首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Micro/nanobeads with different materials (magnetic, silica and polymer) and different sizes (diameters from 30nm to 970nm) were investigated for their use as amplifiers in a quartz crystal microbalance (QCM) immunosensor for more sensitive detection of Escherichia coli O157:H7. The micro/nanobeads were conjugated with anti-E. coli antibodies. E. coli O157:H7 cells were first captured by the first antibody immobilized on the electrode surface, and then micro/nanobeads labeled secondary antibodies attached to the cells, and finally the complexes of antibody-E. coli-antibody modified beads were formed. The results showed that antibody-labeled beads lead to signal amplification in both the change in frequency (ΔF) and the change in resistance (ΔR). Since the penetration depth of the oscillation-induced shear-waves for a ~8MHz crystal is limited to 200nm, the interpretation of how the signal is amplified by the adsorbed particles was represented in terms of the coupled-oscillator theory. The amplification is not sensed in terms of increase in mass on the sensor surface. Amplification is sensed as a change in bacterial resonance frequency when the spheres adsorb to the bacteria. The change in the values of ΔF caused by different micro/nanobeads (amplifiers) attaching on target bacterial cells is indicative of the ratio between the resonance frequency of the absorbed bacterial-particle complex (ω(s)), and the resonance frequency of the crystal (ω).  相似文献   

2.
A piezoelectric immunosensor was developed for rapid detection of Escherichia coli O157:H7. It was based on the immobilization of affinity-purified antibodies onto a monolayer of 16-mercaptohexadecanoic acid (MHDA), a long-chain carboxylic acid-terminating alkanethiol, self-assembled on an AT-cut quartz crystal's Au electrode surface with N-hydroxysuccinimide (NHS) ester as a reactive intermediate. The binding of target bacteria onto the immobilized antibodies decreased the sensor's resonant frequency, and the frequency shift was correlated to the bacterial concentration. The stepwise assembly of the immunosensor was characterized by means of both quartz crystal microbalance (QCM) and cyclic voltammetry techniques. Three analytical procedures, namely immersion, dip-and-dry and flow-through methods, were investigated. The immunosensor could detect the target bacteria in a range of 10(3)-10(8)CFU/ml within 30-50 min, and the sensor-to-sensor reproducibility obtained at 10(3) and 10(5) colony-forming units (CFU)/ml was 18 and 11% R.S.D., respectively. The proposed sensor was comparable to Protein A-based piezoelectric immunosensor in terms of the amount of immobilized antibodies and detection sensitivity.  相似文献   

3.
Bacterial meningitis is an infection of the thin membranes covering the brain and spinal cord by a number of microorganisms including Neisseria meningitidis, which can lead to permanent neurological damage in the event of late diagnosis. Given the quick onset and severity of the disease, there is a clear need for a rapid, sensitive and specific diagnostic technique. Here, we describe the development and evaluation of an acoustic wave sensor, the quartz crystal microbalance (QCM), as a rapid immunosensor employing antibodies against the cell surface outer membrane protein 85 (OMP85) of N. meningitidis as an immobilized selective layer. These antibodies were directionally orientated as receptors by thin film deposition of structured polyvinylidene fluoride and Protein A. The sensitivity of this QCM immunosensor was further increased by conjugation of the OMP85 antigen to 50 nm gold nanoparticles providing reproducible detection of the target down to 300 ng/mL. Subsequent treatment of the QCM surface with an acidic glycine solution regenerated the immunosensor allowing each crystal to be used several times.  相似文献   

4.
We report a novel electrochemical immunosensor that can sensitively detect avian influenza virus H5 subtype (AIV H5) captured by graphene oxide-H5-polychonal antibodies-bovine serum albumin (GO-PAb-BSA) nanocomposite. The graphene oxide (GO) carried H5-polychonal antibody (PAb) were used as signal amplification materials. Upon signal amplification, the immunosensor showed a 256-fold increase in detection sensitivity compared to the immunosensor without GO-PAb-BSA. We designed a PAb labeling GO strategy and signal amplification procedure that allow ultrasensitive and selective detection of AIV H5. The established method responded to 2−15 HA unit/50 µL H5, with a linear calibration range from 2−15 to 2−8 HA unit/50 µL. In summary, we demonstrated that the immunosenser has a high specificity and sensitivity for AIV H5, and the established assay could be potentially applied in the rapid detection of other pathogenic microorganisms.  相似文献   

5.
Highly pathogenic avian influenza (HPAI) H5N1 viruses, which have emerged in poultry and other wildlife worldwide, contain a characteristic multi-basic cleavage site (CS) in the hemagglutinin protein (HA). Because this arginine-rich CS is unique among influenza virus subtypes, antibodies against this site have the potential to specifically diagnose pathogenic H5N1. By immunizing mice with the CS peptide and screening a phage display library, we isolated four antibody Fab fragment clones that specifically bind the antigen peptide and several HPAI H5N1 HA proteins in different clades. The soluble Fab fragments expressed in Escherichia coli bound the CS peptide and the H5N1 HA protein with nanomolar affinity. In an immunofluorescence assay, these Fab fragments stained cells infected with HPAI H5N1 but not those infected with a less virulent strain. Lastly, all the Fab clones could detect the CS peptide and H5N1 HA protein by open sandwich ELISA. Thus, these recombinant Fab fragments will be useful novel reagents for the rapid and specific detection of HPAI H5N1 virus.  相似文献   

6.
Highly pathogenic avian influenza (HPAI) viruses of the H5 and H7 subtypes typically possess multiple basic amino acids around the cleavage site (MBS) of their hemagglutinin (HA) protein, a recognized virulence motif in poultry. To determine the importance of the H5 HA MBS as a virulence factor in mammals, recombinant wild-type HPAI A/Vietnam/1203/2004 (H5N1) viruses that possessed (H5N1) or lacked (ΔH5N1) the H5 HA MBS were generated and evaluated for their virulence in BALB/c mice, ferrets, and African green monkeys (AGMs) (Chlorocebus aethiops). The presence of the H5 HA MBS was associated with lethality, significantly higher virus titers in the respiratory tract, virus dissemination to extrapulmonary organs, lymphopenia, significantly elevated levels of proinflammatory cytokines and chemokines, and inflammation in the lungs of mice and ferrets. In AGMs, neither H5N1 nor ΔH5N1 virus was lethal and neither caused clinical symptoms. The H5 HA MBS was associated with mild enhancement of replication and delayed virus clearance. Thus, the contribution of H5 HA MBS to the virulence of the HPAI H5N1 virus varies among mammalian hosts and is most significant in mice and ferrets and less remarkable in nonhuman primates.  相似文献   

7.
Wild-bird surveillance in North America for avian influenza (AI) viruses with a goal of early identification of the Asian H5N1 highly pathogenic AI virus has identified at least six low-pathogenicity H5N1 AI viruses between 2004 and 2006. The hemagglutinin (HA) and neuraminidase (NA) genes from all 6 H5N1 viruses and an additional 38 North American wild-bird-origin H5 subtype and 28 N1 subtype viruses were sequenced and compared with sequences available in GenBank by phylogenetic analysis. Both HA and NA were phylogenetically distinct from those for viruses from outside of North America and from those for viruses recovered from mammals. Four of the H5N1 AI viruses were characterized as low pathogenicity by standard in vivo pathotyping tests. One of the H5N1 viruses, A/MuteSwan/MI/451072-2/06, was shown to replicate to low titers in chickens, turkeys, and ducks. However, transmission of A/MuteSwan/MI/451072-2/06 was more efficient among ducks than among chickens or turkeys based on virus shed. The 50% chicken infectious dose for A/MuteSwan/MI/451072-2/06 and three other wild-waterfowl-origin H5 viruses were also determined and were between 10(5.3) and 10(7.5) 50% egg infective doses. Finally, seven H5 viruses representing different phylogenetic clades were evaluated for their antigenic relatedness by hemagglutination inhibition assay, showing that the antigenic relatedness was largely associated with geographic origin. Overall, the data support the conclusion that North American H5 wild-bird-origin AI viruses are low-pathogenicity wild-bird-adapted viruses and are antigenically and genetically distinct from the highly pathogenic Asian H5N1 virus lineage.  相似文献   

8.
Transmission of pathogenic avian influenza viruses (AIV) from wild birds to domestic poultry and humans is continuing in multiple countries around the world. In preparation for a potential AIV pandemic, multiple vaccine candidates are under development. In the case of H5N1 AIV, a clear shift in transmission from clade 1 to clade 2 viruses occurred in recent years. The virus-like particle (VLP) represents an economical approach to pandemic vaccine development. In the current study, we evaluated the humoral immune response in humans vaccinated with H5N1 A/Indonesia/05/2005 (clade 2.1) VLP vaccine manufactured in Sf9 insect cells. The VLPs were comprised of the influenza virus hemagglutinin (HA), neuraminidase (NA), and matrix 1 (M1) proteins. In an FDA-approved phase I/II human clinical study, two doses of H5N1 VLPs at 15, 45, or 90 μg HA/dose resulted in seroconversion and production of functional antibodies. Moreover, cross-reactivity against other clade 2 subtypes was demonstrated using virus neutralization assays. H5N1 whole-genome fragment phage display libraries (GFPDL) were used to elucidate the antibody epitope repertoire in postvaccination human sera. Diverse epitopes in HA1/HA2 and NA were recognized by postvaccination sera from the two high-dose groups, including large segments spanning the HA1 receptor binding domain. Importantly, the vaccine elicited sera that preferentially bound to an oligomeric form of recombinant HA1 compared with monomeric HA1. The oligomeric/monomeric HA1 binding ratios of the sera correlated with the virus neutralizing titers. Additionally, the two high-dose VLP vaccine groups generated NA-inhibiting antibodies that were associated with binding to a C-terminal epitope close to the sialic acid binding site. These findings represent the first report describing the quality of the antibody responses in humans following AIV VLP immunization and support further development of such vaccines against emerging influenza virus strains.  相似文献   

9.
We developed a conventional immunosensor for fibrinogen and fibrin degradation products (FDP) to combine a quartz crystal microbalance (QCM) with the agglutination reaction of immunized latex beads. FDP induced an immunoreaction due to anti-FDP antibody immobilized latex particles. We successfully measured FDP concentration of in human serum within 10 min by QCM method. The detection range of QCM immunosensor is covered with screening concentration of FDP in serum (<10 microg/ml of FDP). The time course of latex agglutination obtained from QCM immunosensor is synchronized to that of latex photometric immunoassay. SEM was used to observe the surface of QCM that applied FDP serum. The size of latex particles agglutinated on the QCM electrode increased concomitant with FDP concentration. Frequency shift on immunoreaction explains the increased adsorption amount of agglutinated latex on QCM.  相似文献   

10.
Avian influenza is an acute infectious disease caused by the avian influenza virus (AIV), which has caused enormous economic losses and posed considerable threats to public health. This study aimed to demonstrate an immunosensor based on dispersion turning point long-period fiber grating (DTP-LPFG) integrated with graphene oxide (GO) for the specific detection of a type of AIV H5N1 virus. LPFG was designed to work at DTP, whose dual-peak spacing was very high sensitive to a refractive index. Anti-H5N1 monoclonal antibodies were covalently bonded with the GO film on the fiber surface, thus constructing an immunosensor for the label-free and specific detection of the H5N1 virus. The proposed method was capable of the reliable detection of H5N1 virus with the limit of detection as low as ~1.05 ng/ml within the large range of 1 ng/mL to 25 µg/mL. More importantly, immunoassays of the whole H5N1 virus in clinical samples further confirmed that the GO-integrated DTP-LPFG immunosensor showed very high specificity to the H5N1 virus and demonstrated great potential for clinical use.  相似文献   

11.
To detect dioxin using a quartz crystal microbalance (QCM) immunosensor, anti-2,3,7,8-tetrachloro-p-dibenzodioxin (TCDD) monoclonal antibodies (MAbs) were produced as types of IgG1 and IgM, with mono 6-(2,3,6,7-tetrachloroxanthene-9-ylidene) hexyl succinate (as a hapten) conjugated with bovine serum albumin (dioxin-BSA). Furthermore, ScFv was generated from hybridoma-producing IgG1 MAb. Among these antibodies, ScFv showed excellent capability for dioxin detection using QCM immunosensors.  相似文献   

12.

Background

Active serologic surveillance of H5N1 highly pathogenic avian influenza (HPAI) virus in humans and poultry is critical to control this disease. However, the need for a robust, sensitive and specific serologic test for the rapid detection of antibodies to H5N1 viruses has not been met.

Methodology/Principal Findings

Previously, we reported a universal epitope (CNTKCQTP) in H5 hemagglutinin (HA) that is 100% conserved in H5N1 human isolates and 96.9% in avian isolates. Here, we describe a peptide ELISA to detect antibodies to H5N1 virus by using synthetic peptide that comprises the amino acid sequence of this highly conserved and antigenic epitope as the capture antigen. The sensitivity and specificity of the peptide ELISA were evaluated using experimental chicken antisera to H5N1 viruses from divergent clades and other subtype influenza viruses, as well as human serum samples from patients infected with H5N1 or seasonal influenza viruses. The peptide ELISA results were compared with hemagglutinin inhibition (HI), and immunofluorescence assay and immunodot blot that utilize recombinant HA1 as the capture antigen. The peptide ELISA detected antibodies to H5N1 in immunized animals or convalescent human sera whereas some degree of cross-reactivity was observed in HI, immunofluorescence assay and immunodot blot. Antibodies to other influenza subtypes tested negative in the peptide-ELISA.

Conclusion/Significance

The peptide-ELISA based on the highly conserved and antigenic H5 epitope (CNTKCQTP) provides sensitive and highly specific detection of antibodies to H5N1 influenza viruses. This study highlighted the use of synthetic peptide as a capture antigen in rapid detection of antibodies to H5N1 in human and animal sera that is robust, simple and cost effective and is particularly beneficial for developing countries and rural areas.  相似文献   

13.

Background

Human infections with highly pathogenic H5N1 avian influenza viruses have generally been confirmed by molecular amplification or culture-based methods. Serologic surveillance has potential advantages which have not been realized because rapid and specific serologic tests to detect H5N1 infection are not widely available.

Methodology/Principal Findings

Here we describe an epitope-blocking ELISA to detect specific antibodies to H5N1 viruses in human or animal sera. The assay relies on a novel monoclonal antibody (5F8) that binds to an epitope comprising amino acid residues 274–281 (CNTKCQTP) in the HA1 region of H5 hemagglutinin. Database search analysis of publicly available sequences revealed that this epitope is conserved in 100% of the 163 H5N1 viruses isolated from humans. The sensitivity and specificity of the epitope-blocking ELISA for H5N1 were evaluated using chicken antisera to multiple virus clades and other influenza subtypes as well as serum samples from individuals naturally infected with H5N1 or seasonal influenza viruses. The epitope-blocking ELISA results were compared to those of hemagglutinin inhibition (HI) and microneutralization assays. Antibodies to H5N1 were readily detected in immunized animals or convalescent human sera by the epitope-blocking ELISA whereas specimens with antibodies to other influenza subtypes yielded negative results. The assay showed higher sensitivity and specificity as compared to HI and microneutralization.

Conclusions/Significance

The epitope-blocking ELISA based on a unique 5F8 mAb provided highly sensitive and 100% specific detection of antibodies to H5N1 influenza viruses in human sera.  相似文献   

14.
Monoclonal antibodies (MAbs) against the recently emerged Asian H5N1 virus (A/crow/Kyoto/53/2004) were generated. From five anti-hemagglutinin (HA) MAbs, four antibodies (3C11, 4C12, 3H12, and 3H4) broadly in vitro recognized and neutralized H5 subtypes, including H5N1. By contrast, the 4G6 MAb specifically reacted with H5N1-HA and not with H5N2- or H5N3-HAs from previous epidemics. The 4G6 MAb was useful for immunofluorescence assays but not for immunoblotting, suggesting that this antibody recognizes a conformational epitope of the H5N1-HA protein. An intensive epitope-mapping analysis demonstrated that the 4G6 MAb recognizes Asp59, which is highly conserved among currently circulating H5N1 lineages. Further, a 4G6-based antigen capture enzyme-linked immunosorbent assay detected H5N1 even that derived from clade 2.2 (A/chicken/Egypt/CL-61/2007) from infected chicken lung before virus isolation. Taken together, these results suggest that the established MAbs, especially 4G6, are useful for rapid and specific detection of Asian H5N1 viruses.  相似文献   

15.
The response to the 2009 A(H1N1) influenza pandemic has highlighted the need for additional strategies for intervention which preclude the prior availability of the influenza strain. Here, 18 single domain VHH antibodies against the 2009 A(H1N1) hemagglutinin (HA) have been isolated from a immune alpaca phage displayed library. These antibodies have been grouped as having either (i) non-neutralising, (ii) H1N1 restricted neutralising or (iii) broad cross-subtype neutralising activity. The ability to neutralise different viral subtypes, including highly pathogenic avian influenza (H5N1), correlated with the absence of hemagglutination inhibition activity, loss of binding to HA at acid pH and the absence of binding to the head domain containing the receptor binding site. This data supports their binding to epitopes in the HA stem region and a mechanism of action other than blocking viral attachment to cell surface receptors. After conversion of cross-neutralising antibodies R1a-B6 and R1a-A5 into a bivalent format, no significant enhancement in neutralisation activity was seen against A(H1N1) and A(H5N1) viruses. However, bivalent R1a-B6 showed an 18 fold enhancement in potency against A(H9N2) virus and, surprisingly, gained the ability to neutralise an A(H2N2) virus. This demonstrates that cross-neutralising antibodies, which make lower affinity interactions with the membrane proximal stem region of more divergent HA sub-types, can be optimised by bivalency so increasing their breadth of anti-viral activity. The broad neutralising activity and favourable characteristics, such as high stability, simple engineering into bivalent molecules and low cost production make these single domain antibodies attractive candidates for diagnostics and immunotherapy of pandemic influenza.  相似文献   

16.
Highly pathogenic avian influenza (HPAI) caused by the H5N1 subtype has given rise to serious damage in poultry industries in Asia. The virus has expanded its geographical range to Europe and Africa, posing a great risk to human health as well. For the control of avian influenza, a rapid diagnosis by detecting the causative virus and identifying its subtype is essential. In the present study, a rapid diagnosis kit combining immunochromatography with enzyme immunoassay which detects the H5 HA antigen of influenza A virus was developed using newly established anti-H5 HA monoclonal antibodies. The present kit specifically detected all of the H5 influenza viruses tested, and did not react with the other HA subtypes. H5 HA antigens were detected from swabs and tissue homogenates of chickens infected with HPAI virus strain A/chicken/Yamaguchi/7/04 (H5N1) from 2 days post inoculation. The kit showed enough sensitivity and specificity for the rapid diagnosis of HPAI.  相似文献   

17.
Many cases of influenza are reported worldwide every year. The influenza virus often acquires new antigenicity, which is known as antigenic shift; this results in the emergence of new virus strains, for which preexisting immunity is not found in the population resulting in influenza pandemics. In the event a new strain emerges, diagnostic tools must be developed rapidly to detect the novel influenza strain. The generation of high affinity antibodies is costly and takes time; therefore, an alternative detection system, aptamer detection, provides a viable alternative to antibodies as a diagnostic tool. In this study, we developed DNA aptamers that bind to HA1 proteins of multiple influenza A virus subtypes by the SELEX procedure. To evaluate the binding properties of these aptamers using colorimetric methods, we developed a novel aptamer-based sandwich detection method employing our newly identified aptamers. This novel sandwich enzyme-linked aptamer assay successfully detected the H5N1, H1N1, and H3N2 subtypes of influenza A virus with almost equal sensitivities. These findings suggest that our aptamers are attractive candidates for use as simple and sensitive diagnostic tools that need sandwich system for detecting the influenza A virus with broad subtype specificities.  相似文献   

18.
Pre-existing immunity is an important factor countering the pandemic potential of an emerging influenza virus strain. Thus, studying of pre-existing immunity to the 2009 pandemic H1N1 virus (2009 H1N1) will advance our understanding of the pathogenesis and epidemiology of this emerging pathogen. In the present study, sera were collected from 486 individuals in a hospital in Shanghai, China, before the 2009 H1N1 influenza pandemic. The serum anti-hemagglutinins (HA) antibody, hemagglutination inhibition (HI) antibody and neutralizing antibody against the 2009 H1N1 were assayed. Among this population, 84.2%, 14.61% and 26.5% subjects possessed anti-HA antibody, HI antibody and neutralizing antibody, respectively. Although neutralizing antibody only existed in those sera with detectable anti-HA antibody, there was no obvious correlation between the titers of anti-HA and neutralizing antibody. However, the titers of anti-HA and neutralizing antibody against seasonal H1N1 virus were highly correlated. In the same population, there was no correlation between titers of neutralizing antibody against 2009 H1N1 and seasonal H1N1. DNA immunization performed on mice demonstrated that antibodies to the HA of 2009 pandemic and seasonal H1N1 influenza viruses were strain-specific and had no cross-neutralizing activity. In addition, the predicted conserved epitope in the HA of 2009 H1N1 and recently circulating seasonal H1N1 virus, GLFGAIAGFIE, was not an immunologically valid B-cell epitope. The data in this report are valuable for advancing our understanding of 2009 H1N1 influenza virus infection.  相似文献   

19.
Avian influenza virus (AIV) subtype H5N1 was first discovered in the 1990 s and since then its emergence has become a likely source of a global pandemic and economic loss. Currently accepted gold standard methods of influenza detection, viral culture and rRT-PCR, are time consuming, expensive and require special training and laboratory facilities. A rapid, sensitive, and specific screening method is needed for in-field or bedside testing of AI virus to effectively implement quarantines and medications. Therefore, the objective of this study was to improve the specificity and sensitivity of an impedance biosensor that has been developed for the screening of AIV H5. Three major components of the developed biosensor are immunomagnetic nanoparticles for the separation of AI virus, a microfluidic chip for sample control and an interdigitated microelectrode for impedance measurement. In this study polyclonal antibody against N1 subtype was immobilized on the surface of the microelectrode to specifically bind AIV H5N1 to generate more specific impedance signal and chicken red blood cells (RBC) were used as biolabels to attach to AIV H5N1 captured on the microelectrode to amplify impedance signal. RBC amplification was shown to increase the impedance signal change by more than 100% compared to the protocol without RBC biolabels, and was necessary for forming a linear calibration curve for the biosensor. The use of a second antibody against N1 offered much greater specificity and reliability than the previous biosensor protocol. The biosensor was able to detect AIV H5N1 at concentrations down to 10(3) EID(50)ml(-1) in less than 2h.  相似文献   

20.
Quartz crystal microbalance immunosensors for environmental monitoring   总被引:1,自引:0,他引:1  
This paper presents discussion of quartz crystal microbalance (QCM) immunosensors for environmental monitoring. Factors limiting the practical application of antibodies to analytical problems are also presented. Among several candidates for the QCM immunosensor device, selected QCM devices and oscillating circuits were tested thoroughly and developed to obtain highly stable and sensitive frequency signals. The biointerface of QCM immunosensor was designed and controlled to immobilize antibody on the QCM surface, to reduce non-specific binding and to suppress denaturation of immobilizing antibody by self-assembled monolayer technique and artificial phospholipid (2-methacryloyloxyethyl phosphorylcholine (MPC)) polymer. MPC polymer as a antibody-stabilizing reagent was added to reduce non-specific binding of the antigen solution and stabilize the immunologic activity of the antibody-immobilized QCM. In addition, it provides examples for detection and quantitation of environmental samples using QCM immunosensors. The analytical results for fly ash extracted samples of dioxins using the QCM immunosensor indicated a good relationship with GC/MS methods. The integrating protocols of the competitive immunoassay and signal-enhancing step are for detecting low molecular analytes with extremely low detection limits using an QCM immunosensor. Furthermore, its detect limitation was extended from 0.1 to 0.01 ng/ml by the signal-enhancing step when the anti-bisphenol-A antibody conjugated MPC polymeric nanoparticles was used. The QCM immunosensor method has demonstrated its effectiveness as an alternative screening method for environmental monitoring because these results were compared with results obtained through environmental monitoring methods such as ELISA and GC/MS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号