首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Yeast mutants deficient in the constitutive ADHI (adc1) were used for the isolation of mutants with deficiencies of the intermediary carbon metabolism, and of mutants defective in carbon catabolite derepression. Mutants were recognized by their inability to grow on YEP-glycerol and/or on ethanol synthetic complete medium. They were either defective in isocitrate lyase (icl1), succinate dehydrogenase (sdh1), or malate dehydrogenase (mdh1, mdh2), mdh-mutants could not uniformely be appointed to one of the known MDH isozymes. Homozygous mdh and sdh1 diploids are unable to sporulate.Three gene loci could be identified by mutants pleiotropically defective in many or all of the enzymes tested. In ccr1 mutants, derepression of isocitrate lyase, fructose-1,6-diphosphatase, ADHII and possibly of the cytoplasmic MDH is prevented, whereas the mitochondrial TCA-cycle enzymes, succinate dehydrogenase and malate dehydrogenase, are not significantly affected. CCR2 and CCR3 have quite similar action spectra. Both genes are obviously necessary for derepression of all enzymes tested. It could be shown that ccr1, ccr2 and ccr3 mutants are not respiratory deficient.  相似文献   

2.
M K Geck  J F Kirsch 《Biochemistry》1999,38(25):8032-8037
A novel method is presented that establishes definitively the existence or nonexistence of direct metabolite transfer between consecutive enzymes in a metabolic sequence. The procedure is developed with the specific example of channeling of oxaloacetate between Escherichia coli aspartate aminotransferase (AATase) and malate dehydrogenase (MDH). The assay is carried out in the presence of a large excess of inactive variants of AATase. These mutants would outcompete the much smaller quantities of wild-type AATase for any docking sites on MDH and thus decrease the rate of the coupled L-aspartate to oxaloacetate to malate sequence only if the direct metabolite transfer mechanism is operative. The results show that oxaloacetate is not transferred directly from AATase to MDH because no decrease in rate was observed in the presence of approximately 100 microM inactive mutants. This concentration is 10 times the physiological AATase concentration, which was determined in this work. The methodology can be applied generally.  相似文献   

3.
A study has been carried out in order to explain the enzyme-palmitoleate interaction. The highly purified and crystalline enzymes representative of fundamental metabolic pathways were: alcohol dehydrogenase (ADH), lactate dehydrogenase (LDH), malate dehydrogenase (MDH), isocitrate dehydrogenase (ICDH), glucose-6-phosphate dehydrogenase (G6P-DH), alkaline phosphatase. The enzyme-palmitoleate interaction was studied as a phenomenon time-independent (inhibition) and time-dependent (inactivation). Palmitoleate inhibited remarkably LDH, MDH, ICDH and G6P-DH. A kinetic analysis of the inhibitory action of palmitoleate on LDH and MDH was also carried out. Inactivation studies have shown that ADH and alkaline phosphatase are not sensitive to palmitoleate action, unlike the other enzymes. A comparison was made between the action of palmitoleate and that of a synthetic anionic detergent, sodium dodecyl sulfate (SDS).  相似文献   

4.
In Pontonia pinnophylax (Otto), a crustacean decapod inhabiting the mantle cavity of Pinna nobilis L. (Bivalvia: Pteriomorpha), the lactate dehydrogenase (LDH) and malate dehydrogenase (MDH) activity, and their electrophoretic patterns, were compared in relation to heat and urea inactivation. Activity was higher in LDH than in MDH, and the electrophoretic patterns showed a predominance of LDH-A4 and the presence of both mitochondrial and cytosolic MDH. Heat incubation reduced both enzymatic activities, but more MDH. Also all isozymes showed different heat sensitivity, with anodic forms more heat-resistant than cathodic ones, either in LDH as in MDH. Urea treatment caused also a higher inactivation of the most cathodic isozymes, but MDH appeared more resistant than LDH at 2 M urea. The high polymorphism of these enzymes suggests an adaptation of Pontonia metabolism to hypoxic conditions; moreover, the different isozyme stability grade should be functional to contrast environmental variability.  相似文献   

5.
Two isoforms of malate dehydrogenase (MDH), dimeric and tetrameric, have been found in the purple non-sulfur bacterium Rhodobacter sphaeroides strain 2R, devoid of the glyoxylate shunt, which assimilate acetate via the citramalate cycle. Inhibitory analysis showed that the 74-kDa protein is involved in tricarboxylic acid cycle, while the 148-kDa MDH takes part in the citramalate pathway. A single gene encoding synthesis of the isologous subunits of the MDH isoforms was found during molecular-biological investigations. The appearance in the studied bacterium of the tetrameric MDH isoform during growth in the presence of acetate is probably due to the increased level of mdh gene expression, revealed by the real-time PCR, the product of which in cooperation with the citramalate cycle enzymes plays an important role in acetate assimilation.  相似文献   

6.
《Insect Biochemistry》1986,16(4):677-685
The enzymes, which constitute the malate-aspatate cycle as a hydrogen shuttle, were examined in the eggs of Bombyx mori. Glutamate-oxaloacetate transaminase (GOT) and malate dehydrogenase (MDH) were found in both cytosolic and mitochondrial compartments of the eggs of silkworms and had specific kinetic properties. The activities of these enzymes were correlated with embryonic development and attained maximum levels at larval hatching. The activities of mitochondrial GOT and MDH increased in diapause eggs which were chilled at 5°C for more than 20 days. A further and rapid increase in the activities of mitochondrial GOT and MDH was induced by HCl-treatment of the chilled eggs. However, activities of the mitochondrial enzymes in non-diapause eggs were not influenced by chilling. The reconstruction experiments with intact mitochondria showed the occurrence of the malate-aspartate cycle in the silkworm eggs. The functional significance of the malate-aspartate cycle as a hydrogen shuttle is discussed in relation to NAD-sorbitol dehydrogenase at the termination of diapause in silkworm eggs.  相似文献   

7.
The effect of sodium dodecyl sulfate on the activity of highly purified or crystalline enzymes has been studied. The enzymes were: lactate dehydrogenase (LDH), malate dehydrogenase (MDH). isocitrate dehydrogenase (ICDH), glucose-6-phosphate dehydrogenase (G6P-DH), lipase, alkaline phosphatase. Sodium dodecyl sulfate, always under the critical micellar concentration, shows a selective inhibitory effect. A kinetic analysis of the inhibitory action on LDH, MDH, ICDH and G6P-DH was also carried out.  相似文献   

8.
《Insect Biochemistry》1989,19(4):393-399
The molting hormone 20-hydroxyecdysone induces de novo synthesis of cytoplasmic malate dehydrogenase (cMDH) in Drosophila ovaries, but not mitochondrial MDH (mMDH). A second enzyme, acetylcholinesterase (AChE), was found to be heat shock inducible. It is known that MDH and AChE are, respectively, heat shock and 20-hydroxyecdysone inducible (see Introduction). Now it is also known that these enzymes are under dual regulation, with 20-hydroxyecdysone and heat shock being two stimuli which act either separately or in combination, to increase the specific activity of these enzymes. The response to 20-hydroxyecdysone and/or heat shock was found to occur in seven additional D. melanogaster sibling species. In this case, hormone and heat shock maximize the interspecific variability, something which could be acted by natural selection to establish physiological adaptations.  相似文献   

9.
Equilibrium, thermochemical, and time-resolved fluorescence measurements have been carried out in order to compare pig heart lactate dehydrogenase (LDH) and cytoplasmic malate dehydrogenase (MDH). The differences in the thermodynamic parameters for binding of NADH and NAD+ show the same pattern for both enzymes. The stronger binding of NADH is entropy-based, which can be understood as reflecting electrostatic interactions. The tryptophan fluorescence of MDH and LDH differ for the free enzymes and in quenching by NADH. The differences can be accounted for in terms of a single long-lived tryptophan residue present in LDH and not in MDH.  相似文献   

10.
In various populations of the cultivated and weedy amaranth species, the electrophoretic patterns of alcohol dehydrogenase (ADH), glutamate dehydrogenase (GDH), malate dehydrogenase (MDH), isocitrate dehydrogenase (IDH) and malic enzyme (Me) were studied. In total, 52 populations and two varieties (Cherginskii and Valentina) have been examined. Allozyme variation of this material was low. Irrespective of species affiliation, 26 populations and two varieties were monomorphic for five enzymes; a slight polymorphism of three, two, and one enzymes was revealed in three, nine, and fourteen populations, respectively. A single amaranth locus, Adh, with two alleles, Adh F and Adh S, controls amaranth ADH. Two alleles, common Gdh S and rare Gdh F, control GDH; no heterozygotes at this locus were found. The MDH pattern has two, the fast- and slow-migrating, zones of activity (I and II, respectively). Under the given electrophoresis conditions, the fast zone is diffuse, whereas slow zone is controlled by two nonallelic genes, monomorphic Mdh 1 and polymorphic Mdh 2 that includes three alleles: Mdh 2-F, Mdh 2-N, and Mdh 2-S. Low polymorphism of IDH and Me was also found, though their genetic control remains unknown.  相似文献   

11.
The development of lactate dehydrogenase (LDH; EC 1.1.1.27) and malate dehydrogenase (MDH; EC 1.1.1.37) was measured in the kidney of male and female C57BL6 mice from ages prenatal 16 days to 80 days. Maximum reactions rates of the enzymes were measured in vitro by following the reduction of the nicotinamide-adenine dinucleotide spectrophotometrically.Analysis of variance showed no significant sex difference for LDH and MDH. There was a significant sex difference for the ratio LDH:MDH and a significant age difference for LDH, MDH, and the ratio LDH:MDH. In the male and female, LDH activity increased from prenatal 16 days to 30 days. Malate dehydrogenase activity reached adult values at 22 days in the male and at 30 days in the female. The ratio LDH:MDH in the male decreased from prenatal 16 days to 3 days, after which the ratio continued to decline to 20 days at a less rapid rate. This general pattern was also found in the female followed by a further decline in the ratio at 50 days.The development of LDH and MDH in the C57BL6 mouse is tissue specific and probably parallels the development of the tissue's function. In the case of the kidney, LDH and MDH development may reflect maturation of mitochondrial function and the kidney's ability to concentrate urine.  相似文献   

12.
The specific activities of the enzymes of the tricarboxylic acid cycle; citrate synthase, aconitase, isocitrate dehydrogenase, succinate dehydrogenase, fumarase, and malate dehydrogenase, were determined in early fifth-stage, young and mature adult Obeliscoides cuniculi, the rabbit stomach worm. ∝-Ketoglutarate dehydrogenase activity could not be determined in any fraction. Fumarate reductase activity was found only in the mitochondrial fraction while all other enzymes, including an NADP-dependent malic enzyme were localized in the cytoplasm. Glutamate dehydrogenase, acid and alkaline phosphatase activities were also recorded. High levels of those enzymes acting in the “reversed” direction, i.e. MDH and fumarase relative to the enzymes of the “forward” direction, i.e. citrate synthase, aconitase and isocitrate dehydrogenase suggests that under anaerobic conditions a modified tricarboxylic acid cycle can operate. Some variations in specific activities were apparent as the worms matured but no qualitative differences were observed.  相似文献   

13.
Experiments utilizing standard techniques of cell fractionation and disc electrophoresis have revealed the presence of three distinctly different enzymes which catalyze the oxidation of d-sorbitol in crude extracts of Drosophila melanogaster adults. These include (1) a soluble NAD-dependent sorbitol dehydrogenase (NAD-SoDHs), (2) a mitochondrial NAD-dependent sorbitol dehydrogenase (NAD-SoDHm), and (3) a soluble NADP-dependent sorbitol dehydrogenase (NADP-SoDH). The structural gene for NAD-SoDHs has been mapped to a locus between 65.3 and 65.6 on the third chromosome by means of an electrophoretic variant and a low-activity allele. Through the use of segmental aneuploidy, this gene has been localized to the region limited by salivary bands 91B–93F. Because mutants which alter either the activity or electrophoretic mobility of the soluble NAD-dependent enzyme have no significant measurable effect on the mitochondrial or NADP-dependent forms, it is suggested that the enzymes in this system are coded for autonomously by different genes.  相似文献   

14.
Summary Methods for standardized determination of phosphofructokinase (PFK), glyceraldehydephosphate dehydrogenase (GAPDH), lactate dehydrogenase (LDH) and malate dehydrogenase (MDH) activities in nanogram samples of microdissected single fibres of rabbit psoas and soleus muscle are described. Fast and slow fibres in soleus muscle show lower absolute activities of these enzymes than the respective fibre types in psoas muscle. Slow fibres represent a more uniform population in the two muscles according to absolute and relative activities of the enzymes investigated. Slow fibres are characterized by high activities of MDH and relatively low activities of glycolytic enzymes. Fast fibres in the soleus muscle represent a population with high activities of MDH and glycolytic enzymes. Fast fibres in psoas muscle represent a heterogeneous population with high activities of glycolytic enzymes and extremely variable activity of MDH. More than 10-fold differences exist in the MDH activities of the extreme types of this fibre population. Differences in the activity levels of MDH in single fast type fibres but also in the activities of glycolytic enzymes between fast and slow fibres are greater than those reported between extreme white and red rabbit muscles.  相似文献   

15.
C Spamer  D Pette 《Histochemistry》1977,52(3):201-216
Methods for standardized determination of phosphofructokinase (PFK), glyceraldehydephosphate dehydrogenase (GAPDH), lactate dehydrogenase (LDH) and malate dehydrogenase (MDH) activities in nanogram samples of microdissected single fibres of rabbit psoas and soleus muscle are described. Fast and slow fibres in soleus muscle show lower absolute activities of these enzymes than the respective fibre types in psoas muscle. Slow fibres represent a more uniform population in the two muscles according to absolute and relative activities of the enzymes investigated. Slow fibres are characterized by high activities of MDH and relatively low activities of glycolytic enzymes. Fast fibres in the soleus muscle represent a population with high activities of MDH and glycolytic enzymes. Fast fibres in psoas muscle represent a heterogeneous population with high activities of glycolytic enzymes and extremely variable activity of MDH. More than 10-fold differences exist in the MDH activities of the extreme types of this fibre population. Differences in the activity levels of MDH in single fast type fibres but also in the activities of glycolytic enzymes between fast and slow fibres are greater than those reported between extreme white and red rabbit muscles.  相似文献   

16.
The Gin residue at amino acid position 102 ofBacillus stearothermophilus lactate dehydrogenase was replaced with Ser, Thr, Tyr, or Phe to investigate the effect on substrate recognition. The Q102S and Q102T mutant enzymes were found to have a broader range of substrate specificity (measured byk cat/K m) than the wild-type enzyme. However, it is evident that either Ser or Thr at position 102 are of a size able to accommodate a wide variety of substrates in the active site and substrate specificity appears to rely largely on size discrimination in these mutants. The Q102F and Q102Y mutant enzymes have low catalytic efficiency and do not show this relaxed substrate specificity. However, their activities are restored by the presence of an aromatic substrate. All of the enzymes have a very low catalytic efficiency with branched chain aliphatic substrates.Abbreviations used BSLDH Bacillus stearothermophilus lactate dehydrogenase - FBP fructose-1,6-bisphosphate - HP hydroxypyruvate - KB ketobutyrate - KC ketocaproate - KV ketovalerate - MDH malate dehydrogenase - PP phenylpyruvate - PYR pyruvate - RBE relative binding energy  相似文献   

17.
Malate dehydrogenase isoenzymes were studied in tenAllium species and in six cultivars ofA. cepa by isoelectric focusing in polyacrylamide gel with Ampholine pH 3.5–10.0. Using this method better resolution was obtained than by polyacrylamide gel electrophoresis. The number of MDH isoenzymes obtained by isoelectric focusing is from five to ten in the range of pH 3.65 to 6.75. MDH isoenzymes can be used for characterization on the level of species and cultivars (inA. cepa), but its use on the level of sections and subgenera is questionable.  相似文献   

18.
Isozyme electrophoresis was used as a method to provide a measure of relationship among Italia, Rubi, Benitaka, and Brasil cv of Vitis vinifera traditionally grown in Marialva, a town in the northwestern region of the state of Paraná, southern Brazil. No allelic variation was observed for esterase (EST), malate dehydrogenase (MDH), peroxidase (POD), glutamate dehydrogenase (GTDH), alkaline phosphatase (AKP), acid phosphatase (ACP), and aspartate amino transferase (AAT). Tissue specific and variation in staining intensity of EST, MDH, POD, and GTDH isozymes indicate differential gene expression in colour grape varieties. Regulatory genes may be operative in determining the number of molecules of enzymes in a cell and determining the berry skin polymorphism in four cultivars. Change frequency for berry skin colour suggest the occurrence of somatic crossing-over in naturally cultivated plants and a periclinal chimerism in Brasil cv. The four grape colour cultivars seem to be clones of the same cultivar.  相似文献   

19.
Histochemical studies on the oxidative enzymes, NAD- and NADP-dependent isocitrate (IDH) and malate (MDH) dehydrogenases, succinic dehydrogenase (SDH), and cytochrome oxidase of the cheliped muscle of Scylla serrata (Forskål) indicated that their concentrations are relatively lower than those of vertebrate muscle. The site of action of various oxidative enzymes is found to be common in the component fibres varying in diameter. The sarcolemma generally exhibited stronger positive reactions for the enzymes than the sarcoplasm.The bilateral removal of eyestalks had a stimulatory effect on the activity of oxidative enzymes. Initially increased activity of SDH, IDH and MDH (NAD-linked) and cytochrome oxidase 2–4 h after eyestalk removal was found to be maintained after 24 h; a noticeable increase in the NADP-linked MDH was also apparent by this time.The eyestalk extract when injected into de-stalked animals, caused a decrease in the levels of SDH, NAD-linked IDH and MDH, and cytochrome oxidase. Biochemical estimations of SDH clearly indicate that bilateral eyestalk extirpation results in remarkably enhanced enzyme activity; conversely, the administration of eyestalk extract brings about a sharp decline in the enzyme concentration. Thus, it seems that the eyestalks may contain a factor regulating oxidative metabolism.  相似文献   

20.
The major nonmitochondrial isozyme of malate dehydrogenase (MDH2) in Saccharomyces cerevisiae cells grown with acetate as a carbon source was purified and shown by sodium dodecyl sulfate-polyacrylamide gel electrophoresis to have a subunit molecular weight of approximately 42,000. Enzyme assays and an antiserum prepared against the purified protein were used to screen a collection of acetate-nonutilizing (acetate-) yeast mutants, resulting in identification of mutants in one complementation group that lack active or immunoreactive MDH2. Transformation and complementation of the acetate- growth phenotype was used to isolate a plasmid carrying the MDH2 gene from a yeast genomic DNA library. The amino acid sequence derived from complete nucleotide sequence analysis of the isolated gene was found to be extremely similar (49% residue identity) to that of yeast mitochondrial malate dehydrogenase (molecular weight, 33,500) despite the difference in sizes of the two proteins. Disruption of the MDH2 gene in a haploid yeast strain produced a mutant unable to grow on minimal medium with acetate or ethanol as a carbon source. Disruption of the MDH2 gene in a haploid strain also containing a disruption in the chromosomal MDH1 gene encoding the mitochondrial isozyme produced a strain unable to grow with acetate but capable of growth on rich medium with glycerol as a carbon source. The detection of residual malate dehydrogenase activity in the latter strain confirmed the existence of at least three isozymes in yeast cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号