首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The main nitrogen source for most higher plants is soil nitrate. Prior to its incorporation into amino acids, plants reduce nitrate to ammonia in two enzymatic steps. Nitrate is reduced by nitrate reductase to nitrite, which is further reduced to ammonia by nitrite reductase. In this paper, the complete primary sequence of the precursor protein for spinach nitrite reductase has been deduced from cloned cDNAs. The cDNA clones were isolated from a nitrate-induced cDNA library in two ways: through the use of oligonucleotide probes based on partial amino acid sequences of nitrite reductase and through the use of antibodies raised against purified nitrite reductase. The precursor protein for nitrite reductase is 594 amino acids long and has a 32 amino acid extension at the N-terminal end of the mature protein. These 32 amino acids most likely serve as a transit peptide involved in directing this nuclearencoded protein into the chloroplast. The cDNA hybridizes to a 2.3 kb RNA whose steady-state level is markedly increased upon induction with nitrate.  相似文献   

2.
Chloroplast NADP-dependent malate dehydrogenase (NADP-MDH, EC 1.1.1.82) is inactive in the dark and activated in the light via a reduction of specific disulfides by thiol-disulfide interchange with thioredoxin, reduced by the photosynthetic electron transfer. Compared to the constitutively active NAD-dependent forms, NADP-MDH exhibits two regulatory disulfides per subunit, one located in an N-terminal extension and the other in a C-terminal extension. Convergent information gathered from biochemical, site-directed mutagenesis and structural approaches allowed to solve almost completely the activation mechanism. In the oxidized enzyme, the C-terminal extension is pulled back by the disulfide bridge toward the active-site cleft where the penultimate C-terminal glutamate interacts with one of the arginines involved in substrate binding, thus acting as an internal inhibitor obstructing the access of oxaloacetate. The N-terminal extensions are located at the subunit interface area and rigidify the overall structure of the dimer. Their reduction by reduced thioredoxin triggers a conformational change of the active site towards high-activity conformation, whereas the reduction of the C-terminal bridge expells the C-terminal end from the active site, thus opening the way for the substrate. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

3.
4.
5.
Summary SummarySeveral cDNA clones encoding the entire Rieske FeS-precursor protein of the chloroplast cytochrome b 6 f-complex have been isolated by high density plaque immunoscreening of a phage lambda gt11 cDNA expression library, made from poly A+-RNA of spinach seedlings. The identity of the cDNAs has been confirmed by N-terminal amino acid sequencing of the purified protein. The nucleotide sequence indicates a protein of 247 amino acid residues including a putative transit sequence of 68 amino acids corresponding to molecular masses of 26.3 kDa (precursor) and 18.8 kDa (mature protein; 179 amino acid residues). Alignteins of the sequence with sequences from Rieske FeS-proteins of respiratory electron transport chains, two of bacterial and three of mitochondrial origin, shows little sequence homology, but remarkable similarity in secondary structure including a putative N-terminal transmembrane segment of about 25 residues and the peptides CTHLGCV and CPCHGS in the C-terminal region of the protein that are involved in the binding of the Fe2S2-cluster.  相似文献   

6.
Summary The primary structure of the NADPH-protochlorophyllide oxidoreductase of barley has been deduced from the nucleotide sequence of a cloned full-length cDNA. This cDNA hybridizes to a 1.7 kb RNA whose steady-state level in dark-grown seedlings is drastically reduced upon illumination. The predicted amino acid sequence (388 residues in length) includes a transit peptide of 74 amino acids whose end point has been delimited by sequencing the N-terminus of the mature protein. Expression of the cDNA inEscherichia coli leads to the synthesis of an enzymatically active precursor of the NADPH-protochlorophyllide oxidoreductase. Activity of this protein in bacterial lysates is completely dependent on the presence of NADPH and protochlorophyllide and requires light.  相似文献   

7.
8.
9.
d-Threonine dehydrogenase (EC 1.1.1) catalyses the oxidation of the 3-hydroxyl group of d-threonine. The nucleotide sequence of the structural gene, dtdS, for this enzyme from Pseudomonas cruciviae IFO 12047 was determined. The dtdS gene encodes a 292 amino acid polypeptide. The enzyme was overproduced in Escherichia coli cells; the activity was found in cell extracts of the clone. The enzyme showed high sequence similarity to 3-hydroxyisobutyrate dehydrogenases. This is the first example showing the primary structure of an enzyme catalysing the NADP+-dependent dehydrogenation of d-threo-3-hydroxyamino acids.  相似文献   

10.
The activity of NADP-malate dehydrogenase (NADP-MDH) was determined in the developing first leaf of the C3 plants wheat, barley and pea. Light dependent activation of the enzyme was observed in all three species following rapid extraction and immediate assay. Maximum activity was obtained following extraction from preilluminated leaves and incubation on ice for 45 min in the presence of dithiothreitol. In all three species, maximum activity was obtained in the young leaf 4 days after emergence of the seedling (about 2.5 to 3 moles per milligram chlorophyll per min in wheat and barley, and 6 moles per milligram chlorophyll per min in pea). On a chlorophyll basis there was an approximate five-fold decrease in NADP-MDH activity as the leaf matured. A similar pattern was found for phospho-enolpyruvate carboxylase and NADP-malic enzyme which had maximum activity in younger leaf tissue. Similarly, the activity of nitrate reductase in wheat and barley was high in the young leaf and it rapidly declined as the leaf matured. In contrast, the capacity for photosynthesis was relatively low in the young leaf, reaching a maximum 6 to 8 days after seedling emergence. The pattern of change in activity of phosphoribulokinase, an enzyme of the reductive pentose phosphate pathway, was similar to that of photosynthesis. The results suggest NADP-MDH and phospho-enolpyruvate carboxylase have important function(s) in the young leaf, which are not directly linked to C3 photosynthesis, and which, in part, may be linked to nitrate assimilation and provision of malate to mitochondria.Abbreviations Chl Chlorophyll - DTT Dithiothreitol - NADP-MDH NADP-malate Dehydrogenase - NADP-ME NADP-malic enzyme  相似文献   

11.
12.
Glutathione-dependent formaldehyde dehydrogenase (FDH; EC 1.2.1.1) has been purified 3900-fold from maize cell-suspension cultures to a specific activity of 4.68 μmol (mg protein)−1 min−1. The homogeneous enzyme consisted of two identical subunits with a molecular mass of 42 kDa, and an isoelectric point of 5.8. Eight tryptic peptides were sequenced and gave a perfect fit to the protein sequence derived from maize Fdh cDNA (J. Fliegmann and H. Sandermann, 1997, Plant Mol Biol 34: 843–854). There was 62% identity with the eucaryotic FDH consensus sequence. Michaelis constants of approx. 20 μm (formaldehyde), approx. 50 μm (glutathione) and approx. 31 μm (NAD+) were determined for the maize enzyme as well as for FDH partially purified from dog lung. Besides S-hydroxymethylglutathione, pentanol-1, octanol-1, and ω-hydroxyfatty acids served as substrates for both FDH preparations. The unusual substrate specificity indicates that FDH may be involved in the detoxification of long-chain lipid peroxidation products. Received: 1 April 1998 / Accepted: 18 November 1998  相似文献   

13.
Summary Sporamin accounts for more than 80% of the total soluble proteins of tuberous roots of sweet potato, but very little, if any, in other tissues of the same plant. In vitro translation of RNA fractions from the tuberous roots in wheat germ extract and subsequent immunoprecipitation with the antibody to sporamin indicated that this protein is synthesized by membrane-bound polysomes as a precursor 4 000 daltons larger than the mature protein. A cDNA expression library was constructed from the total poly(A)+ RNA from the tuberous roots by a vector-primer method, and an essentially full-length cDNA clone for the sporamin mRNA was selected by direct immunological screening of the colonies. Northern blot analysis showed that sporamin mRNA is approximately 950 nucleotides in length and is specifically present in tuberous roots and very little, if any, in leaves, petioles and non-tuberous roots. Nucleotide sequence of the cDNA predicts a 37 amino acid extension in the precursor at the amino-terminus of the mature protein.  相似文献   

14.
15.
The contribution of the malate valve in the regulation of steady-state photosynthesis was studied in transgenic potato (Solanum tuberosum L. cv Désirée) plants with altered expression of plastidic NADP-dependent malate dehydrogenase (NADP-MDH; EC 1.1.1.82). Mutant plants were obtained after transformation with the homologous Nmdh gene in antisense orientation, or with the Nmdh gene from pea (Pisum sativum L.) in sense orientation. A total number of nine stable sense and antisense lines with 10% or 30%, and 400% of wild-type NADP-MDH capacity were selected. Intact chloroplasts were isolated from leaves of wild-type and mutant plants. In chloroplasts from sense transformants the increased enzyme amount was activated as in wild-type chloroplasts, but increased rates of oxaloacetate-dependent malate formation were only measured upon partial uncoupling. In contrast, chloroplasts from antisense transformants produced only little malate upon oxaloacetate addition. Measurements with intact leaves during steady-state photosynthesis yielded no differences in gas-exchange parameters and chlorophyll fluorescence. The leaf malate content was unchanged in NADP-MDH underexpressors, but twice as high in overexpressing plants. The altered NADP-MDH expression clearly influences the redox state of ferredoxin, especially in low light. Furthermore, the malate valve can successfully compete for electrons with cyclic electron flow, but the conditions under which this occurs are quite artificial. Received: 14 February 1998 / Accepted: 12 May 1998  相似文献   

16.
17.
18.
We have isolated and characterised a cDNA clone encoding the cytosolic form of carbonic anhydrase in the leaves of Flaveria bidentis, a C4 dicotyledonous plant. The deduced amino acid sequence is similar to the carbonic anhydrase found in the chloroplasts of C3 dicotyledonous plants. Western blot analysis of crude leaf extracts of F. bidentis indicates that the leader sequence (equivalent to the transit peptide of the chloroplastic form of CA found in C3 plants) is not removed following translation of mRNA.  相似文献   

19.
The primary structure of acetohydroxy acid isomeroreductase from Arabidopsis thaliana was deduced from two overlapping cDNA. The full-length cDNA sequence predicts an amino acid sequence for the protein precursor of 591 residues including a putative transit peptide of 67 amino acids. Comparison of the A. thaliana and spinach acetohydroxy acid isomeroreductases reveals that the sequences are conserved in the mature protein regions, but divergent in the transit peptides and around their putative processing site.  相似文献   

20.
Isocitrate dehydrogenase is a key enzyme in carbon metabolism. In this study we demonstrated that SCO7000 of Streptomyces coelicolor M-145 codes for the isocitrate dehydrogenase. Recombinant enzyme expressed in Escherichia coli had a specific activity of 25.3 μmoles/mg/min using NADP+ and Mn2+ as a cofactor, 40-times higher than that obtained in cell-free extract. Pure IDH showed a single band with an apparent Mr of 84 KDa in SDS-PAGE, which was also recognized as His-tag protein in the Western blot. Unexpectedly, in ND-PAGE conditions showed a predominant band of ~168 KDa that corresponded to the dimeric form of ScIDH. Also, zymogram assay and analytical gel filtration reveal that dimer was the active form. Kinetic parameters were 1.38, 0.11, and 0.109?mM for isocitrate, NADP, and Mn2+, respectively. ATP, ADP, AMP, and their mixtures were the main ScIDH activity inhibitors. Zn2+, Mg2+, Ca2+, and Cu+ had inhibitory effect on enzyme activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号