首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have developed a method for the accelerated production of fertile transgenic wheat (Triticum aestivum L.) that yields rooted plants ready for transfer to soil in 8–9 weeks (56–66 days) after the initiation of cultures. This was made possible by improvements in the procedures used for culture, bombardment, and selection. Cultured immature embryos were given a 4–6 h pre-and 16 h post-bombardment osmotic treatment. The most consistent and satisfactory results were obtained with 30 g of gold particles/bombardment. No clear correlation was found between the frequencies of transient expression and stable transformation. The highest rates of regeneration and transformation were obtained when callus formation after bombardment was limited to two weeks in the dark, with or without selection, followed by selection during regeneration under light. Selection with bialaphos, and not phosphinothricin, yielded more vigorously growing transformed plantlets. The elongation of dark green plantlets in the presence of 4–5 mg/l bialaphos was found to be reliable for identifying transformed plants. Eighty independent transgenic wheat lines were produced in this study. Under optimum conditions, 32 transformed wheat plants were obtained from 2100 immature embryos in 56–66 days, making it possible to obtain R3 homozygous plants in less than a year.  相似文献   

2.
Summary Two spring wheat genotypes (cv Orofen and Chinese Spring) were compared for their in vitro pollen maturation capacity in detached spikelet cultures in a defined solid medium. Under these in vitro conditions Chinese Spring produced normal trinucleate pollen in 66.8% and Orofen in only 37.5%. In both cultivars the pollen maturation process from the middle uninucleate stage took approximately 3 days longer in vitro than in vivo. The pollen maturation time depended on the microspore developmental stage at the time that the culturing started. The viability, germination capacity, and fertilizing ability of the in vitro matured pollen also differed between the two genotypes. The seed set achieved in vitro (averagely 12.8%) offers promise for the practical application of this method for producing controlled or selected offspring.  相似文献   

3.
The nitrate reductase activities (NRA) of 31 ditelosomic stocks were compared with that of the control plant [Chinese Spring (CS) euploid], using in vivo and in vitro assay procedures that had been optimized with respect to the euploid. Fourteen stocks exhibited significant differences in in vivo NRA from that of the euploid; the effect of removal of a chromosome arm was always to increase NRA. Eight of these stocks showed similar effects in vitro, although in three, a casein-sensitive factor had to be eliminated before the difference was expressed. Homoeologous group effects were evident among ditelosomics of groups 2, 4, and 7, while for three chromosomes (2D, 7A, and 7B), removal of either arm resulted in a similar increase in NRA in vivo and probably in vitro.P. W. Jones was supported by a Science Research Council C.A.S.E. award with the Plant Breeding Institute, Cambridge, U.K.  相似文献   

4.
The present investigation was undertaken in order to select the surface-sterilization technique most efficient for eliminating epiphytes, to document the spectrum of endophytes of healthy leaves from three wheat cultivars in Buenos Aires Province (Argentina) and to determine their infection frequencies at three growth stages. Surface-sterilization with undiluted commercial solution of sodium hypochlorite was reaffirmed as adequate for removing epiphytes on wheat leaves. From the 450 wheat leaf segments incubated, three bacterial isolates and 130 fungal isolates were obtained. From all the isolates, 19 fungal species were identified. Bacterial isolates were characterized as Bacillus sp. There were significant differences between microorganisms, stages of growth, and stages × microorganisms interaction. Differences between cultivars, stages × cultivars, microorganisms × cultivars and for the triple interaction were not significant. Frequency of microorganisms isolated increased with crop age, but it was statistically similar for the three wheat cultivars tested (Klein Centauro, Klein Dragón and Buck Ombú). Rhodotorula rubra, Alternaria alternata, Cladosporium herbarum and Epicoccum nigrum were isolated in the highest frequency. The other microorganisms were present at intermediate or low values. The species isolated may be assigned to three groups: (a) well-known and economically important pathogens of wheat, (b) commonly abundant phylloplane fungi considered to be primary saprobic and minor pathogens and (c) species occasionally present in wheat.  相似文献   

5.
Summary Using thin-layer chromatography and nulli-tetrasomic and ditellosomic series of Triticum aestivum L. cv. Chinese Spring, it has been possible to relate the phenolic compounds found in adult plant leaves and 12 day-old seedling leaves with the chromosomes or chromosome arms 1 B, 2 BL, 3 BL, 5 A, 6 AL, 7 B and 7 DS.  相似文献   

6.
Summary The ability of immature embryos of wheat (Triticum aestivum L.) to respond in cell culture was examined in crosses between the Wichita monosomic series and a highly regenerable line, ND7532. Segregation in disomic controls and 13 monosomic families showed a good fit to a monogenic ratio indicating a qualitative mode of inheritance. Segregation in the cross involving monosomic 2D showed a high frequency of regeneration (93.6%) and high callus growth rate (1.87 g/90 days) indicating that 2D is a critical chromosome. Modifying genes may be located on other chromosomes. Substitution of chromosomes from a low regenerable cultivar Vona further indicated that the group 2 chromosomes, in particular chromosome 2D, possess genetic factors promoting callus growth and regeneration.  相似文献   

7.
Nullisomic analysis of waxy (Wx) protein of hexaploid wheat (Triticum aestivum L.) cv. “Chinese Spring” using two-dimensional polyacrylamide gel electrophoresis revealed that threeWx loci,Wx-A1, Wx-B1, andWx-D1, located on chromosome arms 7AS, 4AL, and 7DS, produce three distinct Wx subunit groups, subunit group-A (SGA), SGB, and SGD, respectively. SGA has a higher molecular weight and a more basic isoelectric point (pI) than the other two. SGB and SGD have the same molecular weight but a slightly different pI range. Owing to the detection of these three subunit groups, we were able to identify the expression of three waxy genes in wheat endosperm and to find two types of mutants among Japanese wheat cultivars, one lacking SGA and the others SGB. These results suggest the possibility of breeding a waxy wheat.  相似文献   

8.
Intact amyloplasts from endosperm of developing wheat grains have been isolated by first preparing the protoplasts and then fractionating the lysate of the protoplasts on percoll and ficoll gradients, respectively. Amyloplasts isolated as above were functional and not contaminated by cytosol or by organelles likely to be involved in carbohydrate metabolism. The enzyme distribution studies indicated that ADP-glucose pyrophosphorylase and starch synthase were confined to amyloplasts, whereas invertase, sucrose synthase, UDP-glucose pyrophosphorylase, hexokinase, phosphofructokinase-2 and fructose-2,6-P2ase were absent fro the amyloplast and mainly confined to the cytosol. Triose-P isomerase, glyceraldehyde-3-P dehydrogenase, phosphohexose isomerase, phosphoglucomutase, phosphofructokinase, aldolase, PPi-fructose-6-P-1 phosphotransferase, and fructose-l,6-P2ase, though predominantly cytosolic, were also present in the amyloplast. Based on distribution of enzymes, a probable pathway for starch biosynthesis in amyloplasts of developing wheat grains has been proposed.  相似文献   

9.
Molecular analysis of the transgenes bar and gus was carried out over successive generations in six independent transgenic lines of wheat, until the plants attained homozygosity. Data on expression and integration of the transgenes is presented. Five of the lines were found to be stably transformed, duly transferring the transgenes to the next generation. The copy number of the transgenes varied from one to five in the different lines. One line was unstable, first losing expression of and then eliminating both the transgenes in R3 plants. Although the gus gene was detected in all the lines, GUS expression had been lost in R2 plants of all but one line. Rearrangement of transgene sequences was observed, but it had no effect on gene expression. All the stable lines were found to segregate for transgene activity in a Mendelian fashion.  相似文献   

10.
Total DNAs of plants regenerated from immature embryo-derived 2-month-old embryogenic calli of wheat (cultivars Florida 302, Chris, Pavon, RH770019) were probed with six maize mitochondrial genes (atpA, atp6, apt9, coxI, coxII, rrn18-rrn5), three hypervariable wheat mitochondrial clones (K, K3, X2), five random pearl millet mitochondrial clones (4A9, 4D1, 4D12, 4E1, 4E11) and the often-used wheat Nor locus probe (pTA71), in order to assess the molecular changes induced in vitro. In addition, protoplast-derived plants, and 24-month-old embryogenic and non-embryogenic calli and cell suspension cultures of Florida 302 were also analyzed. No variation was revealed by the wheat or millet mitochondrial clones. Qualitative variation was detected in the nonembryogenic suspension culture by three maize mitochondrial genes (coxI, rrn18-rrn5, atp6). A callus-specific 3.8-kb Hind III fragment was detected in all four cultivars after hybridization with the coxI gene. The organization of the Nor locus of the plants regenerated from Florida 302 and Chris was stable when compared to their respective control plants and calli. The Nor locus in regenerants of Pavon and RH, on the other hand, was found to be variable. However, Nor locus variability was not observed in 14 individual seed-derived control plants from either Pavon or RH sources. In Pavon, a 3.6-kb Taq I or a 5.6-kb Bam HI+ Eco RI fragment was lost after regeneration. In one of the RH regenerants, which lost a fragment, an additional fragment was observed.  相似文献   

11.
Summary Mineral distribution in the roots of wheat (Triticum aestivum L. cv. Wheaton) was investigated using X-ray microanalysis of bulk frozen hydrated roots in SEM and of freeze substituted sections in TEM. Results obtained using the two methods agreed reasonably well. A total often elements were detected: Na, Mg, Si, P, S, Cl, K, Ca, Mn, and Fe. Of these Si, P, Ca, and Mn were incorporated into biomineralized structures. Silica was deposited in the endodermal walls in the older parts of the root. Silicon was also detected in the large central metaxylem lumina in the basal zone of the root, and in the smaller peripheral metaxylem and the immediately contiguous pericycle and outer parenchyma cells bridging the small metaxylem vessels to the endodermal layer. In the basal zone of the root some of the inner cortical cells contained intracellular electron opaque deposits. These were associated with the cell walls, had non-opaque inclusions and microanalysis revealed that they consisted of calcium, phosphorus and manganese.Abbreviations A apical zone of root - M midzone of root - B basal zone of root - SEM scanning electron microscope - TEM transmission electron microscope  相似文献   

12.
Summary Restriction fragment length polymorphism (RFLP) markers linked to genes controlling Hessian fly resistance from Triticum tauschii (Coss.) Schmal. were identified for two wheat (Triticum aestivum L.) germ plasm lines KS89WGRC3 (C3) and KS89WGRC6 (C6). Forty-six clones with loci on chromosomes of homoeologous group 3 and 28 clones on those of group 6 were surveyed for polymorphisms. Eleven and 12 clones detected T. tauschii loci in the two lines, respectively. Analysis of F2 progenies indicated that the Hessian fly resistance gene H23 identified in C3 is linked to XksuH4 (6.9 cM) and XksuG48 (A) (15.6 cM), located on 6D. The resistance gene H24 in C6 is linked to XcnlBCD451 (5.9 cM), XcnlCD0482 (5.9 cM) and XksuG48 (B) (12.9 cM), located on 3DL.Paper No. 810 of the Cornell Plant Breeding Series  相似文献   

13.
14.
RFLP markers for the wheat powdery mildew resistance genes Pm1 and Pm2 were tagged by means of near-isogenic lines. The probe Whs178 is located 3 cM from the Pm1 gene. For the powdery mildew resistance gene Pm2, two markers were identified. The linkage between the Pm2 resistance locus and one of these two probes was estimated to be 3 cM with a F2 population. Both markers can be used to detect the presence of the corresponding resistance gene in commercial cultivars. Bulked segregant analysis was applied to identify linkage disequillibrium between the resistance gene Pm18 and the abovementioned marker, which was linked to this locus at a distance of 4 cM. Furthermore, the RAPD marker OPH-111900 (5-CTTCCGCAGT-3) was selected with pools created from a population segregating for the resistance of Trigo BR 34. The RAPD marker was mapped about 13 cM from this resistance locus.  相似文献   

15.
Embryogenesis from isolated microspore cultures of wheat was improved by ovary co-culture when compared to a completely defined medium. This indicates that essential factor(s) in addition to PAA or its analogs may be supplied by the ovaries. Isolated microspores cocultured with 20 ovaries of wheat on the top of semi-solid MMS3 induction medium for 21–30 days gave the best response. Both the number and quality of the embryos was significantly increased. The maximum frequencies of dividing microspores and of embryogenesis were 94% and 2.4%, respectively. Up to 2583 embryos were formed per 100 anthers of cv Chris and between 18% and 43% of the larger embryos regenerated into green plants upon transfer. Genotype differences for both induction and embryogenesis phases were reduced using ovary co-culture. However, there was still a strong genotype influence on plant regeneration with cv Chris, with the F1 of Chris × Sinton displaying the highest frequencies. These results are important with respect to enhancing haploidy applications in wheat biotechnology and plant breeding.Abbreviations PAA Phenylacetic acid - MMS modified MS medium - MS Murashige and Skoog's medium 1962 - FHG Hunter's FHG medium 1988  相似文献   

16.
Summary Meiotic chromosome pairing and Giemsa C-banding analyses in crosses of several European blue-grained wheat strains with Chinese Spring double ditelosomic and other aneuploid lines showed that Triticum aestivum Blaukorn strains Berlin, Probstdorf, Tschermak, and Weihenstephan are chromosome substitutions, in which the complete wheat chromosome 4A pair is replaced, whereas the strains Brünn and Moskau are 4B substitutions. The alien chromosome pair in all of these strains is an A genome chromosome (4A) from diploid Triticum monococcum or T. boeoticum not present in common tetraploid and hexaploid cultivated wheats. The Blaukorn strain Weihenstephan W 70a86 possesses, in addition to a rye chromosome pair 5R compensating for the loss of part of chromosome 5D, a 4A/5DL translocation replacing chromosome pair 4B of wheat.  相似文献   

17.
Four winter wheat (Triticum aestivum L.) and two spring wheat cultivars were evaluated in anther culture on three to four different media for their ability to initiate callus and green plants. Five media were used in the experiment: stored-potato medium with Ficoll 400, fresh-potato medium with Ficoll 400, fresh-potato medium with agar, fresh-potato liquid medium without agar or Ficoll 400, and a one tep 85D12-3 medium. Greatly different frequencies of calli and/or green plants were obtained from different cultivars and media. The callus initiation frequency varied from 2.7% for Arapahoe to 52% for Pavon, both on the stored potato medium with Ficoll 400. The frequency of green plant regeneration ranged from 0% for Arapahoe and Siouxland on the stored-potato medium with Ficoll 400 and 0% for Redland and Arapahoe in the fresh-potato medium with Ficoll 400 to 12% for Chris in the 85D12-3 medium (one-step procedure). Chris and Centurk 78, previously reported as having high levels of response, had significantly higher (P < 0.05) frequencies of green plant regeneration on the 851312-3 medium than the other cultivars. An unexpected observation is that wet MSC medium enhanced callus regeneration more than a drier MSC medium.  相似文献   

18.
Summary Decreases in the concentrations of nitrogen, phosphorus, potassium, calcium and magnesium, in the shoots of wheat seedlings soon after the start of waterlogging were mainly attributed to an inhibition of ion uptake and transport by roots in the oxygen deficient soil. There was a small net accumulation of nitrogen, phosphorus and potassium by the aerial tissues, principally the tillers rather than the main shoot. By contrast, calcium and magnesium accumulated in both tillers and main shoot. With waterlogging, nitrogen, phosphorus and potassium were translocated from the older leaves to the younger growing leaves, and in the case of nitrogen this was associated with the onset of premature senescence. Calcium and magnesium were not translocated from the older leaves, the younger leaves acquiring these cations from the waterlogged soil. The promotion of leaf senescence by waterlogging was counteracted by applications of nitrate or ammonium to the soil surface, or by spraying the shoots with solutions of urea, but the beneficial effects on shoot growth were small.The role of mineral nutrition in relation to waterlogging damage to young cereal plants is discussed.  相似文献   

19.
Employing the metallochromic dye murexide and by monitoring the uptake of radiolabelled calcium, photoreversible calcium fluxes were measured in wheat leaf protoplast suspensions. Results obtained by both methods were identical — red light promoted and subsequent far-red irradiation reversed an influx of Ca++ ions into the protoplasts. These findings imply phytochrome regulation of Ca++ fluxes across the plasma membrane. The influx of Ca++ stimulated by 2 min red irradiation could be maintained in total darkness for the initial 16–18 min after illumination, after which a 6–8 min efflux process was triggered and the basal Ca++ level restored. Verapamil, a calcium channel blocker, inhibited the red-promoted influx, whereas the far-red mediated efflux could be checked by the use of the ATPase inhibitor vanadate, and also by the calmodulin antagonist chlorpromazine, thus suggesting a role of ion channels and pumps in phytochrome-controlled Ca++ fluxes. The possible involvement of phosphoinositides in phytochrome-modulated calcium fluxes was also investigated.Abbreviations A difference in absorbance - CPZ chlorpromazine - FR far-red (light) - MX murexide - PI phosphatidylinositol - PIP2 phosphatidylinositol 4, 5-bisphosphate - PIPES piperazine-N,N-bis[2-ethanesulfonic acid] - POPOP 1, 4-bis [2-(5-phenyl-1, 3-oxazolyl)]-benzene - PPO 2, 5-diphenyl-1, 3-oxazole - R red (light) - SOV sodium orthovanadate  相似文献   

20.
E. P. Eleftheriou 《Protoplasma》1996,193(1-4):204-212
Summary Protophloem sieve elements (PSEs) in roots of wheat (Triticum aestivum L.) are arranged in single vertical files. The number of PSEs within the files increases by symmetrical divisions, which take place after the completion of asymmetrical (formative) divisions and before the initiation of differentiation. The divisions are preceded by well defined pre-prophase bands (PPB) of microtubules, which surround the nucleus in an equatorial position. In the cytoplasmic region between the nuclear surface and the PPB, perinuclear and endoplasmic microtubules were observed. The perinuclear microtubules are considered as part of the developing spindle, while the endoplasmic ones interlink the perinuclear microtubules with the PPB. Dividing cells do not show any signs of incipient differentiation. The first and most reliable indication of a commencing differentiation is provided by the sieve-element plastids that begin to accumulate dense crystalloid inclusions in the very young PSEs. In mature PSEs plastids contain two kinds of crystalloid inclusions, dense and thin, in a translucent stroma. Depending on the plastid-inclusions criterion it was shown that: (a) the PSEs of a given root do not initiate differentiation at exactly the same stage, (b) the developmental sequence extends to a span of 7–9 actively differentiating PSEs arranged in a single vertical file, and (c) each PSE needs about 16–21 h to pass through the whole developmental sequence. In the last two differentiating PSEs of a file, mitochondria were found to be enveloped by single cisternae of ER. The association is temporary as it is lost in the first PSEs with an autolysed lumen. During differentiation, Golgi bodies were abundant and active in producing vesicles involved in cell wall development. Golgi vesicles were also found among the microtubules of the PPB, but no local thickening was observed. Golgi bodies disorganize in the last stages of autolysis and disappear in mature sieve elements.Abbreviations ER endoplasmic reticulum - MSE metaphloem sieve element - PPB pre-prophase band - PSE protophloem sieve element Dedicated to Prof. Dr. Dr. h.c. Eberhard Schnepf on the occasion of his retirement  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号