首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 18 毫秒
1.

Objectives

To improve H2 production, the green algae Chlamydomonas reinhardtii cc849 was co-cultured with Azotobacter chroococcum.

Results

The maximum H2 production of the co-culture was 350% greater than that of the pure algal cultures under optimal H2 production conditions. The maximum growth and the respiratory rate of the co-cultures were about 320 and 300% of the controls, and the dissolved O2 of co-cultures was decreased 74%. Furthermore, the in vitro maximum hydrogenase activity of the co-culture was 250% greater than that of the control, and the in vivo maximum hydrogenase activity of the co-culture was 1.4-fold greater than that of the control. In addition, the maximum starch content of co-culture was 1400% that of the control.

Conclusions

Azotobacter chroococcum improved the H2 production of the co-cultures by decreasing the O2 content and increasing the growth and starch content of the algae and the hydrogenase activity of the co-cultures relative to those of pure algal cultures.
  相似文献   

2.

Background

A gasotransmitter hydrogen sulfide (H2S) plays an important physiological and pathological role in cardiovascular system. Ischemic post-conditioning (PC) provides cardioprotection in the young hearts but not in the aged hearts. Exogenous H2S restores PC-induced cardioprotection by inhibition of mitochondrial permeability transition pore opening and oxidative stress and increase of autophagy in the aged hearts. However, whether H2S contributes to the recovery of PC-induced cardioprotection via down-regulation of endoplasmic reticulum stress (ERS) in the aged hearts is unclear.

Methods

The aged H9C2 cells (the cardiomyocytes line) were induced using H2O2 and were exposed to H/R and PC protocols. Cell viability was observed by CCK-8 kit. Apoptosis was detected by Hoechst 33342 staining and flow cytometry. Related protein expressions were detected through Western blot.

Results

In the present study, we found that 30 μM H2O2 induced H9C2 cells senescence but not apoptosis. Supplementation of NaHS protected against H/R-induced apoptosis, the expression of cleaved caspase-3 and cleaved caspase-9 and the release of cytochrome c. The addition of NaHS also counteracted the reduction of cell viability caused by H/R and decreased the expression of GRP 78, CHOP, cleaved caspase-12, ATF 4, ATF 6 and XBP-1 and the phosphorylation of PERK, eIF 2α and IRE 1α. Additionally, NaHS increased Bcl-2 expression. PC alone did not provide cardioprotection in H/R-treated aged cardiomyocytes, which was significantly restored by the supplementation of NaHS. The beneficial role of NaHS was similar to the supply of 4-PBA (an inhibitor of ERS), GSK2656157 (an inhibitor of PERK), STF083010 (an inhibitor of IRE 1α), respectively, during PC.

Conclusion

Our results suggest that the recovery of myocardial protection from PC by exogenous H2S is associated with the inhibition of ERS via down-regulating PERK-eIF 2α-ATF 4, IRE 1α-XBP-1 and ATF 6 pathways in the aged cardiomyocytes.
  相似文献   

3.

Objectives

To investigate the feasibility of coupling carbonyl cyanide m-chlorophenylhydrazone-regulated photohydrogen production by Tetraselmis subcordiformis in a photobioreactor to an alkaline fuel cell (AFC).

Results

H2 evolution kinetics in the AFC integrated process was characterized. The duration of H2 evolution was prolonged and its yield was improved about 1.5-fold (to 78 ± 5 ml l?1) compared with that of the process without AFC. Improved H2 yield was possibly caused by removal of H2 feedback inhibition by H2 consumption in situ. Decreases in the H2 production rate correlated with the gradual deactivation of PSII and hydrogenase activities. The H2 yield was closely associated with catabolism of starch and protein.

Conclusion

A marine green algal CO2-supplemented culture integrated with in situ H2-consumption by an AFC system was developed as a viable protocol for the H2 production.
  相似文献   

4.

Introduction

Oxygen from carbon dioxide, water or molecular oxygen, depending on the responsible enzyme, can lead to a large variety of metabolites through chemical modification.

Objectives

Pathway-specific labeling using isotopic molecular oxygen (18O2) makes it possible to determine the origin of oxygen atoms in metabolites and the presence of biosynthetic enzymes (e.g., oxygenases). In this study, we established the basis of 18O2-metabolome analysis.

Methods

18O2 labeled whole Medicago truncatula seedlings were prepared using 18O2-air and an economical sealed-glass bottle system. Metabolites were analyzed using high-accuracy and high-resolution mass spectrometry. Identification of the metabolite was confirmed by NMR following UHPLC–solid-phase extraction (SPE).

Results

A total of 511 peaks labeled by 18O2 from shoot and 343 peaks from root were annotated by untargeted metabolome analysis. Additionally, we identified a new flavonoid, apigenin 4′-O-[2′-O-coumaroyl-glucuronopyranosyl-(1–2)-O-glucuronopyranoside], that was labeled by 18O2. To the best of our knowledge, this is the first report of apigenin 4′-glucuronide in M. truncatula. Using MSn analysis, we estimated that 18O atoms were specifically incorporated in apigenin, the coumaroyl group, and glucuronic acid. For apigenin, an 18O atom was incorporated in the 4′-hydroxy group. Thus, non-specific incorporation of an 18O atom by recycling during one month of labeling is unlikely compared with the more specific oxygenase-catalyzing reaction.

Conclusion

Our finding indicated that 18O2 labeling was effective not only for the mining of unknown metabolites which were biosynthesized by oxygenase-related pathway but also for the identification of metabolites whose oxygen atoms were derived from oxygenase activity.
  相似文献   

5.

Objective

To explore the glycerol utilization pathway in Corynebacterium glutamicum for succinate production under O2 deprivation.

Result

Overexpression of a glycerol facilitator, glycerol dehydrogenase and dihydroxyacetone kinase from Escherichia coli K-12 in C. glutamicum led to recombinant strains NC-3G diverting glycerol utilization towards succinate production under O2 deprivation. Under these conditions, strain NC-3G efficiently consumed glycerol and produced succinate without growth. The recombinant C. glutamicum utilizing glycerol as the sole carbon source showed higher intracellular NADH/NAD+ ratio compare with utilizing glucose. The mass conversion of succinate increased from 0.64 to 0.95. Using an anaerobic fed-batch fermentation process, the final strain produced 38.4 g succinate/l with an average yield of 1.02 g/g.

Conclusions

The metabolically-engineered strains showed an efficient succinate production using glycerol as sole carbon source under O2 deprivation.
  相似文献   

6.

Key message

In hulless barley, H 2 S mediated increases in H 2 O 2 induced by putrescine, and their interaction enhanced tolerance to UV-B by maintaining redox homeostasis and promoting the accumulation of UV-absorbing compounds.

Abstract

This study investigated the possible relationship between putrescence (Put), hydrogen sulfide (H2S) and hydrogen peroxide (H2O2) as well as the underlying mechanism of their interaction in reducing UV-B induced damage. UV-B radiation increased electrolyte leakage (EL) and the levels of malondialdehyde (MDA) and UV-absorbing compounds but reduced antioxidant enzyme activities and glutathione (GSH) and ascorbic acid (AsA) contents. Exogenous application of Put, H2S or H2O2 reduced some of the above-mentioned negative effects, but were enhanced by the addition of Put, H2S and H2O2 inhibitors. Moreover, the protective effect of Put against UV-B radiation-induced damage to hulless barley was diminished by dl-propargylglycine (PAG, a H2S biosynthesis inhibitor), hydroxylamine (HT, a H2S scavenger), diphenylene iodonium (DPI, a PM-NADPH oxidase inhibitor) and dimethylthiourea (DMTU, a ROS scavenger), and the effect of Put on H2O2 accumulation was abolished by HT. Taken together, as the downstream component of the Put signaling pathway, H2S mediated H2O2 accumulation, and H2O2 induced the accumulation of UV-absorbing compounds and maintained redox homeostasis under UV-B stress, thereby increasing the tolerance of hulless barley seedlings to UV-B stress.
  相似文献   

7.

Background

Insulin receptors are widely distributed in the brain, where they play roles in synaptic function, memory formation, and neuroprotection. Autophosphorylation of the receptor in response to insulin stimulation is a critical step in receptor activation. In neurons, insulin stimulation leads to a rise in mitochondrial H2O2 production, which plays a role in receptor autophosphorylation. However, the kinetic characteristics of the H2O2 signal and its functional relationships with the insulin receptor during the autophosphorylation process in neurons remain unexplored to date.

Results

Experiments were carried out in culture of rat cerebellar granule neurons. Kinetic study showed that the insulin-induced H2O2 signal precedes receptor autophosphorylation and represents a single spike with a peak at 5–10 s and duration of less than 30 s. Mitochondrial complexes II and, to a lesser extent, I are involved in generation of the H2O2 signal. The mechanism by which insulin triggers the H2O2 signal involves modulation of succinate dehydrogenase activity. Insulin dose–response for receptor autophosphorylation is well described by hyperbolic function (Hill coefficient, nH, of 1.1±0.1; R2=0.99). N-acetylcysteine (NAC), a scavenger of H2O2, dose-dependently inhibited receptor autophosphorylation. The observed dose response is highly sigmoidal (Hill coefficient, nH, of 8.0±2.3; R2=0.97), signifying that insulin receptor autophosphorylation is highly ultrasensitive to the H2O2 signal. These results suggest that autophosphorylation occurred as a gradual response to increasing insulin concentrations, only if the H2O2 signal exceeded a certain threshold. Both insulin-stimulated receptor autophosphorylation and H2O2 generation were inhibited by pertussis toxin, suggesting that a pertussis toxin-sensitive G protein may link the insulin receptor to the H2O2-generating system in neurons during the autophosphorylation process.

Conclusions

In this study, we demonstrated for the first time that the receptor autophosphorylation occurs only if mitochondrial H2O2 signal exceeds a certain threshold. This finding provides novel insights into the mechanisms underlying neuronal response to insulin. The neuronal insulin receptor is activated if two conditions are met: 1) insulin binds to the receptor, and 2) the H2O2 signal surpasses a certain threshold, thus, enabling receptor autophosphorylation in all-or-nothing manner. Although the physiological rationale for this control remains to be determined, we propose that malfunction of mitochondrial H2O2 signaling may lead to the development of cerebral insulin resistance.
  相似文献   

8.

Background and aims

Saline and alkali soils severely impact plant growth. Endophyte and plant associations are known to significantly modify plant metabolism. This study reports the effects of a type of endophyte on organic acid (OA) accumulation and ionic balance in rice under Na2CO3 stress.

Methods

Rice seedlings with (E+) and without (E-) endophytic infection were subjected to different levels of Na2CO3 stress (0, 5, 10, 15, and 20 mM) for two weeks. Organic acids and mineral elements in the leaves and roots were determined.

Results

Seedlings with endophytic infection accumulated mainly citrate and fumarate, with some malate and succinate in the leaves. In the roots, accumulation of malate and fumarate was enhanced significantly by endophytic infection, while less citrate and succinate was accumulated under Na2CO3 stress, which suggested that leaves and roots use different mechanisms to control OA metabolism. Endophytes reduced the total Na and Na:K ratios, but increased ST values, the percent changes of other measured nutrients, Chl content, and dry weight per plant under Na2CO3 stress.

Conclusions

Endophytic infection plays a key role in maintaining plant growth by improving nutrient uptake and adjusting OA accumulation under Na2CO3 stress. The application of endophytes can enhance the resistance of rice to salinity.
  相似文献   

9.

Background

Airway epithelium is an active and important component of the immunological response in the pathophysiology of obstructive lung diseases. Recent studies suggest an important role for vitamin D3 in asthma severity and treatment response.

Objective

Our study evaluated the influence of an active form of vitamin D3 on the expression of selected mediators of allergic inflammation in the respiratory epithelium.

Material and Methods

Primary nasal and bronchial epithelial cells were exposed to1,25D3 for 1 hour and were then stimulated or not with IL-4, TNF-α, LPS, and poly I:C. After 24 hours TSLP, IL-33, and IL-25 protein levels were measured in culture supernatants usingELISAandmRNAlevels in cells by real time PCR.

Results

1,25D3 increased TSLP concentration in unstimulated nasal epithelial cells, but did not influence IL-33 and IL-25 expression. In IL-4-stimulated epithelial cell cultures 1,25D3 mostly inhibited TSLP and IL-33 expression. In LPS-treated cultures 1,25D3 decreased IL-33 expression. Simultaneously 1,25D3 augmented IL-25 production in the same model of stimulation.

Conclusion

Our study revealed the dual nature of vitamin D3 manifested in both pro- and anti-inflammatory properties observed in airway epithelial cells.
  相似文献   

10.

Objectives

To improve the oxidative stress tolerance, biomass yield, and ascorbate/dehydroascorbate (AsA/DHA) ratio of Synechococcus elongatus PCC 7942 in the presence of H2O2, by heterologous expression of the dehydroascorbate reductase (DHAR) gene from Brassica juncea (BrDHAR).

Results

Under H2O2 stress, overexpression of BrDHAR in the transgenic strain (BrD) of S. elongatus greatly increased the AsA/DHA ratio. As part of the AsA recycling system, the oxidative stress response induced by reactive oxygen species was enhanced, and intracellular H2O2 level decreased. In addition, under H2O2 stress conditions, the BrD strain displayed increased growth rate and biomass, as well as higher chlorophyll content and deeper pigmentation than did wild-type and control strains.

Conclusion

By maintaining the AsA pool and redox homeostasis, the heterologous expression of BrDHAR increased S. elongatus tolerance to H2O2 stress, improving the biomass yield under these conditions. The results suggest that the BrD strain of S. elongatus, with its ability to attenuate the deleterious effects of ROS caused by environmental stressors, could be a promising platform for the generation of biofuels and other valuable bioproducts.
  相似文献   

11.
12.

Background

Stress urinary incontinence (SUI) is a relatively common disorder that significantly affects the quality of life. Many conservative and surgical treatment methods have been recommended for SUI, but they have major limitations.

Aims

To assess the use of the CO2 fractional laser in the treatment of SUI.

Methods

This clinical trial included 55 patients with confirmed SUI. Patients underwent fractional CO2 laser treatment 3 times at 30-day intervals. Data on age, smoking history, sexual activity, menopause, and history of hormone replacement therapy (HRT) were collected. Response to treatment was assessed by SUI severity and the level of sexual satisfaction was assessed using the visual analog scale (VAS). Patients were evaluated at 3 different time points: before treatment, and 45 days and 6 months after the last laser treatment.

Results

The mean patient age was 44.4±11.4 years (range: 28 to 68 years). Smoking history was positive in 6 patients (9.1%); 19 (54.3%) were menopausal on HRT. The SUI severity score at baseline (before treatment) was 8.56±0.62 and decreased to 2.28 6 months after treatment (p<0.0001). The sexual satisfaction score was 3±0.94 at baseline and increased to 7.87±0.93 6 months after treatment (day 180) (p<0.0001, slope = + 2.2)

Conclusion

Our findings are in line with a previous study that showed the value of transvaginal CO2 fractional laser treatment for alleviation of SUI symptoms and its potential as an alternative treatment. We also observed improved sexual satisfaction in SUI patients.
  相似文献   

13.

Introduction

The aphid Rhopalosiphum padi L. is a vector of Barley yellow dwarf virus (BYDV) in wheat and other economically important cereal crops. Increased atmospheric CO2 has been shown to alter plant growth and metabolism, enhancing BYDV disease in wheat. However, the biochemical influences on aphid metabolism are not known.

Objectives

This work aims to determine whether altered host-plant quality, influenced by virus infection and elevated CO2, impacts aphid weight and metabolism.

Methods

Untargeted 1H NMR metabolomics coupled with multivariate statistics were employed to profile the metabolism of R. padi reared on virus-infected and non-infected (sham-inoculated) wheat grown under ambient CO2 (aCO2, 400 µmol mol?1) and future, predicted elevated CO2 (eCO2, 650 µmol mol?1) concentrations. Un-colonised wheat was also profiled to observe changes to host-plant quality (i.e., amino acids and sugars).

Results

The direct impacts of virus or eCO2 were compared. Virus presence increased aphid weight under aCO2 but decreased weight under eCO2; whilst eCO2 increased non-viruliferous (sham) aphid weight but decreased viruliferous aphid weight. Discriminatory metabolites due to eCO2 were succinate and sucrose (in sham wheat), glucose, choline and betaine (in infected wheat), and threonine, lactate, alanine, GABA, glutamine, glutamate and asparagine (in aphids), irrespective of virus presence. Discriminatory metabolites due to virus presence were alanine, GABA, succinate and betaine (in wheat) and threonine and lactate (in aphids), irrespective of CO2 treatment.

Conclusion

This study confirms that virus and eCO2 alter host-plant quality, and these differences are reflected by aphid weight and metabolism.
  相似文献   

14.

Objective

Palladised cells of Desulfovibrio desulfuricans and Shewanella oneidensis have been reported as fuel cell electrocatalysts but growth at scale may be unattractive/costly; we have evaluated the potential of using E. coli, using H2/formate for Pd-nanoparticle manufacture.

Results

Using ‘bio-Pd’ made under H2 (20 wt%) cyclic voltammograms suggested electrochemical activity of bio-NPs in a native state, attributed to proton adsorption/desorption. Bio-Pd prepared using formate as the electron donor gave smaller, well separated NPs; this material showed no electrochemical properties, and hence little potential for fuel cell use using a simple preparation technique. Bio-Pd on S. oneidensis gave similar results to those obtained using E. coli.

Conclusion

Bio-Pd is sufficiently conductive to make an E. coli-derived electrochemically active material on intact, unprocessed bacterial cells if prepared at the expense of H2, showing potential for fuel cell applications using a simple one-step preparation method.
  相似文献   

15.

Purpose

The increasing use of engineered nanomaterials (ENMs) in industrial applications and consumer products is leading to an inevitable release of these materials into the environment. This makes it necessary to assess the potential risks that these new materials pose to human health and the environment. Life cycle assessment (LCA) methodology has been recognized as a key tool for assessing the environmental performance of nanoproducts. Until now, the impacts of ENMs could not be included in LCA studies due to a lack of characterization factors (CFs). This paper provides a methodological framework for identifying human health CFs for ENMs.

Methods

The USEtox? model was used to identify CFs for assessing the potential carcinogenic and non-carcinogenic effects on human health caused by ENM emissions in both indoor (occupational settings) and outdoor environments. Nano-titanium dioxide (nano-TiO2) was selected for defining the CFs in this study, as it is one of the most commonly used ENMs. For the carcinogenic effect assessment, a conservative approach was adopted; indeed, a critical dose estimate for pulmonary inflammation was assumed.

Results and discussion

We propose CFs for nano-TiO2 from 5.5E?09 to 1.43E?02 cases/kgemitted for both indoor and outdoor environments and for carcinogenic and non-carcinogenic effects.

Conclusions

These human health CFs for nano-TiO2 are an important step toward the comprehensive application of LCA methodology in the field of nanomaterial technology.
  相似文献   

16.

Background

Mitochondria exhibit a dynamic morphology in cells and their biogenesis and function are integrated with the nuclear cell cycle. In mitotic cells, the filamentous network structure of mitochondria takes on a fragmented form. To date, however, whether mitochondrial fusion activity is regulated in mitosis has yet to be elucidated.

Findings

Here, we report that mitochondria were found to be fragmented in G2 phase prior to mitotic entry. Mitofusin 1 (Mfn1), a mitochondrial fusion protein, interacted with cyclin B1, and their interactions became stronger in G2/M phase. In addition, MARCH5, a mitochondrial E3 ubiquitin ligase, reduced Mfn1 levels and the MARCH5-mediated Mfn1 ubiquitylation were enhanced in G2/M phase.

Conclusions

Mfn1 is degraded through the MARCH5-mediated ubiquitylation in G2/M phase and the cell cycle-dependent degradation of Mfn1 could be facilitated by interaction with cyclin B1/Cdk1 complexes.
  相似文献   

17.

Background

The ESX-1 type VII secretion system is an important determinant of virulence in pathogenic mycobacteria, including Mycobacterium tuberculosis. This complicated molecular machine secretes folded proteins through the mycobacterial cell envelope to subvert the host immune response. Despite its important role in disease very little is known about the molecular architecture of the ESX-1 secretion system.

Results

This study characterizes the structures of the soluble domains of two conserved core ESX-1 components – EccB1 and EccD1. The periplasmic domain of EccB1 consists of 4 repeat domains and a central domain, which together form a quasi 2-fold symmetrical structure. The repeat domains of EccB1 are structurally similar to a known peptidoglycan binding protein suggesting a role in anchoring the ESX-1 system within the periplasmic space. The cytoplasmic domain of EccD1has a ubiquitin-like fold and forms a dimer with a negatively charged groove.

Conclusions

These structures represent a major step towards resolving the molecular architecture of the entire ESX-1 assembly and may contribute to ESX-1 targeted tuberculosis intervention strategies.
  相似文献   

18.

Objectives

To investigate the effect of all-trans retinoic acid (ATRA) on caspase 3 activity, matrix metalloproteinase 2 (MMP-2), and MMP-9 expression and activity as well as in vitro rat bone marrow-derived mesenchymal stem cells (MSCs) migration.

Results

The expression of the MMP-2/-9 was at least five times higher in ATRA-treated MSCs (P < 0.001), and MMP-2/-9 activity was enhanced with increasing doses compared to the control MSCs. The caspase three activity was attenuated by ATRA preconditioning. Scratch test showed that ATRA could promote the migration capacity of the MSCs compared to the untreated MSCs in a dose-dependent manner.

Conclusion

ATRA increases the in vitro migration capacity of the MSCs through stimulating the expression and activity of MMP-2/-9 and inhibiting caspase three enzyme activity.
  相似文献   

19.

Objective

In order to identify specific mesenchymal stromal cell (MSC) populations with enhanced therapeutic efficacy, we evaluated the functional changes associated with the stable expression of CD200, which is associated with immune regulatory function and osteogenic differentiation, in human bone marrow-derived MSCs (CD200/MSCs).

Results

We detected significantly greater osteogenesis and chondrogenesis in CD200/MSCs than in mock-transfected MSCs. In addition, the immune regulatory function of MSCs in mixed lymphocyte reactions was enhanced by CD200 gene transfection. In CD200/MSCs, the secretion of inflammatory cytokines, i.e., IL-6 and IL-8, was reduced, and levels of the anti-inflammatory factors IL-10, FOXP3, and indoleamine 2,3-dioxygenase 1 were elevated. Finally, CD200 transfection increased the stemness of MSCs, as evidenced by greater colony numbers in colony-forming unit fibroblast assays and analyses of NANOG and OCT-4 expression.

Conclusions

These results suggest that CD200/MSCs have therapeutic applications, and further in-depth research should focus on the development of a clinically applicable cell-based therapeutic strategy.
  相似文献   

20.

Objectives

To prove the possibility of efficient starch photofermentation in co-culture of heterotrophic and phototrophic bacteria over prolonged period.

Results

Repeated batch photofermentation of starch was demonstrated in co-culture Clostridium butyricum and Rhodobacter sphaeroides under microaerobic conditions. It continued 15 months without addition of new inoculum or pH regulation when using 4–5 g starch l?1 and 0.04 g yeast extract l?1. The complete degradation of starch without volatile fatty acids accumulation was shown in this co-culture. The average H2 yield of 5.2 mol/mol glucose was much higher than that in Clostridium monoculture. The species composition of co-culture was studied by q-PCR assay. The concentration of Clostridium cells in prolonged co-culture was lower than in monoculture and even in a single batch co-culture. This means that Clostridia growth was significantly limited whereas starch hydrolysis still took place.

Conclusion

The prolonged repeated batch photofermentation of starch by co-culture C. butyricum and R. sphaeroides provided efficient H2 production without accumulation of organic acids under conditions of Clostridia limitation.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号