首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The guanine residues in nucleic acids are believed to be the major covalent binding site of the antibiotic mitomycin C. To identify the specific functional group in guanine which reacts with mitomycin C, reactions were run between the antibiotic and poly(G) analogs in which guanine was blocked at the N-7 or O-6 position, or lacked the 2-amino group. Binding ratios were affected to a small extent in the two former cases, but binding was significantly decreased in the absence of the 2-amino group. These results indicate that the most likely binding site of mitomycin C in synthetic polyribonucleotides is the 2-amino group of guanine residues.  相似文献   

2.
Modulation of guanine deaminase   总被引:2,自引:1,他引:1       下载免费PDF全文
1. Guanine deaminases purified from the 15000g supernatant fraction of iso-osmotic sucrose homogenates of rat and mouse liver and brain were tested for the influence of GTP and allantoin. 2. The suffixes A and B were assigned to the isoenzyme fractions eluted from DEAE-cellulose with the lower and the higher molarity of eluent respectively. Isoenzyme A from rat liver, the activity of which showed a sigmoid dependence on substrate saturation, was activated by GTP and inhibited by allantoin. Isoenzyme B, which had a hyperbolic substrate-saturation curve, was not influenced by GTP or allantoin. 3. Isoenzyme A from rat brain, the activity of which had a sigmoid dependence on substrate concentration, was stimulated by GTP. Isoenzyme B, which showed classical Michaelis-Menten kinetics, was inhibited by allantoin. 4. Mouse liver guanine deaminase was not influenced by either GTP or allantoin. 5. Isoenzyme A from mouse brain, which had a hyperbolic substrate-saturation curve, was not influenced by GTP or allantoin but isoenzyme B, with sigmoidal kinetics, was inhibited by allantoin. 6. Mg(2+) activated, or inhibited or did not have an effect on guanine deaminase, depending on the source of the enzyme. 7. The bearing of the above findings on the possible regulation of guanine deaminase activity in vivo is discussed.  相似文献   

3.
4.
5.
Lingcod muscle guanine deaminase   总被引:1,自引:0,他引:1  
  相似文献   

6.
Circular dichroism (CD) is remarkably sensitive to the conformational states of nucleic acids; therefore, CD spectroscopy has been used to study most features of DNA and RNA structures. Quadruplexes are among the significant noncanonical nucleic acids architectures that have received special attentions recently. This article presents examples on the contribution of CD spectroscopy to our knowledge of quadruplex structures and their polymorphism. The examples were selected to demonstrate the potential of this simple method in the quadruplex field. As CD spectroscopy detects only the global feature of a macromolecule, it should preferably be used in combination with other techniques. On the other hand, CD spectroscopy, often as a pioneering approach, can reveal the formation of particular structural arrangements, to search for the conditions stabilizing the structures, to follow the transitions between various structural states, to explore kinetics of their appearance, to determine thermodynamic parameters and also detect formation of higher order structures. This article aims to show that CD spectroscopy is an important complementary technique to NMR spectroscopy and X-ray diffraction in quadruplex studies.  相似文献   

7.
We review the extra-helical guanine interactions present in many oligonucleotide crystals. Very often terminal guanines interact with other guanines in the minor groove of neighboring oligonucleotides through N2 x N3 hydrogen bonds. In other cases the interaction occurs with the help of Ni2+ ions. Guanine/netropsin stacking in the minor groove has also been found. From these studies we conclude that guanine may have multiple extra-helical interactions. In particular it may be considered a very effective minor groove binder, which could be used in the design of sequence selective binding drugs. Interactions through the major groove are seldom encountered, but might be present when DNA is stretched. Such interactions are also analyzed, since they might be important for homologous chromosome pairing during meiosis.  相似文献   

8.
9.
Experimental studies (M. Mandal, B. Boese, J.E. Barrick, W.C. Winkler and R.R. Breaker, Riboswitches control fundamental biochemical pathways in bacillus subtilis and other bacteria, Cell 113 (2003), pp. 577–586) demonstrated that, besides recognising guanine with high specificity, guanine riboswitch could also bind guanine analogues, but the alteration of every functionalised position on the guanine heterocycle could cause a substantial loss of binding affinity. To investigate the nature of guanine riboswitch recognising metabolites, molecular docking and molecular dynamics simulation were carried out on diverse guanine analogues. The calculation results reveal that (1) most guanine analogues could bind to guanine riboswitch at the same binding pocket, with identical orientations and dissimilar binding energies, which is related to the positions of the functional groups; (2) the two tautomers of xanthine adopt different binding modes, and the enol-tautomer shows similar binding mode and affinity of hypoxanthine, which agrees well with the experimental results and (3) the riboswitch could form stable complexes with guanine analogues by hydrogen bonding contacts with U51 and C74. Particularly, U51 plays an important role in stabilising the complexes.  相似文献   

10.
Reactions of tubulin-associated guanine nucleotides   总被引:1,自引:0,他引:1  
Only exchangeably bound nucleotide (E-site) is involved in the reaction of the transplhosphorylase activity in microtubular protein. Contrary to earlier reports, we find that the nonexchangeable nucleotide (N-site) is not a substrate. This conclusion is based upon comparison of: (a) rates of hydrolysis of endogenous tubulin-associated GTP and added [32p]GTP: (b) hydrolysis rates for added [32p]GTP and [3h]GTP; (c) the 32P/3H ratio in bound and free GTP after reaction with [3h, 32p]gTP. During the course of the above studies we have made the unusual observation of a time dependent augmentation in the expected amount of GTP relative to GDP at the E-site; there is either a net conversion of E-site GDP to E-site GTP, or a means for providing additional E-site GTP from another source.  相似文献   

11.
A rapid and simple method, based on GMP Sepharose affinity chromatography, was used for the purification of human brain hypoxanthine guanine phosphoribosyltransferase. A single protein band was detected by polyacrylamide gel electrophoresis of the native purified enzyme. A subunit molecular weight of 25,000 was estimated by SDS gel electrophoresis. The Km values for hypoxanthine and phosphoribosyl pyrophosphate were 50 and 111 microM, respectively. The Ki values for GMP and IMP with phosphoribosyl pyrophosphate were 21 and 37 microM, respectively. The purified enzyme from human brain did not differ significantly from the human erythrocyte one in amino acid composition. The brain and erythrocyte hypoxanthine guanine phosphoribosyltransferases showed complete immunochemical identity on Ouchterlony double diffusion.  相似文献   

12.
We have utilized Raman difference spectroscopy to investigate hydrogen bonding interactions of the guanine moiety in guanine nucleotides with the binding site of two G proteins, EF-Tu (elongation factor Tu from Escherichia coli) and the c-Harvey ras protein, p21 (the gene product of the human c-H-ras proto-oncogene). Raman spectra of proteins complexed with GDP (guanosine 5' diphosphate), IDP (inosine 5' diphosphate), 6-thio-GDP, and 6-18O-GDP were measured, and the various difference spectra were determined. These were compared to the difference spectra obtained in solution, revealing vibrational features of the nucleotide that are altered upon binding. Specifically, we observed significant frequency shifts in the vibrational modes associated with the 6-keto and 2-amino positions of the guanine group of GDP and IDP that result from hydrogen bonding interactions between these groups and the two proteins. These shifts are interpreted as being proportional to the local energy of interaction (delta H) between the two groups and protein residues at the nucleotide binding site. Consistent with the tight binding between the nucleotides and the two proteins, the shifts indicate that the enthalpic interactions are stronger between these two polar groups and protein than with water. In general, the spectral shifts provide a rationale for the stronger binding of GDP and IDP with p21 compared to EF-Tu. Despite the structural similarity of the binding sites of EF-Tu and p21, the strengths of the observed hydrogen bonds at the 6-keto and 2-amino positions vary substantially, by up to a factor of 2.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
  1. The transport of guanine in autospores of light-dark synchronizedChlorella fusca was studied using radioactive guanine in the concentration range of 4 nM to 50 μM.
  2. The transport system was constitutive, it had high specificity for the permeant, and theQ 10 value was in the range of 1.5 to 2.2. At concentrations lower than 0.2 μM the half saturating constant, S0.5 was 1 μM both for cells kept in dark and cells kept in light. At higher concentrations the S0.5 of darkened cells was about 0.23 μM, while that of illuminated cells was unchanged. Only above 0.2 μM guanine did illumination of the cells or addition of glucose increase the transport rate.
  3. Guanine which had accumulated did not leak out at temperatures below 45°C or by treatment with 10 μM dinitrophenol, which completely inhibited transport. Furthermore, the accumulated guanine did not exchange with exogenous guanine.
  4. The guanine accumulated, more than 105-fold over the external concentration, showing that the transport, was active.
  5. The initial transport rate per cell revealed annual fluctuations.
  相似文献   

14.
Guanine aminohydrolase (GAH) (E.C. 3.5.4.3) was purified by affinity chromatography on 9-(p-β-aminoethoxyphenyl)guanine-Sepharose to a specific activity of 35.5 units/mg. The molecular weight of the enzyme was estimated to be 110,000 by gel filtration. Polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate (SDS) showed that the enzyme was composed of subunits with molecular weights of approximately 52,000. Data from SDS-gel electrophoresis in a discontinuous buffer system and from isoelectric focusing in the presence of 8-m urea indicated that more than one type of subunit were present. This was consistent with multiple forms of the native enzyme seen by electrophoresis and isoelectric focusing in polyacrylamide gels. The isoelectric points for the different forms of GAH were in the range of 4.65–4.85. Amino acid analyses showed cysteine to be the minimum amino acid and gave a calculated molecular weight for GAH of 53,016 when the assumption that there were four cysteines per subunit was made. Guanine, 8-azaguanine, and 6-thioguanine served as substrates for the enzyme but 3-deazaguanine, a potent competitive inhibitor of GAH, did not. Fluoride ion inhibited the enzyme in a noncompetitive manner, and this inhibition decreased as pH increased. Variation of the kinetic parameters with pH suggested that hydroxide ion might be the second substrate and that a functional group on the enzyme with a pKa near 5.6 was involved in the reaction. The enzyme was inactivated by treatment with p-hydroxymercurobenzoate and by photooxidation in the presence of rose bengal. Two plausible mechanisms are proposed for the reaction catalyzed by GAH.  相似文献   

15.
Ligand recognition determinants of guanine riboswitches   总被引:1,自引:0,他引:1  
  相似文献   

16.
17.
Dbl family guanine nucleotide exchange factors   总被引:27,自引:0,他引:27  
The Dbl family of guanine nucleotide exchange factors are multifunctional molecules that transduce diverse intracellular signals leading to the activation of Rho GTPases. The tandem Dbl-homology and pleckstrin-homology domains shared by all members of this family represent the structural module responsible for catalyzing the GDP–GTP exchange reaction of Rho proteins. Recent progress in genomic, genetic, structural and biochemical studies has implicated Dbl family members in diverse biological processes, including growth and development, skeletal muscle formation, neuronal axon guidance and tissue organization. The detailed pictures of their autoregulation, agonist-controlled activation and mechanism of interaction with Rho GTPase substrates, have begun to emerge.  相似文献   

18.
A rapid, sensitive, and versatile assay for guanine aminohydrolase is described. It is based on the difference in native fluorescence of guanine, the substrate, and xanthine, the reaction product when excitation and emission wavelengths are 285 nm and 345 nm, respectively.  相似文献   

19.
The inhibitory and stimulatory guanine nucleotide-binding regulatory components (Gi and Gs) of adenylate cyclase both have an alpha X beta subunit structure, and the beta (35,000 Da) subunits are functionally indistinguishable. Gi and Gs both dissociate in the presence of guanine nucleotide analogs or Al3+, Mg2+, and F- in detergent-containing solutions. Several characteristics of Gi- and Gs-mediated regulation of adenylate cyclase activity have been studied in human platelet membranes. The nonhydrolyzable analog of GTP, guanosine-5'-(3-O-thio)triphosphate (GTP gamma S) mimics GTP-dependent hormonal inhibition or stimulation of adenylate cyclase under appropriate conditions. This inhibition or stimulation follows a lag period. The combined addition of epinephrine or prostaglandin E1 with GTP gamma S results in the immediate onset of steady state inhibition or activation. The effects of the GTP analog are essentially irreversible. Fluoride is also an effective inhibitor of prostaglandin E1-stimulated adenylate cyclase, while it markedly stimulates the basal activity of the enzyme. The addition of the resolved 35,000-Da subunit of Gi to membranes results in inhibition of adenylate cyclase, and the resolved 41,000-Da subunit has a stimulatory effect on enzymatic activity. The inhibitory action of the 35,000-Da subunit is almost completely abolished in membranes that have been irreversibly inhibited by GTP gamma S plus epinephrine; this irreversible inhibition is almost completely relieved by the 41,000-Da subunit. Detergent extracts of membranes that have been treated with GTP gamma S plus epinephrine contain free 35,000-Da subunit. The 41,000-Da subunit of Gi contained in such extracts has a reduced ability to be ADP-ribosylated by islet-activating protein (IAP), which implies that this subunit is in the GTP gamma S-bound form. The irreversible inhibition of adenylate cyclase caused by GTP gamma S (plus epinephrine) in membranes is highly correlated with the liberation of free 35,000-Da subunit activity and is inversely related to the 41,000-Da IAP substrate activity in detergent extracts prepared therefrom. The increase in free 35,000-Da subunit activity in extracts and the inhibition of adenylate cyclase activity in GTP gamma S (plus epinephrine)-treated membranes are both markedly inhibited by treatment with IAP.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

20.
Guanine deaminase (GDA; cypin) is an important metalloenzyme that processes the first step in purine catabolism, converting guanine to xanthine by hydrolytic deamination. In higher eukaryotes, GDA also plays an important role in the development of neuronal morphology by regulating dendritic arborization. In addition to its role in the maturing brain, GDA is thought to be involved in proper liver function since increased levels of GDA activity have been correlated with liver disease and transplant rejection. Although mammalian GDA is an attractive and potential drug target for treatment of both liver diseases and cognitive disorders, prospective novel inhibitors and/or activators of this enzyme have not been actively pursued. In this study, we employed the combination of protein structure analysis and experimental kinetic studies to seek novel potential ligands for human guanine deaminase. Using virtual screening and biochemical analysis, we identified common small molecule compounds that demonstrate a higher binding affinity to GDA than does guanine. In vitro analysis demonstrates that these compounds inhibit guanine deamination, and more surprisingly, affect GDA (cypin)-mediated microtubule assembly. The results in this study provide evidence that an in silico drug discovery strategy coupled with in vitro validation assays can be successfully implemented to discover compounds that may possess therapeutic value for the treatment of diseases and disorders where GDA activity is abnormal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号