首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A strength of NMR spectroscopy is its ability to monitor, on an atomic level, molecular changes and interactions. In this review, which is intended for non-spectroscopist, we describe major uses of NMR in protein science beyond solution structure determination. After first touching on how NMR can be used to quickly determine whether a mutation induces structural perturbations in a protein, we describe the unparalleled ability of NMR to monitor binding interactions over a wide range of affinities, molecular masses and solution conditions. We discuss the use of NMR to measure the dynamics of proteins at the atomic level and over a wide range of timescales. Finally, we outline new and expanding areas such as macromolecular structure determination in multicomponent systems, as well as in the solid state and in vivo.  相似文献   

2.
B G Jenkins 《Life sciences》1991,48(13):1227-1240
Study of ligand-macromolecular interactions by 19F nuclear magnetic resonance (NMR) spectroscopy affords many opportunities for obtaining molecular biochemical and pharmaceutical information. This is due to the absence of a background fluorine signal, as well as the relatively high sensitivity of 19F NMR. Use of fluorine-labeled ligands enables one to probe not only binding and co-binding phenomena to macromolecules, but also can provide data on binding constants, stoichiometries, kinetics, and conformational properties of these complexes. Under conditions of slow exchange and macromolecule-induced chemical shifts, multiple 19F NMR resonances can be observed for free and bound ligands. These shifted resonances are a direct correlate of the concentration of ligand bound in a specific state rather than the global concentrations of bound or free ligand which are usually determined using other techniques such as absorption spectroscopy or equilibrium dialysis. Examples of these interactions are demonstrated both from the literature and from interactions of 5-fluorotryptophan, 5-fluorosalicylic acid, flurbiprofen, and sulindac sulfide with human serum albumin. Other applications of 19F NMR to study of these interactions in vivo, as well for receptor binding and metabolic tracing of fluorinated drugs and proteins are discussed.  相似文献   

3.
Spectroscopic evidence was used to demonstrate the formation of molecular associates in an aqueous solution of phthalimido tryptophan. These molecular associates are loosely formed through pi-pi aromatic stacking, properties that are not sufficient to cause NMR spectroscopic enantiomeric discrimination. A cyclomaltooligosaccharide with a larger cavity, such as cyclomaltooctaose (gamma-cyclodextrin), is capable of forming a ternary complex with these molecular associates and enhances pi-pi aromatic stacking interactions, resulting in NMR enantiomeric discrimination. Electrospray-ionization mass spectroscopy (ESIMS) and NOESY two-dimensional NMR spectroscopic methods were used to study these complexes. Association constants and thermodynamic data for these cyclomaltooligosaccharide complexes were also estimated.  相似文献   

4.
5.
We describe an in-cell NMR-based method for mapping the structural interactions (STINT-NMR) that underlie protein-protein complex formation. This method entails sequentially expressing two (or more) proteins within a single bacterial cell in a time-controlled manner and monitoring their interactions using in-cell NMR spectroscopy. The resulting NMR data provide a complete titration of the interaction and define structural details of the interacting surfaces at atomic resolution. Unlike the case where interacting proteins are simultaneously overexpressed in the labeled medium, in STINT-NMR the spectral complexity is minimized because only the target protein is labeled with NMR-active nuclei, which leaves the interactor protein(s) cryptic. This method can be combined with genetic and molecular screens to provide a structural foundation for proteomic studies. The protocol takes 4 d from the initial transformation of the bacterial cells to the acquisition of the NMR spectra.  相似文献   

6.
Cheng X  Im W 《Biophysical journal》2012,102(7):L27-L29
NMR observables, such as NOE-based distance measurements, are increasingly being used to characterize membrane protein structures. However, challenges in membrane protein NMR studies often yield a relatively small number of such restraints that can create ambiguities in defining critical side chain-side chain interactions. In the recent solution NMR structure of the DAP12-NKG2C immunoreceptor transmembrane helix complex, five functionally required interfacial residues (two Asps and two Thrs in the DAP12 dimer and one Lys in NKG2C) display a surprising arrangement in which one Asp side chain faces the membrane hydrophobic core. To explore whether these side-chain interactions are energetically optimal, we used the published distance restraints for molecular dynamics simulations in explicit micelles and bilayers. The structures refined by this protocol are globally similar to the published structure, but the side chains of those five residues form a stable network of salt bridges and hydrogen bonds, leaving the Asp side chain shielded from the hydrophobic core, which is also consistent with available experimental observations. Moreover, the simulations show similar short-range interactions between the transmembrane complex and lipid/detergent molecules in micelles and bilayers, respectively. This study illustrates the efficacy of NMR membrane protein structure refinements in explicit membrane systems.  相似文献   

7.
Solid-state NMR has been used to determine the structures of membrane proteins in native-like lipid bilayer environments. Most structure calculations based on solid-state NMR observables are performed using simulated annealing with restrained molecular dynamics and an energy function, where all nonbonded interactions are represented by a single, purely repulsive term with no contributions from van der Waals attractive, electrostatic, or solvation energy. To our knowledge, this is the first application of an ensemble dynamics technique performed in explicit membranes that uses experimental solid-state NMR observables to obtain the refined structure of a membrane protein together with information about its dynamics and its interactions with lipids. Using the membrane-bound form of the fd coat protein as a model membrane protein and its experimental solid-state NMR data, we performed restrained ensemble dynamics simulations with different ensemble sizes in explicit membranes. For comparison, a molecular dynamics simulation of fd coat protein was also performed without any restraints. The average orientation of each protein helix is similar to a structure determined by traditional single-conformer approaches. However, their variations are limited in the resulting ensemble of structures with one or two replicas, as they are under the strong influence of solid-state NMR restraints. Although highly consistent with all solid-state NMR observables, the ensembles of more than two replicas show larger orientational variations similar to those observed in the molecular dynamics simulation without restraints. In particular, in these explicit membrane simulations, Lys40, residing at the C-terminal side of the transmembrane helix, is observed to cause local membrane curvature. Therefore, compared to traditional single-conformer approaches in implicit environments, solid-state NMR restrained ensemble simulations in explicit membranes readily characterize not only protein dynamics but also protein-lipid interactions in detail.  相似文献   

8.
Phospholipid phase transitions as revealed by NMR   总被引:1,自引:0,他引:1  
Aqueous dispersions of phospholipids can adopt a range of polymorphic phases which include bilayer and non-bilayer forms. Within the bilayer form, laterally separated phases may be induced as a result of surface electrostatic associations, thermotropic behaviour, lipid-protein interactions or because of molecular mismatch between chemically distinct phospholipids. Nuclear magnetic resonance (NMR) methods, designed to exploit the properties of either indigenous nuclei or isotopic labels introduced specifically into a phospholipid, can be used in some cases to describe the molecular properties and behaviour of phospholipids in both macroscopically distinct phases and in molecularly distinct phases within the same polymorphic state. If the molecular motion of phospholipids in co-existing phases is sufficiently different, NMR methods can, in principle, give estimates of the life-time of the phases and the rate of molecular exchange between the phases.  相似文献   

9.
The molecular chaperone Hsp90 plays a crucial role in folding and maturation of regulatory proteins. Key aspects of Hsp90's molecular mechanism and its adenosine-5'-triphosphate (ATP)-controlled active cycle remain elusive. In particular the role of conformational changes during the ATPase cycle and the molecular basis of the interactions with substrate proteins are poorly understood. The dynamic nature of the Hsp90 machine designates nuclear magnetic resonance (NMR) spectroscopy as an attractive method to unravel both the chaperoning mechanism and interaction with partner proteins. NMR is particularly suitable to provide a dynamic picture of protein-protein interactions at atomic resolution. Hsp90 is rather a challenging protein for NMR studies, due to its high molecular weight and its structural flexibility. The recent technologic advances allowed overcoming many of the traditional obstacles. Here, we describe the different approaches that allowed the investigation of Hsp90 using state-of-the-art NMR methods and the results that were obtained. NMR spectroscopy contributed to understanding Hsp90's interaction with the co-chaperones p23, Aha1 and Cdc37. A particular exciting prospect of NMR, however, is the analysis of Hsp90 interaction with substrate proteins. Here, the ability of this method to contribute to the structural characterization of not fully folded proteins becomes crucial. Especially the interaction of Hsp90 with one of its natural clients, the tumour suppressor p53, has been intensively studied by NMR spectroscopy. This article is part of a Special Issue entitled: Heat Shock Protein 90 (HSP90).  相似文献   

10.
An extensive conformational search in explicit solvent was performed in order to compare the influence of different long-range electrostatic interaction treatments in molecular dynamics. The short peptide endothelin-1 was selected as the subject of molecular dynamics studies that started from both X-ray and NMR obtained structures. Electrostatic interactions were treated using two of the most common methods--residue-based cutoff and particle mesh Ewald (PME). Analyses of free energy calculations (MM-PBSA method used), secondary structure elements and hydrogen bonds were performed, and there suggested that there is no unambiguous conclusion about which of the two methods of long-range electrostatics treatment should be used in MD simulations in this case. The most reliable data was provided by a trajectory that started with the NMR structure and used the cutoff method to treat electrostatic interactions. This leads to a recommendation that the choice of electrostatics treatment should be made carefully and not automatically by choosing the PME method simply because it is the most widely used.  相似文献   

11.
Rodin VV  Knight DP 《Biofizika》2004,49(5):800-808
The molecular mobility of water in fibres of natural silk (Bombyx mori) was studied by the double-quantum-filtered (DQF) and single-pulse 1H NMR techniques. The results obtained showed a slow motion of water molecules and their strong interaction with silk macromolecules. At different model functions for resonance lineshape in 1H NMR spectra, the influence of signal linewidth on the estimation of relaxation times and cross-relaxation parameters was considered. The observed 1H DQF NMR signal in B. mori silk fibres (BC = 0.065) indicated a local order and anisotropic motion of water molecules, which leads to 1H-1H dipolar interactions in natural silk fibers due to the creation of the second-rank tensors (T(2,+1), T(2,-1)). DQF spectra were the difference of two Lorentzians with different linewidths and were analyzed using the theory of 1H DQF NMR and the data on residual dipolar interactions in systems with the anisotropic mobility of water molecules. The residual dipolar interactions was insignificant and, as the humidity increased (0.18), no DQF-signals and residual dipolar interactions were observed.  相似文献   

12.
Solid-state NMR spectroscopy is a powerful technique for the investigation of membrane-associated peptides and proteins as well as their interactions with lipids, and a variety of conceptually different approaches have been developed for their study. The technique is unique in allowing for the high-resolution investigation of liquid disordered lipid bilayers representing well the characteristics of natural membranes. Whereas magic angle solid-state NMR spectroscopy follows approaches that are related to those developed for solution NMR spectroscopy the use of static uniaxially oriented samples results in angular constraints which also provide information for the detailed analysis of polypeptide structures. This review introduces this latter concept theoretically and provides a number of examples. Furthermore, ongoing developments combining solid-state NMR spectroscopy with information from solution NMR spectroscopy and molecular modelling as well as exploratory studies using dynamic nuclear polarization solid-state NMR will be presented.  相似文献   

13.
Obtaining sequence-specific assignments remains a major bottleneck in solution NMR investigations of supramolecular structure, dynamics and interactions. Here we demonstrate that resonance assignment of methyl probes in high molecular weight protein assemblies can be efficiently achieved by combining fast NMR experiments, residue-type-specific isotope-labeling and automated site-directed mutagenesis. The utility of this general and straightforward strategy is demonstrated through the characterization of intermolecular interactions involving a 468-kDa multimeric aminopeptidase, PhTET2.  相似文献   

14.
Two important lincosamide antibiotics, lincomycin and clindamycin were studied in the complex state with the bacterial ribosome after a conformational analysis by 1H and 13C NMR spectroscopy and molecular modelling of the unbound molecules. Lincosamide-ribosome interactions were investigated using two-dimensional transferred nuclear Overhauser effect spectroscopy (TRNOESY), resulting in a bound structure compatible with the experimental NMR data. The results compared with the conformational analysis of the substrates in solution indicate that specific conformations are preferred in the bound state. Clindamycin, the more bioactive antibiotic studied, displayed a stronger NMR response than lincomycin showing that in lincosamide-ribosome interactions, a low affinity binding level is associated to the tight binding one and is related to biological activity. This study shows that conformation plays an essential role for the low affinity binding site. Superimposition of lincosamide, macrolide and ketolide bound structures exhibited conformational similarities in a particular fragment which is in agreement with a hypothesis of partial overlapping lincosamide and macrolide binding sites.  相似文献   

15.
《Biophysical journal》2021,120(18):4055-4066
KRAS4B is a membrane-anchored signaling protein and a primary target in cancer research. Predictions from molecular dynamics simulations that have previously shaped our mechanistic understanding of KRAS signaling disagree with recent experimental results from neutron reflectometry, NMR, and thermodynamic binding studies. To gain insight into these discrepancies, we compare this body of biophysical data to back-calculated experimental results from a series of molecular simulations that implement different subsets of molecular interactions. Our results show that KRAS4B approximates an entropic ensemble of configurations at model membranes containing 30% phosphatidylserine lipids, which is not significantly shaped by interactions between the globular G-domain of KRAS4B and the lipid membrane. These findings revise our understanding of KRAS signaling and promote a model in which the protein samples the accessible conformational space in a near-uniform manner while being available to bind to effector proteins.  相似文献   

16.
Saturation transfer difference NMR (STD NMR) spectroscopy is one of the most powerful NMR techniques for detection and characterization of transient (fast) receptor–ligand interactions in solution. By observing the signals of a small molecule (ligand) with spectroscopic properties suitable for high-resolution studies, irrespective of receptor size, STD NMR enables quantitative structural and affinity information to be obtained about the molecular recognition process under study. Approximately one decade after its introduction, the technique has reached maturity, and is highly robust and useful. The objective of this article is to review the current status of this powerful technique, with particular emphasis on quantitative applications, within the framework of the (bio-)chemistry of molecular recognition.  相似文献   

17.
Abstract

An extensive conformational search in explicit solvent was performed in order to compare the influence of different long-range electrostatic interaction treatments in molecular dynamics. The short peptide endothelin-1 was selected as the subject of molecular dynamics studies that started from both X-ray and NMR obtained structures. Electrostatic interactions were treated using two of the most common methods—residue-based cutoff and particle mesh Ewald (PME). Analyses of free energy calculations (MM-PBSA method used), secondary structure elements and hydrogen bonds were performed, and there suggested that there is no unambiguous conclusion about which of the two methods of long-range electrostatics treatment should be used in MD simulations in this case. The most reliable data was provided by a trajectory that started with the NMR structure and used the cutoff method to treat electrostatic interactions. This leads to a recommendation that the choice of electrostatics treatment should be made carefully and not automatically by choosing the PME method simply because it is the most widely used.  相似文献   

18.
Biomolecular NMR: a chaperone to drug discovery   总被引:1,自引:0,他引:1  
Biomolecular NMR now contributes routinely to every step in the development of new chemical entities ahead of clinical trials. The versatility of NMR--from detection of ligand binding over a wide range of affinities and a wide range of drug targets with its wealth of molecular information, to metabolomic profiling, both ex vivo and in vivo--has paved the way for broadly distributed applications in academia and the pharmaceutical industry. Proteomics and initial target selection both benefit from NMR: screenings by NMR identify lead compounds capable of inhibiting protein-protein interactions, still one of the most difficult development tasks in drug discovery. NMR hardware improvements have given access to the microgram domain of phytochemistry, which should lead to the discovery of novel bioactive natural compounds. Steering medicinal chemists through the lead optimisation process by providing detailed information about protein-ligand interactions has led to impressive success in the development of novel drugs. The study of biofluid composition--metabonomics--provides information about pharmacokinetics and helps toxicological safety assessment in animal model systems. In vivo, magnetic resonance spectroscopy interrogates metabolite distributions in living cells and tissues with increasing precision, which significantly impacts the development of anticancer or neurological disorder therapeutics. An overview of different steps in recent drug discovery is presented to illuminate the links with the most recent advances in NMR methodology.  相似文献   

19.
Kamihira M  Watts A 《Biochemistry》2006,45(13):4304-4313
The dynamics of bacteriorhodopsin (bR) and the lipid headgroups in oriented purple membranes (PMs) was determined at various temperatures and relative humidity (rh) using solid-state NMR spectroscopy. The 31P NMR spectra of the alpha- and gamma-phosphate groups in methyl phosphatidylglycerophosphate (PGP-Me), which is the major phospholipid in the PM, changed sensitively with hydration levels. Between 253 and 233 K, the signals from a fully hydrated sample became broadened similarly to those of a dry sample at 293 K. The 15N cross polarization (CP) NMR spectral intensities from [15N]Gly bR incorporated into fully hydrated PMs were suppressed in 15N CP NMR spectra at 293 K compared with those of dry membranes but gradually recovered at low temperatures or at lower hydration (75%) levels. The suppression of the NMR signals, which is due to interference with proton decoupling frequency (approximately 45 kHz), coupled with short spin-spin relaxation times (T2) indicates that the loops of bR, in particular, have motional components around this frequency. The motion of the transmembrane alpha-helices in bR was largely affected by the freezing of excess water at low temperatures. While between 253 and 233 K, where a dynamic phase transition-like change was observed in the 31P NMR spectra for the phosphate lipid headgroups, the molecular motion of the loops and the C- and N-termini slowed, suggesting lipid-loop interactions, although protein-protein interactions between stacks cannot be excluded. The results of T2 measurements of dry samples, which do not have proton pumping activity, were similar to those for fully hydrated samples below 213 K where the M-intermediates can be trapped. These results suggest that motions in the 10s micros correlation regime may be functionally important for the photocycle of bR, and protein-lipid interactions are motionally coupled in this dynamic regime.  相似文献   

20.
Booth J  Brown T  Vadhia SJ  Lack O  Cummins WJ  Trent JO  Lane AN 《Biochemistry》2005,44(12):4710-4719
DNA duplexes are stabilized by aminopropynyl modification of pyrimidines at the 5 position. A combination of thermodynamic analyses as a function of ionic strength, NMR, and molecular modeling has been applied to determine the origin of the stabilization. UV melting studies of a dodecamer bearing one, two, or three nonadjacent modified dU and dC and of a single dU(8) in the Dickerson-Drew dodecamer revealed that the modifications are essentially additive in terms of T(m), DeltaG, and DeltaH, and there is little difference between dU and dC. The free energy change was parsed into electrostatic and nonelectrostatic components, which showed a significant contribution from charge interactions at physiological ionic strength but also a nonelectrostatic contribution that arises in part from hydration. NMR spectroscopy of the modified Dickerson-Drew dodecamer revealed that the conformation of the duplexes is not significantly altered by the modifications, though (31)P NMR shows that the positive charge may affect ionic interactions with the oxygen atoms of the neighboring phosphates. The modified duplex showed significant hydration in both major and minor grooves. The single strands were also analyzed by NMR, which showed evidence of significant stacking interactions in the modified oligonucleotide. Parsing the energy contribution has shown that electrostatics and hydration can produce substantial increases in thermodynamic stability without significant changes in the conformation of the duplex state. These considerations have significance for the design of oligonucleotides used for hybridization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号