首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The molecular chaperone, Hsc70, together with its co‐factor, auxilin, facilitates the ATP‐dependent removal of clathrin during clathrin‐mediated endocytosis in cells. We have used cryo‐electron microscopy to determine the 3D structure of a complex of clathrin, auxilin401‐910 and Hsc70 at pH 6 in the presence of ATP, frozen within 20 seconds of adding Hsc70 in order to visualize events that follow the binding of Hsc70 to clathrin and auxilin before clathrin disassembly. In this map, we observe density beneath the vertex of the cage that we attribute to bound Hsc70. This density emerges asymmetrically from the clathrin vertex, suggesting preferential binding by Hsc70 for one of the three possible sites at the vertex. Statistical comparison with a map of whole auxilin and clathrin previously published by us reveals the location of statistically significant differences which implicate involvement of clathrin light chains in structural rearrangements which occur after Hsc70 is recruited. Clathrin disassembly assays using light scattering suggest that loss of clathrin light chains reduces the efficiency with which auxilin facilitates this reaction. These data support a regulatory role for clathrin light chains in clathrin disassembly in addition to their established role in regulating clathrin assembly .  相似文献   

2.
Notch signaling requires ligand internalization by the signal sending cells. Two endocytic proteins, epsin and auxilin, are essential for ligand internalization and signaling. Epsin promotes clathrin-coated vesicle formation, and auxilin uncoats clathrin from newly internalized vesicles. Two hypotheses have been advanced to explain the requirement for ligand endocytosis. One idea is that after ligand/receptor binding, ligand endocytosis leads to receptor activation by pulling on the receptor, which either exposes a cleavage site on the extracellular domain, or dissociates two receptor subunits. Alternatively, ligand internalization prior to receptor binding, followed by trafficking through an endosomal pathway and recycling to the plasma membrane may enable ligand activation. Activation could mean ligand modification or ligand transcytosis to a membrane environment conducive to signaling. A key piece of evidence supporting the recycling model is the requirement in signaling cells for Rab11, which encodes a GTPase critical for endosomal recycling. Here, we use Drosophila Rab11 and auxilin mutants to test the ligand recycling hypothesis. First, we find that Rab11 is dispensable for several Notch signaling events in the eye disc. Second, we find that Drosophila female germline cells, the one cell type known to signal without clathrin, also do not require auxilin to signal. Third, we find that much of the requirement for auxilin in Notch signaling was bypassed by overexpression of both clathrin heavy chain and epsin. Thus, the main role of auxilin in Notch signaling is not to produce uncoated ligand-containing vesicles, but to maintain the pool of free clathrin. Taken together, these results argue strongly that at least in some cell types, the primary function of Notch ligand endocytosis is not for ligand recycling.  相似文献   

3.
During clathrin-mediated endocytosis Hsc70, supported by the J-domain protein auxilin, uncoats clathrin-coated vesicles. Auxilin contains both a clathrin-binding domain and a J-domain that binds Hsc70, and it has been suggested that these two domains are both necessary and sufficient for auxilin activity. To test this hypothesis, we created a chimeric protein consisting of the J-domain of auxilin linked to the clathrin-binding domain of the assembly protein AP180. This chimera supported uncoating, but unlike auxilin it acted stoichiometrically rather than catalytically because, like Hsc70, it remained associated with the uncoated clathrin. This observation supports our proposal that Hsc70 chaperones uncoated clathrin by inducing formation of a stable Hsc70-clathrin-AP complex. It also shows that Hsc70 acts by dissociating individual clathrin triskelions rather than cooperatively destabilizing clathrin-coated vesicles. Because the chimera lacks the C-terminal subdomain of the auxilin clathrin-binding domain, it seemed possible that this subdomain is required for auxilin to act catalytically, and indeed its deletion caused auxilin to act stoichiometrically. In contrast, deletion of the N-terminal subdomain weakened auxilin-clathrin binding and prevented auxilin from polymerizing clathrin. Therefore the C-terminal subdomain of the clathrin-binding domain of auxilin is required for auxilin to act catalytically, whereas the N-terminal subdomain strengthens auxilin-clathrin binding.  相似文献   

4.
Multiple roles of auxilin and hsc70 in clathrin-mediated endocytosis   总被引:2,自引:0,他引:2  
The ATP-dependent dissociation of clathrin from clathrin-coated vesicles (CCVs) by the molecular chaperone Hsc70 requires J-domain cofactor proteins, either auxilin or cyclin-G-associated kinase (GAK). Both the nerve-specific auxilin and the ubiquitous GAK induce CCVs to bind to Hsc70. The removal of auxilin or GAK from various organisms and cells has provided definitive evidence that Hsc70 uncoats CCVs in vivo. In addition, evidence from various studies has suggested that Hsc70 and auxilin are involved in several other key processes that occur during clathrin-mediated endocytosis. First, Hsc70 and auxilin are required for the clathrin exchange that occurs during coated-pit invagination and constriction; this clathrin exchange may catalyze any rearrangement of the clathrin-coated pit (CCP) structure that is required during invagination and constriction. Second, Hsc70 and auxilin may chaperone clathrin after it dissociates from CCPs so that it does not aggregate in the cytosol. Third, auxilin and Hsc70 may be involved in the rebinding of clathrin to the plasma membrane to form new CCPs and independently appear to chaperone adaptor proteins so that they can also rebind to membranes to nucleate the formation of new CCPs. Finally, if formation of the curved clathrin coat induces membrane curvature, then Hsc70 and auxilin provide the energy for this curvature by inducing ATP-dependent clathrin exchange and rearrangement during endocytosis and ATP-dependent dissociation of clathrin at the end of the cycle so that it is energetically primed to rebind to the plasma membrane.  相似文献   

5.
The role of clathrin-coated vesicles in receptor-mediated endocytosis is conserved among eukaryotes, and many of the proteins required for clathrin coat assembly and disassembly have orthologs in yeast and mammals. In yeast, dozens of proteins have been identified as regulators of the multistep reaction required for endocytosis, including those that regulate disassembly of the clathrin coat. In mammalian systems, clathrin coat disassembly has been reconstituted using neuronal clathrin baskets mixed with the purified chaperone ATPase 70-kDa heat shock cognate (Hsc70), plus a clathrin-specific co-chaperone, such as the synaptic protein auxilin. Yet, despite previous characterization of the yeast Hsc70 ortholog, Ssa1p, and the auxilin-like ortholog, Swa2p, testing mechanistic models for disassembly of nonneuronal clathrin coats has been limited by the absence of a functional reconstitution assay. Here we use single-particle burst analysis spectroscopy, in combination with fluorescence correlation spectroscopy, to follow the population dynamics of fluorescently tagged yeast clathrin baskets in the presence of purified Ssa1p and Swa2p. An advantage of this combined approach for mechanistic studies is the ability to measure, as a function of time, changes in the number and size of objects from a starting population to the reaction products. Our results indicate that Ssa1p and Swa2p cooperatively disassemble yeast clathrin baskets into fragments larger than the individual triskelia, suggesting that disassembly of clathrin-coated vesicles may proceed through a partially uncoated intermediate.  相似文献   

6.
The large GTPase dynamin is required for budding of clathrin-coated vesicles from the plasma membrane, after which the clathrin coat is removed by the chaperone Hsc70 and its cochaperone auxilin. Recent evidence suggests that the GTP-bound form of dynamin may recruit factors that execute the fission reaction. Here, we show that dynamin:GTP binds to Hsc70 and auxilin. We mapped two domains within auxilin that interact with dynamin, and these domains inhibit endocytosis when overexpressed in HeLa cells or when added in a permeable cell assay. The inhibition is not due to impairment of clathrin uncoating or to altered clathrin distribution in cells. Thus, in addition to its requirement for clathrin uncoating, our results show that auxilin also acts during the early steps of clathrin-coated vesicle formation. The data suggest that dynamin regulates the action of molecular chaperones in vesicle budding during endocytosis.  相似文献   

7.
Endocytosis regulates Notch signaling in both signaling and receiving cells. A puzzling observation is that endocytosis of transmembrane ligand by the signaling cells is required for Notch activation in adjacent receiving cells. A key to understanding why signaling depends on ligand endocytosis lies in identifying and understanding the functions of crucial endocytic proteins. One such protein is Epsin, an endocytic factor first identified in vertebrate cells. Here, we show in Drosophila that Auxilin, an endocytic factor that regulates Clathrin dynamics, is also essential for Notch signaling. Auxilin, a co-factor for the ATPase Hsc70, brings Hsc70 to Clathrin cages. Hsc70/Auxilin functions in vesicle scission and also in uncoating Clathrin-coated vesicles. We find that like Epsin, Auxilin is required in Notch signaling cells for ligand internalization and signaling. Results of several experiments suggest that the crucial role of Auxilin in signaling is, at least in part, the generation of free Clathrin. We discuss these observations in the light of current models for the role of Epsin in ligand endocytosis and the role of ligand endocytosis in Notch signaling.  相似文献   

8.
BACKGROUND: In eukaryotic cells, clathrin-coated vesicles transport specific cargo from the plasma membrane and trans-Golgi network to the endosomal system. Removal of the clathrin coat in vitro requires the uncoating ATPase Hsc70 and its DnaJ cofactor auxilin. To date, a requirement for auxilin and Hsc70 in clathrin function in vivo has not been demonstrated. RESULTS: The Saccharomyces cerevisiae SWA2 gene, previously identified in a synthetic lethal screen with arf1, was cloned and found to encode a protein with a carboxy-terminal DnaJ domain which is homologous to that of auxilin. Like auxilin, Swa2p has a clathrin-binding domain and is able to stimulate the ATPase activity of Hsc70. The swa2-1 allele recovered from the original screen carries a point mutation in its tetratricopeptide repeat (TPR) domain, a motif not found in auxilin but known in other proteins to mediate interaction with heat-shock proteins. Swa2p fractionates in the cytosol and appears to be heavily phosphorylated. Disruption of SWA2 causes slow growth and several phenotypes that are very similar to those exhibited by clathrin mutants. Furthermore, the swa2Delta mutant exhibits a significant increase in membrane- associated or -assembled clathrin relative to a wild-type strain. CONCLUSIONS: These results indicate that Swa2p is a clathrin-binding protein required for normal clathrin function in vivo. They suggest that Swa2p is the yeast ortholog of auxilin and has a role in disassembling clathrin, not only in uncoating clathrin-coated vesicles but perhaps in preventing unproductive clathrin assembly in vivo.  相似文献   

9.
Clathrin assembly into coated pits and vesicles is promoted by accessory proteins such as auxilin and AP180, and disassembly is effected by the Hsc70 ATPase. These interactions may be mimicked in vitro by the assembly and disassembly of clathrin "baskets." The chimera C58J is a minimal construct capable of supporting both reactions; it consists of the C58 moiety of AP180, which facilitates clathrin assembly, fused with the J domain of auxilin, which recruits Hsc70 to baskets. We studied the process of disassembly by using cryo-electron microscopy to identify the initial binding site of Hsc70 on clathrin-C58J baskets at pH 6, under which conditions disassembly does not proceed further. Hsc70 interactions involve two sites: (i) its major interaction is with the sides of spars of the clathrin lattice, close to the triskelion hubs and (ii) there is another interaction at a site at the N-terminal hooks of the clathrin heavy chains, presumably via the J domain of C58J. We propose that individual triskelions may be extricated from the clathrin lattice by the concerted action of up to six Hsc70 molecules, which intercalate between clathrin leg segments, prying them apart. Three Hsc70s remain bound to the dissociated triskelion, close to its trimerization hub.  相似文献   

10.
The 70-kDa heat-shock cognate protein (Hsc70) chaperone is an ATP-dependent "disassembly enzyme" for many subcellular structures, including clathrin-coated vesicles where it functions as an uncoating ATPase. Hsc70, and its cochaperone auxilin together catalyze coat disassembly. Like other members of the Hsp70 chaperone family, it is thought that ATP-bound Hsc70 recognizes the clathrin triskelion through an unfolded exposed hydrophobic segment. The best candidate is the unstructured C terminus (residues 1631-1675) of the heavy chain at the foot of the tripod below the hub, containing the sequence motif QLMLT, closely related to the sequence bound preferentially by the substrate groove of Hsc70 (Fotin et al., 2004b). To test this hypothesis, we generated in insect cells recombinant mammalian triskelions that in vitro form clathrin cages and clathrin/AP-2 coats exactly like those assembled from native clathrin. We show that coats assembled from recombinant clathrin are good substrates for ATP- and auxilin-dependent, Hsc70-catalyzed uncoating. Finally, we show that this uncoating reaction proceeds normally when the coats contain recombinant heavy chains truncated C-terminal to the QLMLT motif, but very inefficiently when the motif is absent. Thus, the QLMLT motif is required for Hsc-70-facilitated uncoating, consistent with the proposal that this sequence is a specific target of the chaperone.  相似文献   

11.
The budding of clathrin-coated vesicles is essential for protein transport. After budding, clathrin must be uncoated before the vesicles can fuse with other membranous structures. In vitro, the molecular chaperone Hsc70 uncoats clathrin-coated vesicles in an ATP-dependent process that requires a specific J-domain protein such as auxilin. However, there is little evidence that either Hsc70 or auxilin is essential in vivo. Here we show that C. elegans has a single auxilin homologue that is identical to mammalian auxilin in its in vitro activity. When RNA-mediated interference (RNAi) is used to inhibit auxilin expression in C. elegans, oocytes show markedly reduced receptor-mediated endocytosis of yolk protein tagged with green fluorescent protein (GFP). In addition, most of these worms arrest during larval development, exhibit defective distribution of GFP-clathrin in many cell types, and show a marked change in clathrin dynamics, as determined by fluorescence recovery after photobleaching (FRAP). We conclude that auxilin is required for in vivo clathrin-mediated endocytosis and development in C. elegans.  相似文献   

12.
The chaperone Hsc70 drives the clathrin assembly–disassembly cycle forward by stimulating dissociation of a clathrin lattice. A J‐domain containing co‐chaperone, auxilin, associates with a freshly budded clathrin‐coated vesicle, or with an in vitro assembled clathrin coat, and recruits Hsc70 to its specific heavy‐chain‐binding site. We have determined by electron cryomicroscopy (cryoEM), at about 11 Å resolution, the structure of a clathrin coat (in the D6‐barrel form) with specifically bound Hsc70 and auxilin. The Hsc70 binds a previously analysed site near the C‐terminus of the heavy chain, with a stoichiometry of about one per three‐fold vertex. Its binding is accompanied by a distortion of the clathrin lattice, detected by a change in the axial ratio of the D6 barrel. We propose that when Hsc70, recruited to a position close to its target by the auxilin J‐domain, splits ATP, it clamps firmly onto its heavy‐chain site and locks in place a transient fluctuation. Accumulation of the local strain thus imposed at multiple vertices can then lead to disassembly.  相似文献   

13.
Eun SH  Lea K  Overstreet E  Stevens S  Lee JH  Fischer JA 《Genetics》2007,175(3):1163-1174
We have performed mutagenesis screens of the Drosophila X chromosome and the autosomes for dominant enhancers of the rough eye resulting from overexpression of liquid facets. The liquid facets gene encodes the homolog of vertebrate endocytic Epsin, an endocytic adapter protein. In Drosophila, Liquid facets is a core component of the Notch signaling pathway required in the signaling cells for ligand endocytosis and signaling. Why ligand internalization by the signaling cells is essential for signaling is a mystery. The requirement for Liquid facets is a hint at the answer, and the genes identified in this screen provide further clues. Mutant alleles of clathrin heavy chain, Rala, split ends, and auxilin were identified as enhancers. We describe the mutant alleles and mutant phenotypes of Rala and aux. We discuss the relevance of all of these genetic interactions to the function of Liquid facets in Notch signaling.  相似文献   

14.
By screening for mutants exhibiting interactions with a dominant-negative dynamin, we have identified the Drosophila homologue of receptor-mediated endocytosis (Rme) 8, a J-domain-containing protein previously shown to be required for endocytosis in Caenorhabditis elegans. Analysis of Drosophila Rme-8 mutants showed that internalization of Bride of sevenless and the uptake of tracers were blocked. In addition, endosomal organization and the distribution of clathrin were greatly disrupted in Rme-8 cells, suggesting that Rme-8 participates in a clathrin-dependent process. The phenotypes of Rme-8 mutants bear a strong resemblance to those of Hsc70-4, suggesting that these two genes act in a common pathway. Indeed, biochemical and genetic data demonstrated that Rme-8 interacts specifically with Hsc70-4 via its J-domain. Thus, Rme-8 appears to function as an unexpected but critical cochaperone with Hsc70 in endocytosis. Because Hsc70 is known to act in clathrin uncoating along with auxilin, another J-protein, its interaction with Rme-8 indicates that Hsc70 can act with multiple cofactors, possibly explaining its pleiotropic effects on the endocytic pathway.  相似文献   

15.
Auxilin is a brain-specific DnaJ homolog that is required for Hsc70 to dissociate clathrin from bovine brain clathrin-coated vesicles. However, Hsc70 is also involved in uncoating clathrin-coated vesicles formed at the plasma membrane of non-neuronal cells suggesting that an auxilin homolog may be required for uncoating in these cells. One candidate is cyclin G-associated kinase (GAK), a 150-kDa protein expressed ubiquitously in various tissues. GAK has a C-terminal domain with high sequence similarity to auxilin; like auxilin this C-terminal domain consists of three subdomains, an N-terminal tensin-like domain, a clathrin-binding domain, and a C-terminal J-domain. Western blot analysis shows that GAK is present in rat liver, bovine testes, and bovine brain clathrin-coated vesicles. More importantly, liver clathrin-coated vesicles, which contain GAK but not auxilin, are uncoated by Hsc70, suggesting that GAK acts as an auxilin homolog in non-neuronal cells. In support of this view, the clathrin-binding domain of GAK alone induces clathrin polymerization into baskets and the combined clathrin-binding domain and J-domain of GAK supports uncoating of AP180-clathrin baskets by Hsc70 at pH 7 and induces Hsc70 binding to clathrin baskets at pH 6. Immunolocalization studies suggest that GAK is a cytosolic protein that is concentrated in the perinuclear region; it appears to be highly associated with the trans-Golgi where the budding of clathrin-coated vesicles occurs. We propose that GAK is a required cofactor for the uncoating of clathrin-coated vesicles by Hsc70 in non-neuronal cells.  相似文献   

16.

Background  

Ligand endocytosis plays a critical role in regulating the activity of the Notch pathway. The Drosophila homolog of auxilin (dAux), a J-domain-containing protein best known for its role in the disassembly of clathrin coats from clathrin-coated vesicles, has recently been implicated in Notch signaling, although its exact mechanism remains poorly understood.  相似文献   

17.
The Dna J homologue, auxilin, acts as a co-chaperone for Hsc70 in the uncoating of clathrin-coated vesicles during endocytosis. Biochemical studies have aided understanding of the uncoating mechanism but until now there was no structural information on how auxilin interacts with the clathrin cage. Here we have determined the three-dimensional structure of a complex of auxilin with clathrin cages by cryo-electron microscopy and single particle analysis. We show that auxilin forms a discrete shell of density on the inside of the clathrin cage. Peptide competition assays confirm that a candidate clathrin box motif in auxilin, LLGLE, can bind to a clathrin construct containing the beta-propeller domain and also displace the well-characterised LLNLD clathrin box motif derived from the beta-adaptin hinge region. The means by which auxilin could both aid clathrin coat assembly and displace clathrin from AP2 during uncoating is discussed.  相似文献   

18.
We have examined the roles of Hsc70 and auxilin in the uncoating of clathrin-coated vesicles (CCVs) during neuronal endocytosis. We identified two peptides that inhibit the ability of Hsc70 and auxilin to uncoat CCVs in vitro. When injected into nerve terminals, these peptides inhibited both synaptic transmission and CCV uncoating. Mutation of a conserved HPD motif within the J domain of auxilin prevented binding to Hsc70 in vitro and injecting this mutant protein inhibited CCV uncoating in vivo, demonstrating that the interaction of auxilin with Hsc70 is critical for CCV uncoating. These studies establish that auxilin and Hsc70 participate in synaptic vesicle recycling in neurons and that an interaction between these proteins is required for CCV uncoating.  相似文献   

19.
Uncoating of clathrin-coated vesicles in neuronal cells requires hsc70 in concert with the cofactor auxilin which contains a J-domain as well as a domain with homology to dual specific phosphatases and tensin, known as PTEN. The question of whether an analogous factor operates in other cell types has until now remained unanswered. Here we show that it is the recently discovered and widely expressed cyclin G-associated protein kinase which fulfils the function of neuronal auxilin in hsc70-mediated clathrin coat dissociation. GAK possesses a J-domain, which stimulates the hsc70 ATPase, it competes with auxilin for clathrin binding and at sufficiently high concentrations acts as a clathrin assembly protein. Moreover, GAK binds to the gamma- and alpha-appendage domains of the adaptor proteins AP-1 and AP-2 in vitro and phosphorylates their medium chains. Cells that transiently overexpress GAK are impaired in respect of receptor-mediated endocytosis. In transfected cells clathrin is dislodged from coated pits/vesicles and co-localizes with GFP-GAK in the form of large aggregates. The cellular distribution of membrane-associated adaptors was unaffected by overexpression of GAK. Our results point to a hsc70/auxilin-based uncoating system as a ubiquitous feature of eukaryotic cells.  相似文献   

20.
The auxilin family of J-domain proteins load Hsp70 onto clathrin-coated vesicles (CCVs) to drive uncoating. In vitro, auxilin function requires its ability to bind clathrin and stimulate Hsp70 ATPase activity via its J-domain. To test these requirements in vivo, we performed a mutational analysis of Swa2p, the yeast auxilin ortholog. Swa2p is a modular protein with three N-terminal clathrin-binding (CB) motifs, a ubiquitin association (UBA) domain, a tetratricopeptide repeat (TPR) domain, and a C-terminal J-domain. In vitro, clathrin binding is mediated by multiple weak interactions, but a Swa2p truncation lacking two CB motifs and the UBA domain retains nearly full function in vivo. Deletion of all CB motifs strongly abrogates clathrin disassembly but does not eliminate Swa2p function in vivo. Surprisingly, mutation of the invariant HPD motif within the J-domain to AAA only partially affects Swa2p function. Similarly, a TPR point mutation (G388R) causes a modest phenotype. However, Swa2p function is abolished when these TPR and J mutations are combined. The TPR and J-domains are not functionally redundant because deletion of either domain renders Swa2p nonfunctional. These data suggest that the TPR and J-domains collaborate in a bipartite interaction with Hsp70 to regulate its activity in clathrin disassembly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号