首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lishko VK  Kudryk B  Yakubenko VP  Yee VC  Ugarova TP 《Biochemistry》2002,41(43):12942-12951
Fibrinogen is a ligand for leukocyte integrin alpha(M)beta2 (CD11b/CD18, Mac-1) and mediates adhesion and migration of leukocytes during the immune-inflammatory responses. The binding site for alpha(M)beta2 resides in gammaC, a constituent subdomain in the D-domain of fibrinogen. The sequence gamma383-395 (P2-C) in gammaC was implicated as the major binding site for alpha(M)beta2. It is unknown why alpha(M)beta2 on leukocytes can bind to immobilized fibrinogen in the presence of high concentrations of soluble fibrinogen in plasma. In this study, we have investigated the accessibility of the binding site in fibrinogen for alpha(M)beta2. We found that the alpha(M)beta2-binding site in gammaC is cryptic and identified the mechanism that regulates its unmasking. Proteolytic removal of the small COOH-terminal segment(s) of gammaC, gamma397/405-411, converted the D100 fragment of fibrinogen, which contains intact gammaC and is not able to inhibit adhesion of the alpha(M)beta2-expressing cells, into the fragment D98, which effectively inhibited cell adhesion. D98, but not D100, bound to the recombinant alpha(M)I-domain, and the alpha(M)I-domain recognition peptide, alpha(M)(Glu253-Arg261). Exposure of the P2-C sequence in fibrinogen, D100, and D98 was probed with a site-specific mAb. P2-C is not accessible in soluble fibrinogen and D100 but becomes exposed in D98. P2-C is also unmasked by immobilization of fibrinogen onto a plastic and by deposition of fibrinogen in the extracellular matrix. Thus, exposure of P2-C by immobilization and by proteolysis correlates with unmasking of the alpha(M)beta2-binding site in the D-domain. These results demonstrate that conformational alterations regulate the alpha(M)beta2-binding site in gammaC and suggest that processes relevant to tissue injury and inflammation are likely to be involved in the activation of the alpha(M)beta2-binding site in fibrinogen.  相似文献   

2.
The leukocyte integrin alpha(M)beta(2) (Mac-1, CD11b/CD18) is a cell surface adhesion receptor for fibrinogen. The interaction between fibrinogen and alpha(M)beta(2) mediates a range of adhesive reactions during the immune-inflammatory response. The sequence gamma(383)TMKIIPFNRLTIG(395), P2-C, within the gamma-module of the D-domain of fibrinogen, is a recognition site for alpha(M)beta(2) and alpha(X)beta(2). We have now identified the complementary sequences within the alpha(M)I-domain of the receptor responsible for recognition of P2-C. The strategy to localize the binding site for P2-C was based on distinct P2-C binding properties of the three structurally similar I-domains of alpha(M)beta(2), alpha(X)beta(2), and alpha(L)beta(2), i.e. the alpha(M)I- and alpha(X)I-domains bind P2-C, and the alpha(L)I-domain did not bind this ligand. The Lys(245)-Arg(261) sequence, which forms a loop betaD-alpha5 and an adjacent helix alpha5 in the three-dimensional structure of the alpha(M)I-domain, was identified as the binding site for P2-C. This conclusion is supported by the following data: 1) mutant cell lines in which the alpha(M)I-domain segments (245)KFG and Glu(253)-Arg(261) were switched to the homologous alpha(L)I-domain segments failed to support adhesion to P2-C; 2) synthetic peptides duplicating the Lys(245)-Tyr(252) and Glu(253)-Arg(261) sequences directly bound the D fragment and P2-C derivative, gamma384-402, and this interaction was blocked efficiently by the P2-C peptide; 3) mutation of three amino acid residues within the Lys(245)-Arg(261) segment, Phe(246), Asp(254), and Pro(257), resulted in the loss of the binding function of the recombinant alpha(M)I-domains; and 4) grafting the alpha(M)(Lys(245)-Arg(261)) segment into the alpha(L)I-domain converted it to a P2-C-binding protein. These results demonstrate that the alpha(M)(Lys(245)-Arg(261)) segment, a site of the major sequence and structure difference among alpha(M)I-, alpha(X)I-, and alpha(L)I-domains, is responsible for recognition of a small segment of fibrinogen, gammaThr(383)-Gly(395), by serving as ligand binding site.  相似文献   

3.
The interactions of platelets with fibrinogen mediate a variety of responses including adhesion, platelet aggregation, and fibrin clot retraction. Whereas it was assumed that interactions of the platelet integrin alpha IIb beta 3 with the AGDV sequence in the gamma C-domain of fibrinogen and/or RGD sites in the A alpha chains are involved in clot retraction and adhesion, recent data demonstrated that fibrinogen lacking these sites still supported clot retraction. These findings suggested that an unknown site in fibrinogen and/or other integrins participate in clot retraction. Here we have identified a sequence within gamma C that mediates binding of fibrinogen to platelets. Synthetic peptide duplicating the 365-383 sequence in gamma C, designated P3, efficiently inhibited clot retraction in a dose-dependent manner. Furthermore, P3 supported platelet adhesion and was an effective inhibitor of platelet adhesion to fibrinogen fragments. Analysis of overlapping peptides spanning P3 and mutant recombinant gamma C-domains demonstrated that the P3 activity is contained primarily within gamma 370-383. Integrins alpha IIb beta 3 and alpha 5 beta 1 were implicated in recognition of P3, since platelet adhesion to the peptide was blocked by function-blocking monoclonal antibodies against these receptors. Direct evidence that alpha IIb beta 3 and alpha 5 beta 1 bind P3 was obtained by selective capture of these integrins from platelet lysates using a P3 affinity matrix. Thus, these data suggest that the P3 sequence in the gamma C-domain of fibrinogen defines a previously unknown recognition specificity of alpha IIb beta 3 and alpha 5 beta 1 and may function as a binding site for these integrins.  相似文献   

4.
Collagen is a potent adhesive substrate for cells, an event essentially mediated by the integrins alpha 1 beta 1 and alpha 2 beta 1. Collagen fibrils also bind to the integrin alpha 2 beta 1 and the platelet receptor glycoprotein VI to activate and aggregate platelets. The distinct triple helical recognition motifs for these receptors, GXOGER and (GPO)n, respectively, all contain hydroxyproline. Using unhydroxylated collagen I produced in transgenic plants, we investigated the role of hydroxyproline in the receptor-binding properties of collagen. We show that alpha 2 beta 1 but not alpha 1 beta 1 mediates cell adhesion to unhydroxylated collagen. Soluble recombinant alpha 1 beta 1 binding to unhydroxylated collagen is considerably reduced compared with bovine collagens, but binding can be restored by prolyl hydroxylation of recombinant collagen. We also show that platelets use alpha 2 beta 1 to adhere to the unhydroxylated recombinant molecules, but the adhesion is weaker than on fully hydroxylated collagen, and the unhydroxylated collagen fibrils fail to aggregate platelets. Prolyl hydroxylation is thus required for binding of collagen to platelet glycoprotein VI and to cells by alpha 1 beta 1. These observations give new insights into the molecular basis of collagen-receptor interactions and offer new selective applications for the recombinant unhydroxylated collagen I.  相似文献   

5.
Yokoyama K  Zhang XP  Medved L  Takada Y 《Biochemistry》1999,38(18):5872-5877
Integrin alpha v beta 3, a widely distributed fibrinogen receptor, recognizes the RGD572-574 motif in the alpha chain of human fibrinogen. However, this motif is not conserved in other species, nor is it required for alpha v beta 3-mediated fibrin clot retraction, suggesting that fibrinogen may have other alpha v beta 3 binding sites. Fibrinogen has conserved C-terminal domains in its alpha (E variant), beta, and gamma chains (designated alpha EC, beta C, and gamma C, respectively), but their function in cell adhesion is not known, except that alpha IIb beta 3, a platelet fibrinogen receptor, binds to the gamma C HHLGGAKQAGDV400-411 sequence. Here we used mammalian cells expressing recombinant alpha v beta 3 to show that recombinant alpha EC and gamma C domains expressed in bacteria specifically bind to alpha v beta 3. Interaction between alpha v beta 3 and gamma C or alpha EC is blocked by LM609, a function-blocking anti-alpha v beta 3 mAb, and by RGD peptides. alpha v beta 3 does not require the HHLGGAKQAGDV400-411 sequence of gamma C for binding, and alpha EC does not have such a sequence, indicating that the alpha v beta 3 binding sites are distinct from those of alpha IIb beta 3. A small fragment of gamma C (residues 148-226) supports alpha v beta 3 adhesion, suggesting that an alpha v beta 3 binding site is located within the gamma chain 148-226 region. We have reported that the CYDMKTTC sequence of beta 3 is responsible for the ligand specificity of alpha v beta 3. gamma C and alpha EC do not bind to wild-type alpha v beta 1, but do bind to the alpha v beta 1 mutant (alpha v beta 1-3-1), in which the CYDMKTTC sequence of beta 3 is substituted for the corresponding beta 1 sequence CTSEQNC. This suggests that gamma C and alpha EC contain determinants for fibrinogen's specificity to alpha v beta 3. These results suggest that fibrinogen has potentially significant novel alpha v beta 3 binding sites in gamma C and alpha EC.  相似文献   

6.
Platelet adhesion on and activation by components of the extracellular matrix are crucial to arrest post-traumatic bleeding, but can also harm tissue by occluding diseased vessels. Integrin alpha2beta1 is thought to be essential for platelet adhesion to subendothelial collagens, facilitating subsequent interactions with the activating platelet collagen receptor, glycoprotein VI (GPVI). Here we show that Cre/loxP-mediated loss of beta1 integrin on platelets has no significant effect on the bleeding time in mice. Aggregation of beta1-null platelets to native fibrillar collagen is delayed, but not reduced, whereas aggregation to enzymatically digested soluble collagen is abolished. Furthermore, beta1-null platelets adhere to fibrillar, but not soluble collagen under static as well as low (150 s(-1)) and high (1000 s(-1)) shear flow conditions, probably through binding of alphaIIbbeta3 to von Willebrand factor. On the other hand, we show that platelets lacking GPVI can not activate integrins and consequently fail to adhere to and aggregate on fibrillar as well as soluble collagen. These data show that GPVI plays the central role in platelet-collagen interactions by activating different adhesive receptors, including alpha2beta1 integrin, which strengthens adhesion without being essential.  相似文献   

7.
We investigated time- and intensity-dependent effects of exercise on phosphorylation of Akt substrate of 160 kDa (AS160) in human skeletal muscle. Subjects performed cycle exercise for 90 min (67% VO2 peak, n=8), 20 min (80% VO2 peak, n=11), 2 min (110% of peak work rate, n=9), or 30 s (maximal sprint, n=10). Muscle biopsies were obtained before, during, and after exercise. In trial 1, AS160 phosphorylation increased at 60 min (60%, P=0.06) and further at 90 min of exercise (120%, P<0.05). alpha2beta2gamma3-AMP-activated protein kinase (AMPK) activity increased significantly to a steady-state level after 30 min, whereas alpha2beta2gamma1-AMPK activity increased after 60 min of exercise with a further significant increase after 90 min. alpha2beta2gamma1-AMPK activity and AS160 phosphorylation correlated positively (r2=0.55). In exercise trials 2, 3, and 4, alpha2beta2gamma3-AMPK activity but neither AS160 phosphorylation nor alpha2beta2gamma1-AMPK activity increased. Akt Ser473 phosphorylation was unchanged in all trials, whereas Akt Thr308 phosphorylation increased significantly in trial 3 and 4 only. These results show that AS160 is phosphorylated in a time-dependent manner during moderate-intensity exercise and suggest that alpha2beta2gamma1- but not alpha2beta2gamma3-AMPK may act in a pathway responsible for exercise-induced AS160 phosphorylation. Furthermore, we show that AMPK complexes in skeletal muscle are activated differently depending on exercise intensity and duration.  相似文献   

8.
Laminins, a family of large heterotrimeric (alphabetagamma) proteins, are major components of basement membranes implicated in a variety of cellular functions. Different commercial laminin preparations isolated from human placenta have been widely used in functional studies but their molecular properties are poorly known. In the present study, we characterized several of these preparations by ELISA, silver staining and Western blotting, in comparison to mouse laminin 1 (alpha1beta1gamma1), and recombinant human laminins 2 (alpha2beta1gamma1), 8 (alpha4beta1gamma1) and 10 (alpha5beta1gamma1). The cell migration-promoting activity of different batches was also tested. The placenta laminin preparations differed from one another and consisted of highly fragmented proteins, a mixture of laminin isoforms, and/or contaminating fibronectin. Major functional differences between batches were also observed, reflecting molecular heterogeneity. Previous data obtained in functional studies using these preparations need to be interpreted with caution and may require revision, and future functional studies demand prior molecular characterization of the laminins, particularly their alpha-chain.  相似文献   

9.
Rotaviruses utilize integrins during virus-cell interactions that lead to infection. Cell binding and infection by simian rotavirus SA11 were inhibited by antibodies (Abs) to the inserted (I) domain of the alpha2 integrin subunit. To determine directly which integrins or other proteins bind rotaviruses, cell surface proteins precipitated by rotaviruses were compared with those precipitated by anti-alpha2beta1 Abs. Two proteins precipitated by SA11 and rhesus rotavirus RRV from MA104 and Caco-2 cells migrated indistinguishably from alpha2beta1 integrin, and SA11 precipitated beta1 from alpha2beta1-transfected CHO cells. These viruses specifically precipitated two MA104 cell proteins only, but an additional 160- to 165-kDa protein was precipitated by SA11 from Caco-2 cells. The role of the alpha2 I domain in rotavirus binding, infection, and growth was examined using CHO cell lines expressing wild-type or mutated human alpha2 or alpha2beta1. Infectious SA11 and RRV, but not human rotavirus Wa, specifically bound CHO cell-expressed human alpha2beta1 and, to a lesser extent, human alpha2 combined with hamster beta1. Binding was inhibited by anti-alpha2 I domain monoclonal Abs (MAbs), but not by non-I domain MAbs to alpha2, and required the presence of the alpha2 I domain. Amino acid residues 151, 221, and 254 in the metal ion-dependent adhesion site of the alpha2 I domain that are necessary for type I collagen binding to alpha2beta1 were not essential for rotavirus binding. Rotavirus-alpha2beta1 binding led to increased virus infection and RRV growth. SA11 and RRV require the alpha2 I domain for binding to alpha2beta1, and their binding to this integrin is distinguishable from that of collagen.  相似文献   

10.
J A Eble  R Golbik  K Mann    K Kühn 《The EMBO journal》1993,12(12):4795-4802
Cells interact with type IV collagen mainly via the integrins alpha 1 beta 1 and alpha 2 beta 1. A triple helical CNBr derived fragment CB3[IV], which contains the recognition sites for both integrins, was isolated from type IV collagen. Trypsin treatment of CB3[IV] gave rise to four smaller fragments, F1-F4, of which the smallest one, F4, contained the recognition site for alpha 1 beta 1. Further fragmentation of F4 by thermolysin treatment at 50 degrees C led to fragment TL1, which represents the C-terminal half of F4, and which was no longer able to interact with alpha 1 beta 1. Therefore the recognition site of alpha 1 beta 1 had to be located within the N-terminal half of F4, a position which was verified by electron micrographs of a crosslinked F2-alpha 1 beta 1 complex. Modification of the Arg and Asp residues, which abolished the binding activity of F4, led to the identification of Arg (461) within the alpha 2(IV) and Asp (461) within the alpha 1 (IV) chain as essential residues for the alpha 1 beta 1. The array of these two residues on the surface of the triple helix is discussed.  相似文献   

11.
The extravasation and sequestration of Ag-reactive T lymphocytes into vascularized organ allografts depend on a cascade of complex interactions among circulating lymphocytes, endothelial cells, and extracellular matrix proteins. Ag-activated donor-specific CD4 T cells are major initiators and effectors in the allograft rejection response. Interfering with the intragraft homing of activated CD4 T cells may represent a novel therapeutic approach in transplant recipients. We have developed a FACS-based short-term homing assay that allows tracing in vitro-generated Ag-reactive CD4 T cells after adoptive transfer in test rat recipients. Allospecific cell lines were preincubated with anti-alpha(4)beta(1) or anti-alpha(L)beta(2) mAb, because of enhanced expression of both integrin receptors after alloactivation. The pretreated Lewis(BN) lymphocytes were carboxyfluorescein diacetate succinimidyl ester labeled and adoptively transferred into Lewis rat recipients of Brown Norway kidney allografts. The injection of equal numbers of PKH-26-labeled untreated cells allowed quantitative comparison of both populations in the same animal. Ex vivo treatment with anti-alpha(4)beta(1) mAb diminished intragraft infiltration of adoptively transferred T cells by 85% in a donor-specific fashion. In contrast, treatment with anti-alpha(L)beta(2) mAb did not affect intragraft cell sequestration. Hence, blocking alpha(4)beta(1) integrin interactions represents a novel strategy in preventing local intragraft recruitment of Ag-reactive CD4 T cells in transplant recipients.  相似文献   

12.
We report a rapid method to synthesize cystine cross-linked heterotrimeric collagenous peptides. They can be engineered to favour one particular axial alignment of the strands, called the register of the helix. Here, the sequence of the constituent peptides contains 18 residues of "guest" collagen type I sequence flanked by N and C-terminal (Gly-Pro-Pro)5 "host" modules which ensure helicity. Further C-terminal residues include appropriately spaced cysteine residues and alanine to provide the necessary flexibility for helix formation. The cross-linking reaction and subsequent separation protocols have been designed for any inserted collagen sequence that does not contain a cysteine residue. Mass spectrometry and ion-exchange chromatography allow us to distinguish between different disulphide-bonded species and to monitor the formation of side-products. Starting peptide can be recovered simply from the reaction mixture by reduction and separation. Yields are typically 30%, working on a 10 mg scale. 15N-1H NMR and platelet adhesion studies show that the peptide heterotrimers presented here can reshuffle to cover all three axial registers. Less flexible spacers between the disulphide linkages and the helix will restrict each heterotrimer to one register only.  相似文献   

13.
Adhesive interactions of platelet integrin alpha(IIb)beta3 with fibrinogen and fibrin are central events in hemostasis and thrombosis. However, the mechanisms by which alpha(IIb)beta3 binds these ligands remain incompletely understood. We have recently demonstrated that alpha(IIb)beta3 binds the gamma365-383 sequence in the gammaC-domain of fibrin(ogen). This sequence contains neither the AGDV nor the RGD recognition motifs, known to bind alpha(IIb)beta3, suggesting the different specificity of the integrin. Here, using peptide arrays, mutant fibrinogens, and recombinant mutant gammaC-domains, we have examined the mechanism whereby alpha(IIb)beta3 binds gamma365-383. The alpha(IIb)beta3-binding activity was localized within gamma370-381, with two short sequences, gamma370ATWKTR375 and gamma376WYSMKK381, being able to independently bind the integrin. Furthermore, recognition of alpha(IIb)beta3 by gamma370-381 depended on four basic residues, Lys373, Arg375, Lys380, and Lys381. Simultaneous replacement of these amino acids and deletion of the gamma408AGDV411 sequence in the recombinant gammaC-domain resulted in the loss of alpha(IIb)beta3-mediated platelet adhesion. Confirming the critical roles of the identified residues, abnormal fibrinogen Kaiserslautern, in which gammaLys380 is replaced by Asn, demonstrated delayed clot retraction and impaired alpha(IIb)beta3 binding. Also, a mutant recombinant fibrinogen modeled after the naturally occurring variant Osaka V (gammaArg375 --> Gly) showed delayed clot retraction and reduced binding to purified alpha(IIb)beta3. These results identify the gamma370-381 sequence of fibrin(ogen) as the binding site for alpha(IIb)beta3 involved in platelet adhesion and clot retraction and define the new recognition specificity of this integrin.  相似文献   

14.
The regulated ability of integrin alphaIIbbeta3 to bind fibrinogen plays a crucial role in platelet aggregation and hemostasis. We have developed a model system based on laser tweezers, enabling us to measure specific rupture forces needed to separate single receptor-ligand complexes. First of all, we performed a thorough and statistically representative analysis of nonspecific protein-protein binding versus specific alphaIIbbeta3-fibrinogen interactions in combination with experimental evidence for single-molecule measurements. The rupture force distribution of purified alphaIIbbeta3 and fibrinogen, covalently attached to underlying surfaces, ranged from approximately 20 to 150 pN. This distribution could be fit with a sum of an exponential curve for weak to moderate (20-60 pN) forces, and a Gaussian curve for strong (>60 pN) rupture forces that peaked at 80-90 pN. The interactions corresponding to these rupture force regimes differed in their susceptibility to alphaIIbbeta3 antagonists or Mn2+, an alphaIIbbeta3 activator. Varying the surface density of fibrinogen changed the total binding probability linearly >3.5-fold but did not affect the shape of the rupture force distribution, indicating that the measurements represent single-molecule binding. The yield strength of alphaIIbbeta3-fibrinogen interactions was independent of the loading rate (160-16,000 pN/s), whereas their binding probability markedly correlated with the duration of contact. The aggregate of data provides evidence for complex multi-step binding/unbinding pathways of alphaIIbbeta3 and fibrinogen revealed at the single-molecule level.  相似文献   

15.
The effect of cyclosporin A (CsA) on the production of gamma interferon (IFN gamma) versus IFN alpha/beta was studied using mouse and human lymphocytes and fibroblasts. Spleen cells from C57Bl/6 mice produced low but significant levels (40-60 U/ml) of IFN gamma after 2 to 3 days of culture with irradiated DBA spleen cells. The addition of CsA at concentrations as low as 0.1 microgram/ml completely inhibited (less than 10 U/ml) IFN gamma production in these cultures. High levels of IFN gamma (170-1200 U/ml) were produced when either C57Bl/6 spleen cells or Ficoll-Hypaque-purified human peripheral blood lymphocytes (PBL) were cultured with the T-cell mitogen staphylococcal enterotoxin A (SEA). The addition of CsA (0.1 microgram/ml) to these cultures also completely inhibited (less than 10 U/ml) IFN gamma production. This inhibition was shown not to be due to a change in the kinetics of IFN gamma production or to a change in the amount of SEA required for stimulation. IFN gamma production in SEA-stimulated mouse spleen cells was inhibited at 3 days of culture even when CsA was added at 24 or 48 hr postculture initiation. Thus, CsA inhibits IFN gamma production even when early events associated with lymphocyte activation have been allowed to take place. In contrast to IFN gamma production, IFN alpha/beta production by Newcastle disease virus (NDV)-infected mouse and human lymphocytes or fibroblasts was not inhibited by the addition of CsA (1 microgram/ml). CsA also did not block the action of IFN gamma or IFN alpha/beta since addition of CsA (1 microgram/ml) to reference IFN standards had no effect on their antiviral activity. Thus, CsA inhibits the production of IFN gamma by T cells but appears to have no effect on the production of IFN alpha/beta by virus-infected cells or on the antiviral action of already produced IFN gamma and IFN alpha/beta.  相似文献   

16.
A point mutation in a highly conserved region of the beta 1 subunit, Asp130 to Ala (D130A) substitution, abrogates the Arg-Gly-Asp (RGD)-dependent binding of alpha 5 beta 1 to fibronectin (FN) without disrupting gross structure or heterodimer assembly. The D130A mutation also interferes with binding to invasin, a ligand that lacks RGD sequence. In spite of the lack of detectable FN binding by alpha 5 beta 1(D130A), it was recruited to adhesion plaques formed on FN by endogenous hamster receptors. Thus, intact ligand binding function is not required for recruitment of alpha 5 beta 1 to adhesion plaques. Overexpression of beta 1(D130A) partially interfered with endogenous alpha 5 beta 1 function, thus defining a dominant negative beta 1 integrin mutation.  相似文献   

17.
Laminin-5 is an important constituent of the basal lamina. The receptors for laminin-5, the integrins alpha3beta1 and alpha6beta4, have been associated with epithelial wound migration and carcinoma invasion. The signal transduction mechanisms that regulate these integrins are not well understood. We report here that the small GTPase Rap1 regulates the adhesion of a number of cell lines to various extracellular matrix proteins including laminin-5. cAMP also mediates cell adhesion and spreading on laminin-5, a process that is independent of protein kinase A but rather dependent on Epac1, a cAMP-dependent exchange factor for Rap. Interestingly, although both alpha3beta1 and alpha6beta4 mediate adhesion to laminin-5, only alpha3beta1-dependent adhesion is dependent on Rap1. These results provide evidence for a function of the cAMP-Epac-Rap1 pathway in cell adhesion and spreading on different extracellular matrix proteins. They also define different roles for the laminin-binding integrins in regulated cell adhesion and subsequent cell spreading.  相似文献   

18.
In agonist-induced platelet activation, the collagen platelet receptor integrin alpha2beta1 is activated to high-affinity states through ADP involvement [Jung, S.M. & Moroi, M. (2000) J. Biol. Chem. 275, 8016-8026]. Here we determined the ADP-receptor subtypes involved and their relative contributions to alpha2beta1 activation (assessed by soluble-collagen binding) using the P2Y12 antagonist AR-C69931MX and P2Y1 antagonists adenosine 3',5'-diphosphate (Ado(3,5)PP) and adenosine 3'-phosphate 5'-phosphosulfate (AdoPPS). All three inhibited alpha2beta1 activation induced by low or high ADP, low thrombin, or low collagen-related peptide (CRP) concentrations; however, AR-C69931MX was markedly more inhibitory than the P2Y1 antagonists, suggesting the greater contribution of P2Y12. Inhibition patterns by various combinations of AR-C69931MX, AdoPPS, and wortmannin suggested that P2Y1 and P2Y12 mediate alpha2beta1 activation through different pathways, with possible involvement of phosphoinositide 3-kinase in both. Low concentrations of the acetoxy-methyl derivative of 1,2-bis(o-aminophenoxy) ethane-N,N,N',N'-tetra-acetic acid (calcium chelator) markedly decreased alpha2beta1 activation by low thrombin or CRP, but did not affect that by low or high ADP. Measurements of intracellular Ca2+ level (fluorimetric method) and alpha2beta1 activation (soluble-collagen binding) in the same platelet preparation indicated that alpha2beta1 activation via ADP receptors was independent of intracellular Ca2+ release. Our data indicate that integrin alpha2beta1 activation by ADP occurs through an inside-out signaling mechanism involving differential contributions by P2Y1 and P2Y12 wherein each contributes to some portion of the activation, with the stronger contribution of P2Y12. Furthermore, intracellular Ca2+ increase is not directly related to integrin alpha2beta1 activation, meaning that it is separate from the calcium mobilization pathways that these two ADP receptors are involved in.  相似文献   

19.
Integrin-ligand interactions are regulated in a complex manner by divalent cations, and previous studies have identified ligand-competent, stimulatory, and inhibitory cation-binding sites. In collagen-binding integrins, such as alpha2beta1, ligand recognition takes place exclusively at the alpha subunit I domain. However, activation of the alphaI domain depends on its interaction with a structurally similar domain in the beta subunit known as the I-like or betaI domain. The top face of the betaI domain contains three cation-binding sites: the metal-ion dependent adhesion site (MIDAS), the ADMIDAS (adjacent to MIDAS), and LIMBS (ligand-associated metal-binding site). The role of these sites in controlling ligand binding to the alphaI domain has yet to be elucidated. Mutation of the MIDAS or LIMBS completely blocked collagen binding to alpha2beta1; in contrast mutation of the ADMIDAS reduced ligand recognition but this effect could be overcome by the activating monoclonal antibody TS2/16. Hence, the MIDAS and LIMBS appear to be essential for the interaction between alphaI and betaI, whereas occupancy of the ADMIDAS has an allosteric effect on the conformation of betaI. An activating mutation in the alpha2 I domain partially restored ligand binding to the MIDAS and LIMBS mutants. Analysis of the effects of Ca(2+), Mg(2+), and Mn(2+) on ligand binding to these mutants showed that the MIDAS is a ligand-competent site through which Mn(2+) stimulates ligand binding, whereas the LIMBS is a stimulatory Ca(2+)-binding site, occupancy of which increases the affinity of Mg(2+) for the MIDAS.  相似文献   

20.
The angiogenic inducer CCN1 (cysteine-rich 61, CYR61), a secreted matricellular protein of the CCN family, is a ligand of multiple integrins, including alpha 6 beta 1. Previous studies have shown that CCN1 interaction with integrin alpha 6 beta 1 mediates adhesion of fibroblasts, endothelial cells, and smooth muscle cells, as well as migration of smooth muscle cells. Recently, we have reported that CCN1-induced tubule formation of unactivated endothelial cells is also mediated through integrin alpha 6 beta 1. In this study, we demonstrate that human skin fibroblasts adhere specifically to the T1 sequence (GQKCIVQTTSWSQCSKS) within domain III of CCN1, and this process is blocked by anti-alpha 6 and anti-beta 1 monoclonal antibodies. Alanine substitution mutagenesis of the T1 sequence further defines the sequence TTSWSQCSKS as the critical determinant for mediating alpha 6 beta 1-dependent adhesion. Soluble T1 peptide specifically inhibits fibroblast adhesion to CCN1 in a dose-dependent manner. Furthermore, T1 also inhibits cell adhesion to other alpha 6 beta 1 ligands, including CCN2 (CTGF), CCN3 (NOV), and laminin, but not to ligands of other integrins. In addition, T1 specifically inhibits alpha 6 beta 1-dependent tubule formation of unactivated endothelial cells in a CCN1-containing collagen gel matrix. To confirm that T1 binds integrin alpha 6 beta 1 directly, we perform affinity chromatography and show that integrin alpha 6 beta 1 is isolated from an octylglucoside extract of fibroblasts on T1-coupled Affi-gel. Taken together, these findings define the T1 sequence in CCN1 as a novel binding motif for integrin alpha 6 beta 1, providing the basis for the development of peptide mimetics to examine the functional role of alpha 6 beta 1 in angiogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号