposome delivery. Assembled vehicles displayed remarkable selectivity in drug delivery to cells overexpressing VEGF receptors. We expect that our strategy can be employed for targeted delivery of many therapeutic or imaging agents by different recombinant targeting proteins.  相似文献   

20.
Mitochondrial dysfunction including oxidative stress and DNA mutations underlies the pathology of various diseases including Alzheimer's disease and diabetes, necessitating the development of mitochondria targeted therapeutic agents. Nanotechnology offers unique tools and materials to target therapeutic agents to mitochondria. As discussed in this paper, a variety of functionalized nanosystems including polymeric and metallic nanoparticles as well as liposomes are more effective than plain drug and non-functionalized nanosystems in delivering therapeutic agents to mitochondria. Although the field is in its infancy, studies to date suggest the superior therapeutic activity of functionalized nanosystems for treating mitochondrial defects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号