首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Familial risks for cancer can be used in many ways in guiding gene identification efforts and, more broadly, in understanding cancer etiology. Gene identification efforts may be properly designed and targeted if the familial risks are well characterized and the mode of inheritance is identified. Single nucleotide polymorphisms (SNPs) are extensively used in case-control studies of practically all cancer types. They are used for the identification of inherited cancer susceptibility genes and those that may interact with environmental factors. However, being genetic markers, they are applicable only on heritable conditions, which is often a neglected fact. Based on the data in the nationwide Swedish Family-Cancer Database, we review familial risks for all main cancers and discuss the evidence for a heritable component in cancer. The available evidence, including differences in cancer incidence between regions and temporal changes within regions, indicates that cancer is mainly an environmental disease, with a minor heritable etiology. The large environmental component will hamper the success of SNP-based genetic association studies. Empirical familial risks should be used to evaluate the feasibility of such studies. We develop figures for the assessment of genetic parameters based on familial risks. Such data are helpful in the estimation of the expected genetic effects in cancer. Overall, we consider the likelihood of a successful application of SNPs in gene-environment studies small, unless established environmental risk factors are tested on proven candidate genes.  相似文献   

2.
Environment-sensitive epigenetics and the heritability of complex diseases   总被引:1,自引:0,他引:1  
Furrow RE  Christiansen FB  Feldman MW 《Genetics》2011,189(4):1377-1387
Genome-wide association studies have thus far failed to explain the observed heritability of complex human diseases. This is referred to as the "missing heritability" problem. However, these analyses have usually neglected to consider a role for epigenetic variation, which has been associated with many human diseases. We extend models of epigenetic inheritance to investigate whether environment-sensitive epigenetic modifications of DNA might explain observed patterns of familial aggregation. We find that variation in epigenetic state and environmental state can result in highly heritable phenotypes through a combination of epigenetic and environmental inheritance. These two inheritance processes together can produce familial covariances significantly higher than those predicted by models of purely epigenetic inheritance and similar to those expected from genetic effects. The results suggest that epigenetic variation, inherited both directly and through shared environmental effects, may make a key contribution to the missing heritability.  相似文献   

3.
Single nucleotide polymorphisms (SNPs) are extensively used in case-control studies of practically all cancer types. They are used for the identification of inherited cancer susceptibility genes and those that may interact with environmental factors. However, being genetic markers, they are applicable only on heritable conditions, which is often a neglected fact. Based on the data in the nationwide Swedish Family-Cancer Database, we review familial risks for all main cancers and discuss the evidence for a heritable component in cancer. The available evidence is not conclusive but it is consistent in pointing to a minor heritable etiology in cancer, which will hamper the success of SNP-based association studies. Empirical familial risks should be used as guidance for the planning of SNP studies. We provide calculations for the assessment of familial risks for assumed allele frequencies and gene effects (odds ratios) for different modes of inheritance. Based on these data, we discuss the gene effects that could account for the unexplained proportion of familial breast and lung cancer. As a conclusion, we are concerned about the indiscriminate use of a genetic tool to cancers, which are mainly environmental in origin. We consider the likelihood of a successful application of SNPs in gene-environment studies small, unless established environmental risk factors are tested on proven candidate genes.  相似文献   

4.
Non-genomic transgenerational inheritance of disease risk   总被引:3,自引:0,他引:3  
That there is a heritable or familial component of susceptibility to chronic non-communicable diseases such as type 2 diabetes, obesity and cardiovascular disease is well established, but there is increasing evidence that some elements of such heritability are transmitted non-genomically and that the processes whereby environmental influences act during early development to shape disease risk in later life can have effects beyond a single generation. Such heritability may operate through epigenetic mechanisms involving regulation of either imprinted or non-imprinted genes but also through broader mechanisms related to parental physiology or behaviour. We review evidence and potential mechanisms for non-genomic transgenerational inheritance of 'lifestyle' disease and propose that the 'developmental origins of disease' phenomenon is a maladaptive consequence of an ancestral mechanism of developmental plasticity that may have had adaptive value in the evolution of generalist species such as Homo sapiens.  相似文献   

5.
Significant familial aggregation was observed for plasma levels of lathosterol (an indicator of whole-body cholesterol synthesis) and plant sterols campesterol and beta-sitosterol (indicators of cholesterol absorption) in 160 Dutch families consisting of adolescent mono- and dizygotic twin pairs and their parents. For lathosterol a moderate genetic heritability in parents and offspring (29%) was found. In addition, shared environment also contributed significantly (37%) to variation in plasma lathosterol concentrations in twin siblings. However, a model with different genetic heritabilities in the two generations (10% in parents and 68% in offspring) fitted the data almost as well. For plasma plant sterol concentrations high heritabilities were found. For campesterol heritability was 80% and for beta-sitosterol it was 73%, without evidence for differences in heritability between sexes or generations. No influence of common environmental influences shared by family members was seen for either campesterol or beta-sitosterol. Taken together, these results confirm and expand the hypothesis that individual differences in plasma levels of noncholesterol sterols are moderately (lathosterol) to highly (plant sterols) heritable.  相似文献   

6.
The etiology of complex diseases is characterized by the interaction between the genome and environmental conditions and the interface of epigenetics may be a central mechanism. Current technologies already allow us high-throughput profiling of epigenetic patterns at genome level. However, our understanding of the epigenetic processes remains limited. Twins are special samples in genetic studies due to their genetic similarity and rearing-environment sharing. In the past decades, twins have made a great contribution in dissecting the genetic and environmental contributions to human diseases and complex traits. In the era of functional genomics, the valuable samples of twins are helping to bridge the gap between gene activity and environmental conditions through epigenetic mechanisms unlimited to DNA sequence variations. We review the recent progresses in using twins to study disease-related molecular epigenetic phenotypes and link them with environmental exposures especially early life events. Various study designs and application issues will be highlighted and discussed with aim at making uses of twins in assessing the environmental impact on epigenetic changes during the development of complex diseases.  相似文献   

7.
Understanding the mechanisms contributing to correlated BMI outcomes in a social network such as siblings will help policy makers reduce the burden of disease associated with obesity. There are two potential mechanisms explaining correlated BMI outcomes in a biologically related social network: (i) time constant factors such as genetic heritability and habits formed during childhood and (ii) factors that change over time some of which are dependent on the frequency of interactions between the social network, for example, social norms shaped by the social network's shifting attitudes towards weight and behaviors related to weight, or environmental factors like opportunities for exercise. This study aims to distinguish between time constant factors from factors that are likely to change over time to gain a better understanding of the mechanisms explaining the correlation in sibling BMI. We exploit data from the Panel Study of Income Dynamics (PSID) over 1999-2007 estimating the correlation in BMI for adult siblings who currently live in separate households but grew-up in the same household and adolescent siblings currently living in the same household to isolate the influence of factors that change over time. The findings indicate that time constant factors explain some of the overall correlation in sibling BMI for both cohorts of siblings. Factors that change over time only significantly impact on the overall correlation in BMI for adolescent siblings suggesting if there is a social network influence on correlations in BMI this is facilitated by sharing the same household.  相似文献   

8.
New large-sample data show that non-additive genetic effects, probably epistatic interactions between loci, and sex-limited gene expression are significant features of the genetic architecture of human personality as measured by questionnaire scales of extraversion and neuroticism. Three large data sets--new data on large samples (n = 20,554) of US twins, their spouses, parents, siblings and children, correlations for Australian twins (n = 7,532), and previously published twin data from Finland (n = 14,288)--are subjected to an integrated analysis to test alternative hypotheses about the genetic causes of family resemblance in personality. When allowance is made for differences in reliability of the scales, the combined data are consistent with the same model for variation. There are significant amounts of genetic non-additivity for both dimensions of personality. The evidence favours additive x additive epistatic interactions rather than dominance. In the case of neuroticism, there is especially strong evidence of sex differences in genetic architecture favouring a greater relative contribution of non-additive genetic effects in males. The data confirm previous claims to find no major contribution of the shared environment of twins and siblings to these dimensions of personality. Correlations between spouses are zero, and the correlations for very large samples of siblings and non-identical twins do not differ significantly.  相似文献   

9.
The use of twins in the analysis of assortative mating   总被引:3,自引:0,他引:3  
L Eaves 《Heredity》1979,43(3):399-409
The simulations illustrated show that a plausible model for mate selection can generate data on the similarity of twins and their spouses which are remarkably consistent with a transitive model for the effects of mate selection. This is, biological considerations impose constraints upon the relative values of correlations which are not foreseen, for example, by the some advocates of conventional path models although they might be predicted by common sense. In particular, the correlation between the spouses of twins is expected to be non-zero under a model of phenotypic assortment and turns out to be approximately equal to the product of the twin correlation and the square of the marital correlation. The relative magnitudes of the correlations derived from an empirical study of such relationships should enable models of phenotypic assortment to be tested more rigorously. Including both identical and non-identical twins in the sample studied should permit the inherited and cultural components of the mating system to be identified with more conviction. In the event of one sex playing a more significant role in mate selection for particular traits, such studies should reveal diagnostic patterns of familial correlations as long as male and female twins and their spouses are analysed separately. If the analysis is restricted to phenotypic correlations of the parents, the qualitative findings do not appear to be greatly affected by selection due to assortative mating although a reduction in variance is to be expected if a large proportion of individuals is unable to mate. In such cases twins will also be significantly concordant for mating. The consequences of such varied regimes of assortation for the population structure and the relationship between traits in subsequent generations remain the object of future inquiry.  相似文献   

10.
Sequencing of the human genome in the early 2000s enabled probing of the genetic basis of disease on a scale previously unimaginable. Now, two decades later, after interrogating millions of markers in thousands of individuals, a significant portion of disease heritability still remains hidden. Recent efforts to unravel this ‘missing heritability’ have focused on garnering new insight from merging different data types, including medical imaging. Imaging offers promising intermediate phenotypes to bridge the gap between genetic variation and disease pathology. In this review we outline this fusion and provide examples of imaging genomics in a range of diseases, from oncology to cardiovascular and neurodegenerative disease. Finally, we discuss how ongoing revolutions in data science and sharing are primed to advance the field.  相似文献   

11.
Monozygotic (MZ) twins do not show complete concordance for many complex diseases; for example, discordance rates for autoimmune diseases are 20%-80%. MZ discordance indicates a role for epigenetic or environmental factors in disease. We used MZ twins discordant for psoriasis to search for genome-wide differences in DNA methylation and gene expression in CD4(+) and CD8(+) cells using Illumina's HumanMethylation27 and HT-12 expression assays, respectively. Analysis of these data revealed no differentially methylated or expressed genes between co-twins when analyzed separately, although we observed a substantial amount of small differences. However, combined analysis of DNA methylation and gene expression identified genes where differences in DNA methylation between unaffected and affected twins were correlated with differences in gene expression. Several of the top-ranked genes according to significance of the correlation in CD4(+) cells are known to be associated with psoriasis. Further, gene ontology (GO) analysis revealed enrichment of biological processes associated with the immune response and clustering of genes in a biological pathway comprising cytokines and chemokines. These data suggest that DNA methylation is involved in an epigenetic dysregulation of biological pathways involved in the pathogenesis of psoriasis. This is the first study based on data from MZ twins discordant for psoriasis to detect epigenetic alterations that potentially contribute to development of the disease.  相似文献   

12.
The prevalence of common chronic non-communicable diseases (CNCDs) far overshadows the prevalence of both monogenic and infectious diseases combined. All CNCDs, also called complex genetic diseases, have a heritable genetic component that can be used for pre-symptomatic risk assessment. Common single nucleotide polymorphisms (SNPs) that tag risk haplotypes across the genome currently account for a non-trivial portion of the germ-line genetic risk and we will likely continue to identify the remaining missing heritability in the form of rare variants, copy number variants and epigenetic modifications. Here, we describe a novel measure for calculating the lifetime risk of a disease, called the genetic composite index (GCI), and demonstrate its predictive value as a clinical classifier. The GCI only considers summary statistics of the effects of genetic variation and hence does not require the results of large-scale studies simultaneously assessing multiple risk factors. Combining GCI scores with environmental risk information provides an additional tool for clinical decision-making. The GCI can be populated with heritable risk information of any type, and thus represents a framework for CNCD pre-symptomatic risk assessment that can be populated as additional risk information is identified through next-generation technologies.  相似文献   

13.
Differences in genetic background and/or environmental exposure among individuals are expected to give rise to differences in measurable characteristics, or phenotypes. Consequently, genetic resemblance and similarities in environment should manifest as similarities in phenotypes. The metabolome reflects many of the system properties, and is therefore an important part of the phenotype. Nevertheless, it has not yet been examined to what extent individuals sharing part of their genome and/or environment indeed have similar metabolomes. Here we present the results of hierarchical clustering of blood plasma lipid profile data obtained by liquid chromatography-mass spectrometry from 23 healthy, 18-year-old twin pairs, of which 21 pairs were monozygotic, and 8 of their siblings. For 13 monozygotic twin pairs, within-pair similarities in relative concentrations of the detected lipids were indeed larger than the similarities with any other study participant. We demonstrate such high coclustering to be unexpected on basis of chance. The similarities between dizygotic twins and between nontwin siblings, as well as between nonfamilial participants, were less pronounced. In a number of twin pairs, within-pair dissimilarity of lipid profiles positively correlated with increased blood plasma concentrations of C-reactive protein in one twin. In conclusion, this study demonstrates that in healthy individuals, the individual genetic background contributes to the blood plasma lipid profile. Furthermore, lipid profiling may prove useful in monitoring health status, for example, in the context of personalized medicine.  相似文献   

14.
Antler size in red deer: heritability and selection but no evolution   总被引:17,自引:0,他引:17  
We present estimates of the selection on and the heritability of a male secondary sexual weapon in a wild population: antler size in red deer. Male red deer with large antlers had increased lifetime breeding success, both before and after correcting for body size, generating a standardized selection gradient of 0.44 (+/- 0.18 SE). Despite substantial age- and environment-related variation, antler size was also heritable (heritability of antler mass = 0.33 +/- 0.12). However the observed selection did not generate an evolutionary response in antler size over the study period of nearly 30 years, and there was no evidence of a positive genetic correlation between antler size and fitness nor of a positive association between breeding values for antler size and fitness. Our results are consistent with the hypothesis that a heritable trait under directional selection will not evolve if associations between the measured trait and fitness are determined by environmental covariances: In red deer males, for example, both antler size and success in the fights for mates may be heavily dependent on an individual's nutritional state.  相似文献   

15.
Childhood environment, social environment and behavior, leisure time activities and life events have been hypothesized to contribute to individual differences in cognitive abilities and physical and emotional well‐being. These factors are often labeled ‘environmental’, suggesting they shape but not reflect individual differences in behavior. The aim of this study is to test the hypothesis that these factors are not randomly distributed across the population but reflect heritable individual differences. Self‐report data on Childhood Environment, Social Environment and Behavior, Leisure Time Activities and Life Events were obtained from 560 adult twins and siblings (mean age 47.11 years). Results clearly show considerable genetic influences on these factors with mean broad heritability of 0.49 (0.00–0.87). This suggests that what we think of as measures of ‘environment’ are better described as external factors that might be partly under genetic control. Understanding causes of individual differences in external factors may aid in clarifying the intricate nature between genetic and environmental influences on complex traits.  相似文献   

16.
T B Newman  W S Browner 《Teratology》1988,38(4):303-311
The epidemiologic approach to determining the etiology of disease involves identification of potential risk factors and then comparison of disease incidence among people with varying levels of exposure to the potential risk factors. This paper defines risk factors which correspond to different levels of genetic and environmental proximity to index cases of birth defects. Genetic proximity is estimated by the coefficient of relationship (R): 0.5 for siblings and dizygotic twins and 1.0 for monozygotic twins. Environmental proximity is measured by a combination of two variables: one variable for those potentially preventable risk factors common to siblings (S) and another for those common only to twins (T). Discordance in identical twins is attributed to a third type of environmental factors (U) that are unshared by twins and include random (stochastic) factors. The association between these risk factors and birth defects is estimated by using a linear model of the correlation of liability for different relatives. The coefficients derived from the model reflect the relative importance of genetic and different types of environmental risk factors as causes for the defects and can be used to identify birth defects most likely to be caused by measurable and possibly preventable risk factors. These defects could then be assigned high priority for future studies and preventive efforts.  相似文献   

17.
Path analysis of family resemblance for plasma glucose concentration, 2 h after an oral glucose challenge, failed to detect significant genetic heritability. There were no intergenerational differences and marital resemblance was moderate. Over one-third of sibling environmental similarity was due to non-inherited factors. Cultural inheritance was very strong, tending to mimic genetic inheritance, and cultural heritability was considerable. Measures of obesity were included in the environmental index, an estimate of familial environment, in this analysis, for comparability with previous studies. Since obesity appears, in part, to be a heritable trait, in future studies a bivariate approach to family resemblance for both glucose tolerance and obesity could yield important additional insight.  相似文献   

18.
Epidemiological studies have implicated an interplay between genetic and environmental factors in the aetiology of multiple sclerosis (MS). There is a familial recurrence rate of approximately 15%. Meta-analysis of the recurrence risk shows that the rate is highest overall for siblings, then parents and children, with lower rates in second- and third-degree relatives. Recurrence is highest for monozygotic twins. Conversely, the frequency in adoptees is similar to the population lifetime risk. The age-adjusted risk for half siblings is also less than for full siblings. Recurrence is higher in the children of conjugal pairs with MS than the offspring of single affected. These classical genetic observations suggest that MS is a complex trait in which susceptibility is determined by several genes acting independently or epistatically. Comparisons between co-affected sibling pairs provide no evidence for correlation with age or year at onset and mode of presentation or disability. Thus far, the identification of susceptibility genes has proved elusive but genetic strategies are now in place which should illuminate the problem. The main dividend will be an improved understanding of the pathogenesis. To date, population studies have demonstrated an association between the class II major histocompatibility complex (MHC) alleles DR15 and DQ6 and their corresponding genotypes. An association with DR4, with or without the primary DR15 link, is seen in some Mediterranean populations. Candidate gene approaches have otherwise proved unrewarding. Four groups of investigators have undertaken a systematic search of the genome. In common with most other complex traits, no major susceptibility gene has been identified but regions of interest have been provisionally identified. These genetic analyses are predicated on the assumption that MS is one disease. Genotypic and phenotypic analyses are beginning to question this assumption. A major part of future studies in the genetics of MS will be to resolve the question of disease heterogeneity.  相似文献   

19.
While heritability studies show that most of the variance in adult personality can be attributed to genetic or so-called nonshared environmental influence, this does not mean that shared events lack importance for the development of later personality differences. We studied the relationship between Big Five personality differences in monozygotic (MZ) twins at age 29, and life stressors at age 6 to 15, using prospective data from 26 MZ pairs studied from birth onwards. A positive significant correlation was found between stressors in childhood and early adolescence, and intrapair personality differences in Agreeableness, Openness, Conscientiousness, and five-factor profiles. We note that the effects of shared events are labeled "nonshared" environment when the effect is to make siblings more different. Case examples illustrate the relationship between stress and personality differences, and provide hypotheses for further studies in larger samples.  相似文献   

20.
The study of continuously varying, quantitative traits is important in evolutionary biology, agriculture, and medicine. Variation in such traits is attributable to many, possibly interacting, genes whose expression may be sensitive to the environment, which makes their dissection into underlying causative factors difficult. An important population parameter for quantitative traits is heritability, the proportion of total variance that is due to genetic factors. Response to artificial and natural selection and the degree of resemblance between relatives are all a function of this parameter. Following the classic paper by R. A. Fisher in 1918, the estimation of additive and dominance genetic variance and heritability in populations is based upon the expected proportion of genes shared between different types of relatives, and explicit, often controversial and untestable models of genetic and non-genetic causes of family resemblance. With genome-wide coverage of genetic markers it is now possible to estimate such parameters solely within families using the actual degree of identity-by-descent sharing between relatives. Using genome scans on 4,401 quasi-independent sib pairs of which 3,375 pairs had phenotypes, we estimated the heritability of height from empirical genome-wide identity-by-descent sharing, which varied from 0.374 to 0.617 (mean 0.498, standard deviation 0.036). The variance in identity-by-descent sharing per chromosome and per genome was consistent with theory. The maximum likelihood estimate of the heritability for height was 0.80 with no evidence for non-genetic causes of sib resemblance, consistent with results from independent twin and family studies but using an entirely separate source of information. Our application shows that it is feasible to estimate genetic variance solely from within-family segregation and provides an independent validation of previously untestable assumptions. Given sufficient data, our new paradigm will allow the estimation of genetic variation for disease susceptibility and quantitative traits that is free from confounding with non-genetic factors and will allow partitioning of genetic variation into additive and non-additive components.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号