首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The P2X7 receptor (P2X7R) is an ATP-gated ion channel highly expressed in microglia. P2X7R plays important roles in inflammatory responses in the brain. However, little is known about the mechanisms regulating its functions in microglia. Lysophosphatidylcholine (LPC), an inflammatory phospholipid that promotes microglial activation, may have some relevance to P2X7R signaling in terms of microglial function. In this study, we examined its effects on P2X7R signaling in a mouse microglial cell line (MG6) and primary microglia. LPC facilitated the sustained increase in the intracellular Ca(2+) concentration ([Ca(2+)](i)) through P2X7R channels activated by ATP or BzATP. The potentiated increase in [Ca(2+)](i) was actually inhibited by P2X7R antagonists, brilliant blue G and oxidized ATP. The potentiating effect of LPC was not observed with P2Y receptor systems, which are also expressed in MG6 cells. G2A, a receptor for LPC, was expressed in MG6 cells, but not involved in the facilitating effect of LPC on the P2X7R-mediated change in [Ca(2+)](i). Furthermore, LPC enhanced the P2X7R-associated formation of membrane pores and the activation of p44/42 mitogen-activated protein kinase. These results suggest that LPC may regulate microglial functions in the brain by enhancing the sensitivity of P2X7R.  相似文献   

2.
We have studied histamine (HA)-evoked intracellular Ca(2+) release in single, freshly isolated myocytes from the guinea pig urinary bladder. Short applications of histamine (5 s) produced a thapsigargin (TG)-sensitive transient increase in intracellular calcium concentration ([Ca(2+)](i)). It was established that histamine and caffeine (Caff) released Ca(2+) from the same intracellular stores in these cells. Reducing the Ca(2+) content of internal stores by incubating cells with U-73343 or cyclopiazonic acid (CPA) inhibited the histamine-evoked Ca(2+) release in 69% and 60% of cells, respectively. Under these conditions, all cells released Ca(2+) in response to either caffeine or acetylcholine (ACh). However, decreasing internal Ca(2+) stores by removing external Ca(2+) inhibited histamine-induced Ca(2+) mobilization in only 22% of cells. A similar small fraction of cells was inhibited when sarcoplasmic reticulum (SR) Ca(2+) pumps were quickly blocked to avoid a significant reduction of luminal Ca(2+). In conclusion, lowering the luminal Ca(2+) content in combination with an impairment of the SR Ca(2+) pump activity significantly diminishes the ability of histamine to evoke an all-or-none intracellular Ca(2+) release.  相似文献   

3.
We studied the effect of excitatory neurotransmitters (10(-5) M) on the intracellular Ca(2+) concentration ([Ca(2+)](i)) of cultured myenteric neurons. ACh evoked a response in 48.6% of the neurons. This response consisted of a fast and a slow component, respectively mediated by nicotinic and muscarinic receptors, as revealed by specific agonists and antagonists. Substance P evoked a [Ca(2+)](i) rise in 68.2% of the neurons, which was highly dependent on Ca(2+) release from intracellular stores, since after thapsigargin (5 microM) pretreatment only 8% responded. The responses to serotonin, present in 90.7%, were completely blocked by ondansetron (10(-5) M), a 5-HT(3) receptor antagonist. Specific agonists of other serotonin receptors were not able to induce a [Ca(2+)](i) rise. Removing extracellular Ca(2+) abolished all serotonin and fast ACh responses, whereas substance P and slow ACh responses were more persistent. We conclude that ACh-induced signaling involves both nicotinic and muscarinic receptors responsible for a fast and a more delayed component, respectively. Substance P-induced signaling requires functional intracellular Ca(2+) stores, and the 5-HT(3) receptor mediates the serotonin-induced Ca(2+) signaling in cultured myenteric neurons.  相似文献   

4.
In the healthy adult brain microglia, the main immune-competent cells of the CNS, have a distinct (so-called resting or surveying) phenotype. Resting microglia can only be studied in vivo since any isolation of brain tissue inevitably triggers microglial activation. Here we used in vivo two-photon imaging to obtain a first insight into Ca(2+) signaling in resting cortical microglia. The majority (80%) of microglial cells showed no spontaneous Ca(2+) transients at rest and in conditions of strong neuronal activity. However, they reliably responded with large, generalized Ca(2+) transients to damage of an individual neuron. These damage-induced responses had a short latency (0.4-4s) and were localized to the immediate vicinity of the damaged neuron (< 50 μm cell body-to-cell body distance). They were occluded by the application of ATPγS as well as UDP and 2-MeSADP, the agonists of metabotropic P2Y receptors, and they required Ca(2+) release from the intracellular Ca(2+) stores. Thus, our in vivo data suggest that microglial Ca(2+) signals occur mostly under pathological conditions and identify a Ca(2+) store-operated signal, which represents a very sensitive, rapid, and highly localized response of microglial cells to brain damage. This article is part of a Special Issue entitled: 11th European Symposium on Calcium.  相似文献   

5.
Endothelin induces the Ca(2+)-transient in endothelial cells in situ.   总被引:2,自引:0,他引:2  
Using front-surface fluorometry of fura-2 and valvular strips of the pig aorta, we recorded changes in the cytosolic Ca2+ concentration, [Ca2+]i, of endothelial cells in situ, quantitatively, and investigated the effects of endothelin-1 and -3 on these endothelial cells. Both endothelin-1 and -3 elevated [Ca2+]i of a peak (the first phase) and sustained type. This first phase is considered to be due to a release of Ca2+ from intracellular storage sites. The sustained phase depended on extracellular Ca2+ and is considered to be due to an influx of Ca2+ through the plasma membrane. At equimolar concentrations, the peak elevations of [Ca2+]i induced by endothelin-1 were much higher than those induced by endothelin-3. We suggest that, in endothelial cells in situ, endothelin-1 mobilizes stored Ca2+ and may activate Ca(2+)-sensitive pathways, including the release of prostacyclin and endothelium-derived relaxing factors, more potently than does endothelin-3.  相似文献   

6.
Effects of epidermal growth factor (EGF) on the intracellular Ca(2+) ([Ca(2+)](i)) responses to nucleotides, Ca(2+) release from thapsigargin-sensitive stores and capacitative Ca(2+) entry were investigated in cultured mouse mammary epithelial cells. EGF treatment induced proliferation of mammary epithelial cells. We checked for mitotic activity by immunocytochemistry with an anti-PCNA (proliferating cell nuclear antigen) antibody, which stains nuclei of the cells in S-phase of cell cycle. EGF treatment apparently increased the number of PCNA-stained cells compared to those treated with differentiating hormones (insulin, prolactin and cortisol) or without any hormone. Application of EGF did not induce any acute [Ca(2+)](i) response. EGF treatment for 1-2 days in culture, however, enhanced [Ca(2+)](i) responses including [Ca(2+)](i) increase by ATP, UTP and other nucelotides, Ca(2+) release from thapsigargin-sensitive stores, as well as capacitative Ca(2+) entry. Genistein, a tyrosine kinase inhibitor, prevented EGF-induced cell proliferation and the [Ca(2+) ](i) responses in a dose-dependent manner. These results indicate that EGF treatment enhances Ca(2+) mobilization and capacitative Ca(2+) entry, well correlated with cellular proliferation in mammary epithelial cells.  相似文献   

7.
Although the role of Ca(2+) in liver transplantation injury has been the object of several studies, direct evidence for alterations in intracellular Ca(2+) homeostasis after cold preservation-warm reoxygenation (CP/WR) has never been presented. We thus investigated the effects of CP/WR on steady-state Ca(2+) and responses to a Ca(2+)-mobilizing agonist. Isolated rat hepatocytes were suspended in University of Wisconsin solution, stored at 4 degrees C for 0, 24, and 48 h, and reoxygenated at 37 degrees C for 1 h. Cytosolic Ca(2+) was measured in single cells by digitized fluorescence videomicroscopy. CP/WR caused a significant increase in steady-state cytosolic Ca(2+), which was inversely proportional to cell viability. Pretreatment of hepatocytes with an agent that protects mitochondrial function attenuated the increase in steady-state cytosolic Ca(2+) and improved hepatocyte viability. Ca(2+) responses to the purinergic agonist ATP also increased significantly as a function of cold storage time. This increase was related to an increase in the size of inositol 1,4,5-trisphosphate-sensitive Ca(2+) stores and subsequent capacitative Ca(2+) entry. Thus CP/WR significantly perturbs steady-state hepatocellular Ca(2+) and responses to Ca(2+)-mobilizing agonists, which may contribute to hepatocyte metabolic dysfunction observed after CP/WR.  相似文献   

8.
We studied the role of the Pmr1-containing Ca(2+) store in COS-1 cells endowed with a functional endoplasmic reticulum. Transfected cells could be recognized by using a green-fluorescent-protein (GFP)-tagged form of Pmr1. Pmr1-GFP fluorescence showed a typical juxtanuclear Golgi-like distribution. Pmr1-GFP-containing cells with functional endoplasmic reticulum responded to 100 microM ATP with baseline Ca(2+) spiking, while non-transfected cells produced an initial Ca(2+) peak followed by a long-lasting plateau. The Ca(2+) signal often appeared after a long latency in Pmr1-GFP-expressing cells. ATP-stimulated Pmr1-GFP-expressing cells with functional endoplasmic reticulum responded after a latency period to extracellular Ca(2+) with a regenerative Ca(2+) signal, while non-transfected control cells responded with an immediate slow rise in free cytosolic Ca(2+) concentration. These results demonstrate the importance of the Pmr1-containing Ca(2+) store in generating or modifying cellular Ca(2+) signals.  相似文献   

9.
In HEK 293 cells stably expressing type 1 parathyroid (PTH) receptors, PTH stimulated release of intracellular Ca(2+) stores in only 27% of cells, whereas 96% of cells responded to carbachol. However, in almost all cells PTH potentiated the response to carbachol by about 3-fold. Responses to carbachol did not desensitize, but only the first challenge in Ca(2+)-free medium caused an increase in [Ca(2+)](i), indicating that the carbachol-sensitive Ca(2+) stores had been emptied. Subsequent addition of PTH also failed to increase [Ca(2+)](i), but when it was followed by carbachol there was a substantial increase in [Ca(2+)](i). A similar potentiation was observed between ATP and PTH but not between carbachol and ATP. Intracellular heparin inhibited responses to carbachol and PTH, and pretreatment with ATP and carbachol abolished responses to PTH, suggesting that the effects of PTH involve inositol trisphosphate (IP(3)) receptors. PTH neither stimulated detectable IP(3) formation nor affected the amount formed in response to ATP or carbachol. PTH stimulated cyclic AMP formation, but this was not the means whereby PTH potentiated Ca(2+) signals. We suggest that PTH may regulate Ca(2+) mobilization by facilitating translocation of Ca(2+) between discrete intracellular stores and that it thereby regulates the size of the Ca(2+) pool available to receptors linked to IP(3) formation.  相似文献   

10.
We have studied the histamine-induced potentiation of inositol 1,4,5-trisphosphate (IP(3))-mediated Ca(2+) release in HeLa cells. Intracellular IP(3) levels were increased by IP(3) dialysis with the whole-cell configuration of the patch-clamp technique (cell dialysis of IP(3)). Low concentrations of extracellular histamine (1 microM) accelerated the rate of IP(3)-mediated Ca(2+) release, an effect that required the coincidence of both histamine signalling and the increase in IP(3) levels. Our data suggest that the potentiation effect of histamine cannot be explained simply by agonist-induced increase in IP(3) levels. Disordering microfilaments with cytochalasin D and microtubules with colchicine caused a decrease in the histamine-induced Ca(2+) response. Furthermore, both cytochalasin D and colchicine diminished the rate of IP(3)-mediated Ca(2+) release, while only the former reduced slightly the histamine-induced potentiation effect. Remarkably, rapid inhibition of SERCA pumps with thapsigargin to avoid the depletion of internal Ca(2+) stores diminished the histamine-induced potentiation of IP(3)-mediated Ca(2+) release, without affecting the rate of IP(3)-mediated Ca(2+) release. These data indicate that histamine-induced potentiation of Ca(2+) release in HeLa cells requires active SERCA pumps and suggest that SERCA pumps are an important factor in determining the efficiency of agonist-induced Ca(2+) release.  相似文献   

11.
We have reported that a population of chromaffin cell mitochondria takes up large amounts of Ca(2+) during cell stimulation. The present study focuses on the pathways for mitochondrial Ca(2+) efflux. Treatment with protonophores before cell stimulation abolished mitochondrial Ca(2+) uptake and increased the cytosolic [Ca(2+)] ([Ca(2+)](c)) peak induced by the stimulus. Instead, when protonophores were added after cell stimulation, they did not modify [Ca(2+)](c) kinetics and inhibited Ca(2+) release from Ca(2+)-loaded mitochondria. This effect was due to inhibition of mitochondrial Na(+)/Ca(2+) exchange, because blocking this system with CGP37157 produced no further effect. Increasing extramitochondrial [Ca(2+)](c) triggered fast Ca(2+) release from these depolarized Ca(2+)-loaded mitochondria, both in intact or permeabilized cells. These effects of protonophores were mimicked by valinomycin, but not by nigericin. The observed mitochondrial Ca(2+)-induced Ca(2+) release response was insensitive to cyclosporin A and CGP37157 but fully blocked by ruthenium red, suggesting that it may be mediated by reversal of the Ca(2+) uniporter. This novel kind of mitochondrial Ca(2+)-induced Ca(2+) release might contribute to Ca(2+) clearance from mitochondria that become depolarized during Ca(2+) overload.  相似文献   

12.
Expression of heterologous SERCA1a ATPase in Cos-1 cells was optimized to yield levels that account for 10-15% of the microsomal protein, as revealed by protein staining on electrophoretic gels. This high level of expression significantly improved our characterization of mutants, including direct measurements of Ca(2+) binding by the ATPase in the absence of ATP, and measurements of various enzyme functions in the presence of ATP or P(i). Mutational analysis distinguished two groups of amino acids within the transmembrane domain: The first group includes Glu771 (M5), Thr799 (M6), Asp800 (M6), and Glu908 (M8), whose individual mutations totally inhibit binding of the two Ca(2+) required for activation of one ATPase molecule. The second group includes Glu309 (M4) and Asn796 (M6), whose individual or combined mutations inhibit binding of only one and the same Ca(2+). The effects of mutations of these amino acids were interpreted in the light of recent information on the ATPase high-resolution structure, explaining the mechanism of Ca(2+) binding and catalytic activation in terms of two cooperative sites. The Glu771, Thr799, and Asp800 side chains contribute prominently to site 1, together with less prominent contributions by Asn768 and Glu908. The Glu309, Asn796, and Asp800 side chains, as well as the Ala305 (and possibly Val304 and Ile307) carbonyl oxygen, contribute to site 2. Sequential binding begins with Ca(2+) occupancy of site 1, followed by transition to a conformation (E') sensitive to Ca(2+) inhibition of enzyme phosphorylation by P(i), but still unable to utilize ATP. The E' conformation accepts the second Ca(2+) on site 2, producing then a conformation (E' ') which is able to utilize ATP. Mutations of residues (Asp813 and Asp818) in the M6/M7 loop reduce Ca(2+) affinity and catalytic turnover, suggesting a strong influence of this loop on the correct positioning of the M6 helix. Mutation of Asp351 (at the catalytic site within the cytosolic domain) produces total inhibition of ATP utilization and enzyme phosphorylation by P(i), without a significant effect on Ca(2+) binding.  相似文献   

13.
Agonist-induced contraction of airway smooth muscle (ASM) can be triggered by an elevation in the intracellular Ca(2+) concentration, primarily through the release of Ca(2+) from the sarcoplasmic reticulum (SR). The refilling of the SR is integral for subsequent contractions. It has been suggested that Ca(2+) entry via store-operated cation (SOC) and receptor-operated cation channels may facilitate refilling of the SR. Indeed, depletion of the SR activates substantial inward SOC currents in ASM that are composed of both Ca(2+) and Na(+). Accumulation of Na(+) within the cell may regulate Ca(2+) handling in ASM by forcing the Na(+)/Ca(2+) exchanger (NCX) into the reverse mode, leading to the influx of Ca(2+) from the extracellular domain. Since depletion of the SR activates substantial inward Na(+) current, it is conceivable that the reverse mode of the NCX may contribute to the intracellular Ca(2+) pool from which the SR is refilled. Indeed, successive contractions of bovine ASM, evoked by various agonists (ACh, histamine, 5-HT, caffeine) were significantly reduced upon removal of extracellular Na(+); whereas contractions evoked by KCl were unchanged by Na(+) depletion. Ouabain, a selective inhibitor of the Na(+)/K(+) pump, had no effect on the reductions observed under normal and zero-Na(+) conditions. KB-R7943, a selective inhibitor of the reverse mode of the NCX, significantly reduced successive contractions induced by all agonists without altering KCl responses. Furthermore, KB-R7943 abolished successive caffeine-induced Ca(2+) transients in single ASM cells. Together, these data suggest a role for the reverse mode of the NCX in refilling the SR in ASM following Ca(2+) mobilization.  相似文献   

14.
Free Ca(2+) was measured in organelles of individual mouse pancreatic beta cells loaded with the low affinity indicator furaptra. After removal of cytoplasmic indicator by controlled digitonin permeabilization the organelle Ca(2+) was located essentially in the endoplasmic reticulum (ER), >90% being sensitive to inhibition of sarco(endo)plasmic reticulum Ca(2+)-ATPases. The Ca(2+) accumulation in the ER of intact beta cells depended in a hyperbolic fashion on the glucose concentration with half-maximal and maximal filling at 5.5 and >20 mM, respectively. Also elevation of cytoplasmic Ca(2+) by K(+) depolarization significantly enhanced the Ca(2+) accumulation. In permeabilized beta cells 1-3 mM ATP caused rapid Ca(2+) filling of the ER reaching almost 500 microM. At 50 nM, Ca(2+) ER became half-maximally filled at 45 microM ATP, whereas only 3.5 microM ATP was required at 200 nM Ca(2+). Inositol 1,4,5-trisphosphate induced a rapid release of about 65% of the ER Ca(2+), and its precursor phosphatidylinositol 4,5-bisphosphate was found to slowly mobilize 75% by another mechanism. It is concluded that glucose is an efficient stimulator of Ca(2+) uptake in the ER of pancreatic beta cells both by increasing ATP and cytoplasmic Ca(2+). Because physiological concentrations of cytoplasmic ATP are in the mM range, Ca(2+) sequestration can be anticipated to be modulated by factors reducing its ATP sensitivity.  相似文献   

15.
Endothelial second messenger responses may contribute to the pathology of high vascular pressure but remain poorly understood because of the lack of direct in situ quantification. In lung venular capillaries, we determined endothelial cytosolic Ca(2+) concentration [Ca(2+)](i) by the fura 2 ratioing method. Pressure elevation increased mean endothelial [Ca(2+)](i) by Ca(2+) influx through gadolinium-inhibitable channels and amplified [Ca(2+)](i) oscillations by Ca(2+) release from intracellular stores. Endothelial [Ca(2+)](i) transients were induced by pressure elevations of as little as 5 cmH(2)O and increased linearly with higher pressures. Heptanol inhibition of [Ca(2+)](i) oscillations in a subset of endothelial cells indicated that oscillations originated from pacemaker endothelial cells and were propagated to adjacent nonpacemaker cells by gap junctional communication. Our findings indicate the presence of a sensitive, active endothelial response to pressure challenge in lung venular capillaries that may be relevant in the pathogenesis of pressure-induced lung microvascular injury.  相似文献   

16.
Extracellular nucleotides have been implicated in the regulation of secretory function through the activation of P2 receptors in the epithelial tissues, including tracheal epithelial cells (TECs). In this study, experiments were conducted to characterize the P2 receptor subtype on canine TECs responsible for stimulating inositol phosphate (InsP(x)) accumulation and Ca(2+) mobilization using a range of nucleotides. The nucleotides ATP and UTP caused a concentration-dependent increase in [(3)H]InsP(x) accumulation and Ca(2+) mobilization with comparable kinetics and similar potency. The selective agonists for P1, P2X, and P2Y(1) receptors, N(6)-cyclopentyladenosine and AMP, alpha,beta-methylene-ATP and beta, gamma-methylene-ATP, and 2-methylthio-ATP, respectively, had little effect on these responses. Stimulation of TECs with maximally effective concentrations of ATP and UTP showed no additive effect on [(3)H]InsP(x) accumulation. The response of a maximally effective concentration of either ATP or UTP was additive to the response evoked by bradykinin. Furthermore, ATP and UTP induced a cross-desensitization in [(3)H]InsP(x) accumulation and Ca(2+) mobilization. These results suggest that ATP and UTP directly stimulate phospholipase C-mediated [(3)H]InsP(x) accumulation and Ca(2+) mobilization in canine TECs. P2Y(2) receptors may be predominantly mediating [(3)H]InsP(x) accumulation, and, subsequently, inositol 1,4,5-trisphosphate-induced Ca(2+) mobilization may function as the transducing mechanism for ATP-modulated secretory function of tracheal epithelium.  相似文献   

17.
Galanin (GAL) is a neuropeptide which is up-regulated following neuronal axotomy or inflammation. One subtype of GAL receptor (GalR2) is reported to be expressed in the brain's immune cell population, microglia. In the present study, we investigated the effect of GAL on microglial migration and compared the mechanism with that of bradykinin (BK). GAL significantly increased the migration of rat cultured microglia at 0.1 pM. The GAL-induced signal cascade was partly similar to that induced by BK. It was not dependent on G(i/o) protein but involved activation of protein kinase C, phosphoinositide 3-kinase and Ca(2+)-dependent K(+) channels. However, reverse-mode activation of the Na(+) /Ca(2+) -exchanger 1 was not involved in GAL-induced microglial migration, unlike BK-induced migration. Likewise, nominally-free extracellular Ca(2+) inhibited BK-induced migration but not GAL-induced migration. An inositol-1,4,5-triphosphate receptor antagonist significantly inhibited GAL-induced migration. GAL-induced Ca(2+) signaling did not induce nitric oxide synthase expression, but up-regulated class II major histocompatibility complex expression. These results indicate that activation of inositol-1,4,5-triphosphate receptor and increase in intracellular Ca(2+) are important for GAL-induced migration and immunoreactivity in microglia. The differences in down-stream signal transduction induced by GAL and BK suggest that GAL and BK may control distinct microglial functions under pathological conditions.  相似文献   

18.
Lysophosphatidic acid (LPA) plays various roles in the regulation of cell growth as a lipid mediator. We studied the effect of LPA on intracellular Ca(2+) concentration ([Ca2+]i) with Fura-2 in the neural retina of chick embryo during neurogenesis. Bath application of LPA (1-100 microM) to the embryonic day 3 (E3) chick retina caused an increase in [Ca2+](i) in a dose-dependent manner, with an EC(50) value of 9.2 microM. The Ca(2+) rise was also evoked in a Ca(2+)-free medium, suggesting that release of Ca(2+) from intracellular Ca(2+) stores (Ca(2+) mobilization) was induced by LPA. U-73122, a blocker of phospholipase C (PLC), inhibited the Ca(2+) rise to LPA. Pertussis toxin partially inhibited the Ca(2+) rise to LPA, indicating that G(i)/G(o) protein was at least partially involved in the LPA response. The developmental profile of the LPA response was studied from E3 to E13. The Ca(2+) rise to LPA declined drastically from E3 to E7, in parallel with decrease in mitotic activity of retinal progenitor cells. The signal transduction pathway and developmental profile of the Ca(2+) response to LPA were the same as those of the Ca(2+) response to adenosine triphosphate (ATP), which enhances the proliferation of retinal progenitor cells. The coapplication of LPA with ATP resulted in enhancement of Ca(2+) rise in the E3 chick retina. Our results show that LPA induces Ca(2+) mobilization in the embryonic chick retina during neurogenesis.  相似文献   

19.
To investigate the possible cellular mechanisms of the ischemia-induced impairments of cerebral microcirculation, we investigated the effects of hypoxia/reoxygenation on the intracellular Ca(2+) concentration ([Ca(2+)](i)) in bovine brain microvascular endothelial cells (BBEC). In the cells kept in normal air, ATP elicited Ca(2+) oscillations in a concentration-dependent manner. When the cells were exposed to hypoxia for 6 h and subsequent reoxygenation for 45 min, the basal level of [Ca(2+)](i) was increased from 32.4 to 63.3 nM, and ATP did not induce Ca(2+) oscillations. Hypoxia/reoxygenation also inhibited capacitative Ca(2+) entry (CCE), which was evoked by thapsigargin (Delta[Ca(2+)](i-CCE): control, 62.3 +/- 3.1 nM; hypoxia/reoxygenation, 17.0 +/- 1.8 nM). The impairments of Ca(2+) oscillations and CCE, but not basal [Ca(2+)](i), were restored by superoxide dismutase and the inhibitors of mitochondrial electron transport, rotenone and thenoyltrifluoroacetone (TTFA). By using a superoxide anion (O(2)(-))-sensitive luciferin derivative MCLA, we confirmed that the production of O(2)(-) was induced by hypoxia/reoxygenation and was prevented by rotenone and TTFA. These results indicate that hypoxia/reoxygenation generates O(2)(-) at mitochondria and impairs some Ca(2+) mobilizing properties in BBEC.  相似文献   

20.
Mutations in the ubiquitously expressed secretory-pathway Ca(2+)-ATPase (SPCA1) Ca(2+) pump result in Hailey-Hailey disease, which almost exclusively affects the epidermal part of the skin. We have studied Ca(2+) signaling in human keratinocytes by measuring the free Ca(2+) concentration in the cytoplasm and in the lumen of both the Golgi apparatus and the endoplasmic reticulum. These signals were compared with those recorded in SPCA1-overexpressing and control COS-1 cells. Both the sarco(endo)plasmic-reticulum Ca(2+)-ATPase (SERCA) and SPCA1 can mediate Ca(2+) uptake into the Golgi stacks. Our results indicate that keratinocytes mainly used the SPCA1 Ca(2+) pump to load the Golgi complex with Ca(2+) whereas the SERCA Ca(2+) pump was mainly used in control COS-1 cells. Cytosolic Ca(2+) signals in keratinocytes induced by extracellular ATP or capacitative Ca(2+) entry were characterized by an unusually long latency reflecting extra Ca(2+) buffering by an SPCA1-containing Ca(2+) store, similarly as in SPCA1-overexpressing COS-1 cells. Removal of extracellular Ca(2+) elicited spontaneous cytosolic Ca(2+) transients in keratinocytes, similarly as in SPCA1-overexpressing COS-1 cells. With respect to Ca(2+) signaling keratinocytes and SPCA1-overexpressing COS-1 cells therefore behaved similarly but differed from control COS-1 cells. The relatively large contribution of the SPCA1 pumps for loading the Golgi stores with Ca(2+) in keratinocytes may, at least partially, explain why mutations in the SPCA1 gene preferentially affect the skin in Hailey-Hailey patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号