首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Telomerase is considered as an important biomarker for cancer cells. Two different methods for the amplified electrochemical and microgravimetric quartz-crystal-microbalance detection of telomerase activity originating from HeLa cancer cells are described. One method involves the telomerization of a primer (1) linked to the electrode, in the presence of telomerase from HeLa cell extract and dNTP, followed by the hybridization of a biotin-labeled nucleic acid (2) that is complementary to the telomere repeat units. The subsequent binding of an avidin-alkaline phosphatase conjugate (3) that catalyzes the oxidative hydrolysis of 5-bromo-4-chloro-3-indolyl phosphate (4) results in the precipitation of the insoluble product (5) on the electrode. The second method involves the telomerization of the primer (1) associated with the electrode, in the presence of the telomerase-containing HeLa cell extract and the dNTP nucleotide mixture that includes biotin-labeled dUTP. The telomerization leads to the labeling of the telomeres with biotin labels. The association of the avidin-alkaline phosphatase conjugate (3) to the biotin labels results in the biocatalyzed transformation of (4) to (5) and the formation of a precipitate on the electrode or the Au-quartz crystal. As numerous precipitate molecules are formed as a result of the formation of a single telomere, the methods represent routes for the amplified detection of telomerase activity. The formation of the precipitate on the respective transducers is probed by following the changes in the electrode resistance using chronopotentiometry, or by following the frequency changes of the piezoelectric quartz crystals. The amount of precipitate generated on the electrodes is controlled by the concentration of the HeLa cancer cells. The methods enable the detection of telomerase activity that is extracted from 1000 HeLa cancer cells.  相似文献   

2.
人端粒酶是一种核蛋白体,通过其内含的RNA模板与端粒末端配对把重复端粒片段添加在端粒3'末端|因此,端粒酶活性与细胞凋亡、衰老、永生化有密切关系,是癌症临床预测诊断的一个生物标签.现有的端粒酶活性检测方法,存在灵敏度低和不易定量等问题.本研究采用错配有限延伸法检测端粒酶活性:在人端粒酶延伸人工合成的游离端粒酶底物时,只加入dATP和dGTP,端粒酶只能把底物延伸4个脱氧核糖核苷酸AGGG.然后加入dNTP,让端粒酶延伸的产物和一条长的引物配对从而延伸出PCR模板|再加入引物进行热启动PCR.PCR后进行非变性PAGE (polyacrylamide gel electrophoresis),得到希望的唯一1条目标带.同时,用不同的端粒酶浓度梯度进行优化,发现有限延伸法检测端粒酶活性的下限达到250个HeLa细胞.  相似文献   

3.
Telomere lengths are maintained in many cancer cells by the ribonucleoprotein enzyme telomerase but can be further elongated by increasing telomerase activity through the overexpression of telomerase components. We report here that increased telomerase activity results in increased telomere length that eventually reaches a plateau, accompanied by the generation of telomere length heterogeneity and the accumulation of extrachromosomal telomeric repeat DNA, principally in the form of telomeric circles (t-circles). Telomeric DNA was observed in promyelocytic leukemia bodies, but no intertelomeric copying or telomere exchange events were identified, and there was no increase in telomere dysfunction-induced foci. These data indicate that human cells possess a mechanism to negatively regulate telomere length by trimming telomeric DNA from the chromosome ends, most likely by t-loop resolution to form t-circles. Additionally, these results indicate that some phenotypic characteristics attributed to alternative lengthening of telomeres (ALT) result from increased mean telomere length, rather than from the ALT mechanism itself.  相似文献   

4.
Inefficiency in the production of cloned animals is most likely due to epigenetic reprogramming errors after somatic cell nuclear transfer (SCNT). In order to investigate whether nuclear reprogramming restores cellular age of donor cells after SCNT, we measured telomere length and telomerase activity in cloned pigs and cattle. In normal pigs and cattle, the mean telomere length was decreased with biological aging. In cloned or transgenic cloned piglets, the mean telomere length was elongated compared to nuclear donor fetal fibroblasts and age-matched normal piglets. In cloned cattle, no increases in mean telomere length were observed compared to nuclear donor adult fibroblasts. In terms of telomerase activity, significant activity was observed in nuclear donor cells and normal tissues from adult or new-born pigs and cattle, with relatively higher activity in the porcine tissues compared to the bovine tissues. Cloned calves and piglets showed the same level of telomerase activity as their respective donor cells. In addition, no difference in telomerase activity was observed between normal and transgenic cloned piglets. However, increased telomerase activity was observed in porcine SCNT blastocysts compared to nuclear donor cells and in vitro fertilization (IVF)-derived blastocysts, suggesting that the elongation of telomere lengths observed in cloned piglets could be due to the presence of higher telomerase activity in SCNT blastocysts. In conclusion, gathering from the comparative studies with cattle, we were able to demonstrate that telomere length in cloned piglets was rebuilt or elongated with the use of cultured donor fetal fibroblasts.  相似文献   

5.
6.
G B Morin 《Cell》1989,59(3):521-529
I have identified an activity in crude HeLa cell extracts that satisfies the requirements for a human telomere terminal transferase or telomerase. It catalyzes the addition of a 6 nucleotide repeating pattern to oligonucleotide primers containing human or nonhuman telomeric repeat sequences. Direct sequence analyses of reaction products reveal the added sequence to be TTAGGG in all cases. Under optimal conditions 65-70 repeats can be synthesized. The enzyme has the properties of a ribonucleoprotein. Telomerase has previously been observed only in ciliated protozoans, which possess 10(4) - 10(7) macronuclear telomeres. The identification of telomerase in HeLa cells with only approximately 100 telomeres indicates that telomerase-mediated telomere maintenance is conserved throughout eukaryotes.  相似文献   

7.
It has been proposed that the progressive shortening of telomeres in somatic cells eventually results in senescence. Previous experiments have demonstrated that many immortal cell lines have acquired telomerase activity leading to stabilization of telomere length. Telomere dynamics and telomerase activity were examined in the telomerase-positive immortal cell lines HeLa and 293 and subclones derived from them. A mass culture of HeLa cells had a stable mean telomere length over 60 population doublings (PD)in vitro.Subclones of this culture, however, had a range of mean telomere lengths indicating that telomeric heterogeneity exists within a population with a stable mean telomere length. Some of the subclones lacked detectable telomerase activity soon after isolation but regained it by PD 18, suggesting that at least some of the variation in telomere length can be attributed to variations in telomerase activity levels. 293 subclones also varied in telomere length and telomerase activity. Some telomerase-positive 293 subclones contained long telomeres that gradually shortened, demonstrating that factors other than telomerase also act to modulate telomere length. Fluctuations in telomere length in telomerase-positive immortalized cells may contribute to chromosomal instability and clonal evolution.  相似文献   

8.
9.
Ren JG  Xia HL  Just T  Dai YR 《FEBS letters》2001,488(3):123-132
Reactive oxygen species (ROS) have been found to trigger apoptosis in tumor cells. At the same time, telomerase is found to be associated with malignancy and reduced apoptosis. However little is known about the linkage between ROS such as *OH and telomerase/telomere. To address the interrelations between *OH and telomerase/telomere in tumor cell killing, HeLa, 293 and MW451 cells were induced to undergo apoptosis with *OH radicals generated via Fe(2+)-mediated Fenton reactions (0.1 mM FeSO(4) plus 0.3-0.9 mM H2O2) and telomerase activity, telomere length were measured during apoptosis. We found that during *OH-induced apoptosis, telomere shortening took place while no changes in telomerase activity were observed. Our results suggest that *OH-induced telomere shortening is not through telomerase inhibition but possibly a direct effect of *OH on telomeres themselves indicating that telomere shortening but not telomerase inhibition is the primary event during *OH-induced apoptosis. Strikingly, we also found that *OH-induced apoptosis in HeLa cells is caspase-3-independent but is associated with reduction of mitochondrial transmembrane potential. Our results indicate that *OH triggers apoptotic tumor cell death through a telomere-related, caspase-independent pathway.  相似文献   

10.
11.
12.
13.
14.
15.
16.
Radiotherapy plays a key role in the treatment of many tumors. It is difficult to determine what fraction of tumor cells survives after treatment with ionizing radiation. A convenient and sensitive biochemical assay could be efficacious in determining the potential success of radiotherapy. Since telomerase activity is frequently associated with the malignant phenotype, we sought to determine whether a correlation existed between ionizing radiation-induced cell killing and telomerase activity. We evaluated telomerase activity in two telomerase-positive and one telomerase-negative human cell line exposed to ionizing radiation. Telomerase activity was determined using a PCR-based telomeric repeat amplification protocol coupled with ELISA. We found ionizing radiation treatment to decrease the telomerase activity (in plateau phase cells of RKO, HeLa; and growing cells of RKO) in a dose-dependent manner, which correlated with cell death in in vitro tests as well as during tumor regression in nude mice. In contrast, growing HeLa cells after 24 h postradiation treatment showed an increase in telomerase activity, but there was no increase in the levels of mRNA of hTERT. To assess the sensitivity of the telomerase activity assay, we performed mixing experiments of HeLa and AG1522 cell extracts. These studies showed that telomerase activity could be detected in lysate equal to a single HeLa cell when mixed with 10,000 AG1522 cells. Our results indicate that even a few surviving neoplastic cells can be detected by telomerase activity assay. Therefore, detection of telomerase activity may be a useful monitor of radiotherapeutic efficacy and an early predictor of outcome.  相似文献   

17.
Telomerase activation represents an early step in carcinogenesis. Increased telomerase activity in cervical cancer suggests a potential target for the development of novel therapeutic drugs. The aim of this study is to investigate the impact of telomerase activity on the biological features of HeLa cells and the possible mechanisms of enhanced apoptosis rate induced by sodium butyrate after telomerase inhibition. We introduced vectors encoding dominate negative (DN)-hTERT, wild-type (WT)-hTERT, or a control vector expressing only a drug-resistance marker into HeLa cells. Thus we assessed the biological effects of telomerase activity on telomere length, cell proliferation, chemosensitivity and radiosensitivity. In order to understand the mechanisms in which DN-hTERT enhances the apoptosis induced by sodium butyrate, we detected the release status of cytochrome c and apoptosis inducing factor (AIF) from mitochondria. Ectopic expression of DN-hTERT resulted in inhibition of telomerase activity, reduction of telomere length, decreased colony formation ability, and loss of tumorigenicity in nude mice. Moreover, DN-hTERT transfected HeLa cells with shortened telomeres were more susceptible to multiple chemotherapeutic agents and radiation. WT-hTERT transfected HeLa cells with longer telomeres exhibited resistance to radiation and chemotherapeutic agents. Our data demonstrate that elevated release level of cytochrome c and AIF from mitochondria might contribute to the enhanced apoptosis in DN-hTERT transfected HeLa cells after treatment with sodium butyrate. Inhibition of telomerase might serve as a promising adjunctive therapy combined with conventional therapy in cervical cancer. Both of them contributed equally to this work.  相似文献   

18.
Some human cancers maintain telomeres using alternative lengthening of telomeres (ALT), a process thought to be due to recombination. In Kluyveromyces lactis mutants lacking telomerase, recombinational telomere elongation (RTE) is induced at short telomeres but is suppressed once telomeres are moderately elongated by RTE. Recent work has shown that certain telomere capping defects can trigger a different type of RTE that results in much more extensive telomere elongation that is reminiscent of human ALT cells. In this study, we generated telomeres composed of either of two types of mutant telomeric repeats, Acc and SnaB, that each alter the binding site for the telomeric protein Rap1. We show here that arrays of both types of mutant repeats present basally on a telomere were defective in negatively regulating telomere length in the presence of telomerase. Similarly, when each type of mutant repeat was spread to all chromosome ends in cells lacking telomerase, they led to the formation of telomeres produced by RTE that were much longer than those seen in cells with only wild-type telomeric repeats. The Acc repeats produced the more severe defect in both types of telomere maintenance, consistent with their more severe Rap1 binding defect. Curiously, although telomerase deletion mutants with telomeres composed of Acc repeats invariably showed extreme telomere elongation, they often also initially showed persistent very short telomeres with few or no Acc repeats. We suggest that these result from futile cycles of recombinational elongation and truncation of the Acc repeats from the telomeres. The presence of extensive 3′ overhangs at mutant telomeres suggests that Rap1 may normally be involved in controlling 5′ end degradation.  相似文献   

19.
In the yeast Kluyveromyces lactis, the telomeres are composed of perfect 25-bp repeats copied from a 30-nucleotide RNA template defined by 5-nucleotide terminal repeats. A genetic dissection of the K. lactis telomere was performed by using mutant telomerase RNA (TER1) alleles to incorporate mutated telomeric repeats. This analysis has shown that each telomeric repeat contains several functional regions, some of which may physically overlap. Mutations in the terminal repeats of the template RNA typically lead to telomere shortening, as do mutations in the right side of the Rap1p binding site. Mutations in the left half of the Rap1p binding site, however, lead to the immediate formation of long telomeres. When mutated, the region immediately 3' of the Rap1p binding site on the TG-rich strand of the telomere leads to telomeres that are initially short but eventually undergo extreme telomere elongation. Mutations between this region and the 3' terminal repeat cause elevated recombination despite the presence of telomeres of nearly wild-type length. Mutants with highly elongated telomeres were further characterized and exhibit signs of telomere capping defects, including elevated levels of subtelomeric recombination and the formation of extrachromosomal and single-stranded telomeric DNA. Lengthening caused by some Rap1 binding site mutations can be suppressed by high-copy-number RAP1. Mutated telomeric repeats from a delayed elongation mutant are shown to be defective at regulating telomere length in cells with wild-type telomerase, indicating that the telomeric repeats are defective at telomere length regulation.  相似文献   

20.
The present study describes an empirically discovered phenomenon that might be useful for development of a sensitive and rapid methodology for quantification of telomerase activity assay with simple data acquisition and possibility for calculation of telomerase product in absolute units. The method is based on the design and application of two single-stranded telomere sensing probes consisting of dual-labeled 16-mer oligonucleotides (fluorescent Cy3/Cy3-labeled and non-fluorescent IowaBlack/BHQ-labeled) that can simultaneously hybridize on the primary product of the telomerase reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号