首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Recent studies have shown that the extracellular matrix modifies the behaviour of endothelial cells. We have studied the effects of extracellular matrix components on retinal capillary endothelial cell migration and proliferation. Bovine retinal capillary endothelial cells were selectively cultured from collagenase-digested microvessel fragments. In a filter system for the assessment of migration, endothelial cells responded to substrate-bound fibronectin but not to soluble fibronectin. Cell migration on collagen- or gelatin-coated filters was minimal, and these cells failed to adopt a spread morphology, remaining instead as round cells. Cell replication was quantified using a protein dye binding assay for adherent cells in 96 well plates. Serum was essential for growth irrespective of the substrate. Cells harvested from microvessel cultures proliferated more rapidly on collagen- and gelatin-coated plastic than on fibronectin and were unaffected by additions to the medium such as endothelial cell conditioned medium, whereas cells proliferating directly from the microvessels grew at a faster rate on fibronectin and also responded to conditioned medium supplement. When cultured on collagen gels, initial microvessel cells and harvested cells required surface fibronectin in order to adopt a cobblestone morphology. These results show that fibronectin is a requirement for bovine retinal capillary endothelial cell migration, but proliferation of these cells can be supported, with slight differences, by both fibronectin and collagen provided serum growth factors are present. These findings are relevant to the early phase of angiogenesis in which migration and proliferation of endothelial cells occurs.  相似文献   

2.
Sertoli cell preparations isolated from 10-day-old rats were cultured on three different substrates: plastic, a matrix deposited by co-culture of Sertoli and peritubular myoid cells, and a reconstituted basement membrane gel from the EHS tumor. When grown on plastic, Sertoli cells formed a squamous monolayer that did not retain contaminating germ cells. Grown on the matrix deposited by Sertoli-myoid cell co-cultures, Sertoli cells were more cuboidal and supported some germ cells but did not allow them to differentiate. After 3 wk however, the Sertoli cells flattened to resemble those grown on plastic. In contrast, the Sertoli cells grown on top of the reconstituted basement membrane formed polarized monolayers virtually identical to Sertoli cells in vivo. They were columnar with an elaborate cytoskeleton. In addition, they had characteristic basally located tight junctions and maintained germ cells for at least 5 wk in the basal aspect of the monolayer. However, germ cells did not differentiate. Total protein, androgen binding protein, transferrin, and type I collagen secretion were markedly greater when Sertoli cells were grown on the extracellular matrices than when they were grown on plastic. When Sertoli cells were cultured within rather than on top of reconstituted basement membrane gels they reorganized into cords. After one week, tight junctional complexes formed between adjacent Sertoli cells, functionally compartmentalizing the cords into central (adluminal) and peripheral (basal) compartments. Germ cells within the cords continued to differentiate. Thus, Sertoli cells cultured on top of extracellular matrix components assume a phenotype and morphology more characteristic of the in vivo, differentiated cells. Growing Sertoli cells within reconstituted basement membrane gels induces a morphogenesis of the cells into cords, which closely resemble the organ from which the cells were dissociated and which provide an environment permissive for germ cell differentiation.  相似文献   

3.
This study examined the role of extracellular matrix in regulating matrix phenotype of hepatic lipocytes, the major source of matrix in liver. Lipocytes (Ito, stellate, or fat-storing cells) were purified from normal rat liver and established in primary culture on either uncoated plastic, plastic coated with individual matrix proteins, or a "complete" gel matrix, a basement membrane-like matrix derived from the Engelbreth-Holm-Swarm (EHS) murine tumor. The ultrastructure of lipocytes cultured on the gel matrix resembled that of cells in normal liver, whereas lipocytes on plastic had dispersed nuclear chromatin and expanded rough endoplasmic reticulum, consistent with active proliferation and secretion. Lipocytes on the gel matrix exhibited no proliferative activity; cells maintained on plastic proliferated and produced type I collagen predominantly. Total collagen secretion by lipocytes on the gel matrix was 29% of that of cells on plastic, and consisted of type III collagen only. This difference extended to proteoglycan production, which was less than 5% of the amount produced by cells in conventional culture on plastic. The effects of the EHS gel were not reproduced by the individual components of the gel (laminin, type IV collagen, and heparan sulfate proteoglycan) or by a type I collagen gel. They were also reversible upon transfer of the cells to conventional culture. In contrast to lipocytes, collagen synthesis by hepatocytes was similar whether cultured on EHS gel or on plastic. These results show that the extracellular matrix can modulate matrix protein production by lipocytes and imply that, in early hepatic inflammation, changes in the hepatic subendothelial matrix may underlie stimulation of lipocyte matrix production and progression of the fibrotic process.  相似文献   

4.
Cellular growth and collagen biosynthesis were compared in dermal calf fibroblasts cultured on plastic or on a reconstituted basement membrane gel, termed matrigel. This matrix, extracted from Engelbreth-Holm-Swarm tumors, consists mainly of laminin, entactin, type IV collagen, and heparan sulfate proteoglycan. The multiplication rate of fibroblasts grown on matrigel was stimulated compared to that of monolayered cells cultured on plastic, and these cells formed multilayers after 4 days. Protein and collagen biosynthesis was reduced in fibroblasts cultured on matrigel. A higher proportion of the newly synthesized collagen (40%) was incorporated to the extracellular matrix in cultures grown on matrigel than in those grown on plastic (14%). Type III collagen was the preferential collagen type deposited on matrigel, and the ratio of type III:type I collagens secreted in the medium was also slightly higher in cultures grown on matrigel. Partially processed collagen was more abundant in fibroblasts grown on matrigel than in cells cultured on plastic. Finally, cells grown on matrigel exhibited a higher catabolic activity than cells grown on plastic. In this experimental model, the reconstituted basement-membrane matrix seems to influence the activities of fibroblasts significantly.  相似文献   

5.
Summary Embryonic chick sternal chondrocytes were cultured either within three dimensional gels of type I collagen, type II collagen or agar, or as monolayers on plastic dishes coated with air-dried films of these matrix macromolecules. It was observed that cell shape and cell growth varied markedly between the different culture conditions. Flattened monolayers of cells on plastic or films of type I or type II collagen, proliferated more rapidly and reached a higher final cell density per culture than the more rounded cells found in the cultures on agar films or within three-dimensional gels. Biosynthetic studies demonstrated that in addition to the synthesis of type II collagen, all the cultures were producing collagen types IX and X. Chondrocytes cultured on plastic or films of the different matrix macromolecules all showed a similar expression of types IX and X collagen, independent of whether they displayed a flattened or round cell morphology. In contrast, marked variations in the proportions of the minor collagens, particularly type X collagen, were observed when the cells were cultured within three-dimensional gels. The data suggest that direct interaction of the cell surface with matrix constituents displaying a particular spatial array could be an important aspect in the control of type IX and X collagen expression by chondrocytes. The financial support of the Arthritis & Rheumatism Council and the Medical Research Council is gratefully acknowledged.  相似文献   

6.
Summary Vaginal and uterine stromal (VS and UtS) cells have been cultured in a collagen gel matrix, and the ability of the cells to retain their identity and interact normally with epithelia after culture was examined. Stromal explant from 2-d-old mice were plated onto an extracellular matrix covered with collagen, and maintained in Ham’s F12∶DMEM (1∶1) containing 15% fetal bovine serum. The fibroblastic stromal cells invaded and eventually filled the overlying collagen during the 4-wk growth period, and the total DNA of the UtS and VS cultures increased 3.5- and 4-fold, respectively. To assess the ability of the cultured stroma to perform its normal functions after the in vitro period, recombinations of cultured stroma and fresh epithelia were preparaed and transplanted under the renal capsule of female hosts and grown for 4 wk. The epithelium in recombinants of cultured VS + vaginal epithelium (VE) and cultured UtS + uterine epithelium (UtE) was histologically normal and proliferated in response to estrogen. Cultured stroma also instructively induced heterologous epithelium; VS induced UtE to undergo vaginal differentiation, and UtS induced VE to undergo uterine differentiation. These results indicate that UtS and VS retain their identity and do not irreversibly dedifferentiate in culture. Stromal cells grown in a colagen gel matrix form a functional stroma; they interact normally with epithelium after culture and express normal permissive and instructive inductive functions when reassociated with epithelium and grown in vivo. This work was supported by grants HD 17491, AM/CA 16570, CA 05388, and 5 F32 HD06580 from the National Institute of Health, Bethesda, MD, and a grant from the UCSF Academic Senate.  相似文献   

7.
Mouse embryonic palatal mesenchymal (MEPM) cells were cultured either on plastic tissue culture dishes or on the surface of three-dimensional collagen gels or within collagen gel matrices in DMEM/F12 medium containing 2.5% donor calf serum. MEPM cells proliferated exponentially when cultured on collagen or on plastic. Cells cultured within collagen gels did not proliferate but remained viable. Addition of 10 ng/ml epidermal growth factor (EGF) or transforming growth factor alpha (TGF) stimulated the proliferation of those cells cultured on plastic or on collagen but not those cultured within collagen gels. Immunocytochemical analysis revealed that MEPM cells synthesise collagen types I, III, IV, V, VI and IX; fibronectin, heparan sulphate proteoglycan, laminin and tenascin in vitro. These molecules are all present in the developing palate in vivo. EGF and TGF produced a generalised stimulation of extracellular matrix (ECM) synthesis by MEPM cells in vitro. Biochemical analysis indicated that cells cultured within collagen gels had the highest intrinsic rate of protein synthesis. On all substrata neither EGF nor TGF markedly altered the types of ECM molecules synthesised but rather caused a general increase in the total amount produced. This stimulation was most marked where the cells were cultured within collagen gels. The lack of stimulation of proliferation of MEPM cells cultured within collagen gels (i.e. in a physiologically-relevant environment) by EGF or TGF together with the marked stimulation of ECM synthesis suggests that these factors may act as differentiation signals via their effects on ECM production. Correspondence to: M.J. Dixon  相似文献   

8.
Summary Human adult endothelial cells (ECs) were cultured on liquid-liquid interface formed when aqueous culture medium is overlaid onto a fluorocarbon solvent. When ECs were seeded on untreated interfaces, some cells seemed to attach but they did not spread or grow. In contrast, when ECs were seeded on interfaces pretreated with such proteins as collagen type IV (COL), laminin (LN), fibronectin (FN), and fibrinogen (FG) the cells spread and proliferated until they formed confluent monolayers. Proteins such as bovine serum albumin (BSA) or gelatin (GN) were not as effective in providing surfaces for vigorous growth. Cells grown on fluorocarbon interfaces expressed specialized characteristics exhibited by endothelial cells grown under the usual culture conditions; they grew in a cobblestone monolayer, stained positively for Factor VIII-related antigen, and produced angiotensin-converting enzyme. The growth rate of ECs was the same whether they were cultured on treated fluorocarbon interfaces or on the usual tissue culture plastic surfaces. Using this culture system, the interactions of ECs with various adhesive proteins used as substrata was examined. ECs were observed to attach readily to the interfaces coated with GN, COL, LN, FN, and FG, but poorly to those coated with BSA. All the substrates tested, with the exception of BSA, promoted EC growth on fluorocarbon interfaces; ECs tended to grow more rapidly on COL- or FG-coated interfaces than on LN-, FN-, or GN-coated interfaces. This work was supported in part by grants from the National Institutes of Health (R01-HL-34153 and P01-AG-04861).  相似文献   

9.
When cultured on plastic and treated with transforming growth factor alpha (TGF alpha), human keratinocytes exhibit an increase in proliferation at the colony periphery, apparently as a consequence of enhanced cell migration (Barrandon and Green, 1987). To investigate the effects of TGF alpha on a differentiating stratified squamous epithelium and to begin to examine the molecular basis mediating this influence, we cultured human epidermal cells on a gelled lattice of collagen and fibroblasts, floating on the air-liquid interface. Under these conditions, raft cultures differentiate and exhibit morphological and biochemical features of human skin in vivo (Asselineau et al., 1986; Kopan et al., 1987). When 3-wk-old raft cultures were treated with TGF alpha, basal cells showed a marked increase in cell proliferation. At elevated concentrations of TGF alpha, the organization of cells within the artificial tissue changed and islands of basal cells entered the collagen matrix. Biochemical analysis of the response revealed that type I collagenase and gelatinase were induced by keratinocytes within 12 h after TGF alpha treatment. In contrast, invasion of basal cells into the collagen matrix was not significant until 48-72 h post-treatment, suggesting that collagenase and gelatinase production may be a prerequisite to this phenomenon. These results have important implications for the possible role of TGF alpha in squamous cell carcinoma and tumor invasion.  相似文献   

10.
We studied the effect of two members of the epidermal growth factor (EGF) family--amphiregulin and heparin-binding EGF-like growth factor (HB-EGF)-on cell proliferation, growth factor and growth factor receptor expression, and cell differentiation in two human colon cell lines of varying liver-colonizing potential. The effect of amphiregulin and HB-EGF was assessed both in cells grown on plastic, as well as on cells grown on hepatocyte-derived extracellular matrix (ECM). We found that both colon cell lines were sensitive to HB-EGF stimulation of cell proliferation. Amphiregulin inhibited cell proliferation in KM12 cells and stimulated the strongly metastatic cell line KM12SM to a slight extent. When the cells were cultured on hepatocyte-derived ECM, amphiregulin inhibited the weakly metastatic KM12 and stimulated the growth of KM12SM. HB-EGF synergistically acted with hepatocyte-derived ECM to enhance cell proliferation in both colon cell lines. Expression of ligands of the EGF family, such as transforming growth factor-alpha (TGF-alpha) and amphiregulin, was decreased in both cell lines when cultured on ECM. Hepatocyte-derived ECM decreased expression of cripto in KM12 and increased it in KM12SM cells. Neither cripto nor TGF-alpha mRNA levels was affected by growing the cells in the presence of amphiregulin. However, amphiregulin increased expression of its own mRNA in the weakly metastatic KM12 and decreased it in the strongly metastatic KM12SM when the cells were cultured on plastic. Amphiregulin and HB-EGF stimulated expression of erb-B2 in both cell lines cultured on plastic. Surprisingly, when the cells were grown on hepatocyte-derived ECM, amphiregulin inhibited erb-B2 expression in both cell lines. We observed no effect of amphiregulin on cell differentiation as assessed by alkaline phosphatase expression. Our studies demonstrate one mechanism that could play a role in site-specific metastasis. We found an inhibitory response to an autocrine growth factor in the context of hepatocyte-derived ECM in a weakly metastatic cell and a stimulatory effect of the same growth factor when strongly metastatic cells were cultured on the same ECM.  相似文献   

11.
Local estradiol production within breast tissue is maintained by the aromatase cytochrome P450arom complex, which has been localized primarily to the stromal component of tumors but also has been detected in the breast epithelial cells. Paracrine interactions between stromal and epithelial components of the breast are critical to the sustained growth and progression of breast tumors. Maintenance of the differentiated state, including hormone and growth factor responsiveness, requires extracellular matrix proteins as substrata for cells. This research has focused on developing a cell culture system that more closely mimics in vivo interactions in order to dissect actual paracrine signaling between these two cell types. Human fibroblasts were isolated from breast tissue and were maintained in a cell culture system grown on plastic support or on a collagen I support matrix. The collagen I matrix model supports cell maintenance and subsequent differentiation on collagen rather than maximal proliferation, therefore allowing for a more accurate environment for the study of hormonal control and cellular communication. Initial experiments compared aromatase activity of patient fibroblasts grown on plastic versus collagen I using the tritiated water release method. Constitutive aromatase activity was found to be lower when cells were grown on a collagen gel for 4–7 days (7.7 fold lower) using DMEM/F12 containing 10% dextran coated charcoal stripped serum. However, fibroblasts grown on collagen I appeared to be significantly more responsive to stimulation by 100 nM dexamethasone (plastic: 6.0 fold induction, collagen: 33.2 fold induction) when pretreated for 12 h prior to measurement of aromatase activity. In an effort to examine paracrine interactions between the stromal and epithelial cells in breast tissue, experiments using conditioned media from fibroblast cultures were performed. Testosterone administration to fibroblasts results in the production of estradiol into the media in sufficient concentrations to elicit an increase in pS2 expression when the conditioned media is administered to MCF-7 cells. The addition of a potent aromatase inhibitor resulted in a complete suppression of fibroblast-derived estrogens and showed only a modest increase in pS2 expression. Culturing breast fibroblasts and epithelial cells on extracellular matrix allows for a more meaningful examination of the paracrine interactions between these cell types within the context of an appropriate extracellular environment. This study highlights the need for evaluation of gene expression in cell culture systems that accurately reflect the tissue microenvironment.  相似文献   

12.
Summary The ability of the collagen matrix form to support the formation of a basal lamina by cultured normal human epidermal keratinocytes (NHEK) was determined using transmission electron microscopy. The collagen matrix forms tested in this study were a) a dry type I collagen film and b) a type I collagen gel. NHEK were grown for 14 days on the following five different substrates: plain plastic culture dishes without the addition of collagen (PP); plain plastic culture dishes overlaid with a dry, aldehyde-crosslinked type I collagen film (DCF-P); plain plastic culture dishes overlaid with an aldehyde-crosslinked type I collagen gel (GEL-P); Millipore Millicell CM microporous membranes overlaid with a dry, aldehyde-crosslinked type I collagen film (DCF-CM); and Millipore Millicell CM microporous membranes overlaid with an aldehyde-crosslinked type I collagen gel (GEL-CM). NHEK maintained for 2 wk on PP and DCF-P were unable to secrete a basal lamina. NHEK grown for 2 wk on the GEL-P and GEL-CM substrates, however, secreted a contiguous basal lamina at the GEL-NHEK interface. To determine if the appearance of this basal lamina correlated with laminin synthesis, laminin was immunoprecipitated from cellular extracts, as well as media from the apical and basal chambers. NHEK grown on the GEL-P substrate synthesized more laminin than did NHEK grown on the other four alternative substrates. In addition, NHEK grown on GEL-CM were able to direct more laminin to the basal compartment than NHEK grown on DCF-CM substrates. Taken together, the data indicate that the matrix form of collagen can influence basal lamina deposition, laminin synthesis, and laminin trafficking in NHEK.  相似文献   

13.
Previous reports have demonstrated the growth of undifferentiated human embryonic stem (HES) cells on mouse embryonic fibroblast (MEF) feeders and on laminin- or Matrigel-coated plastic surfaces supplemented with MEF-conditioned medium. These xenosupport systems run the risk of cross-transfer of animal pathogens from the animal feeder, matrix, or conditioned medium to the HES cells, thus compromising later clinical application. Here we show that human fetal and adult fibroblast feeders support prolonged undifferentiated HES cell growth of existing cell lines and are superior to cell-free matrices (collagen I, human extracellular matrix, Matrigel, and laminin) supplemented with human or MEF feeder-conditioned medium. Additionally, we report the derivation and establishment of a new HES cell line in completely animal-free conditions. Like HES cells cultured on MEF feeders, the HES cells grown on human feeders had normal karyotypes, tested positive for alkaline phosphatase activity, expressed Oct-4 and cell surface markers including SSEA-3, SSEA-4, Tra 1-60, and GCTM-2, formed teratomas in severely combined immunodeficient (SCID) mice, and retained all key morphological characteristics. Human feeder#150;supported HES cells should provide a safer alternative to existing HES cell lines in therapeutic applications.  相似文献   

14.
Summary During morphogenesis, tumor progression and metastasis, cell adhesion, dissociation, and migration result from a complex balance between cell-to-cell and cell-to-matrix interactions. Two different organization patterns of MCF-7 cells were induced by different extracellular matrix proteins. When plated on plastic or polymeric type I collagen gel used as a model of interstitial matrix, MCF-7 cells spread and grew in monolayer. When cultured on a solid gel of basement membrane (BM) proteins (85% laminin) used as a model of BM, cells formed clusters attached to the matrix. Matrix proteins regulated these two types of cell organization by preferentially promoting cell-to-cell or cell-support interactions. On plastic in the presence of soluble laminin or on laminin-coated dishes, cells also formed clusters. Addition of soluble fibronectin induced spreading of the cells, suggesting that laminin and fibronectin have competitive antagonistic effects on MCF-7 cell morphology. Antilaminin antibodies inhibited cluster formation and attachment, emphasizing the important role of this glycoprotein not only in promoting cluster attachment but also in cell-to-cell contact formation. Such effects of extracellular matrix proteins could play significant roles in tumor progression and metastasis. This work was supported by grants 3.4512.85 and 3.4514.85 from the Belgian Fonds de la Recherche Scientifique Médicale and the Fonds Cancérologique de la CGER.  相似文献   

15.
We studied the effect of two members of the epidermal growth factor (EGF) family—amphiregulin and heparin‐binding EGF‐like growth factor (HB‐EGF)—on cell proliferation, growth factor and growth factor receptor expression, and cell differentiation in two human colon cell lines of varying liver‐colonizing potential. The effect of amphiregulin and HB‐EGF was assessed both in cells grown on plastic, as well as on cells grown on hepatocyte‐derived extracellular matrix (ECM). We found that both colon cell lines were sensitive to HB‐EGF stimulation of cell proliferation. Amphiregulin inhibited cell proliferation in KM12 cells and stimulated the strongly metastatic cell line KM12SM to a slight extent. When the cells were cultured on hepatocyte‐derived ECM, amphiregulin inhibited the weakly metastatic KM12 and stimulated the growth of KM12SM. HB‐EGF synergistically acted with hepatocyte‐derived ECM to enhance cell proliferation in both colon cell lines. Expression of ligands of the EGF family, such as transforming growth factor‐α (TGF‐α) and amphiregulin, was decreased in both cell lines when cultured on ECM. Hepatocyte‐derived ECM decreased expression of cripto in KM12 and increased it in KM12SM cells. Neither cripto nor TGF‐α mRNA levels was affected by growing the cells in the presence of amphiregulin. However, amphiregulin increased expression of its own mRNA in the weakly metastatic KM12 and decreased it in the strongly metastatic KM12SM when the cells were cultured on plastic. Amphiregulin and HB‐EGF stimulated expression of erb‐B2 in both cell lines cultured on plastic. Surprisingly, when the cells were grown on hepatocyte‐derived ECM, amphiregulin inhibited erb‐B2 expression in both cell lines. We observed no effect of amphiregulin on cell differentiation as assessed by alkaline phosphatase expression. Our studies demonstrate one mechanism that could play a role in site‐specific metastasis. We found an inhibitory response to an autocrine growth factor in the context of hepatocyte‐derived ECM in a weakly metastatic cell and a stimulatory effect of the same growth factor when strongly metastatic cells were cultured on the same ECM. J. Cell. Biochem. 76:332–340, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

16.
Summary Monolayers of cultured epithelial cells have been prepared from fragments of guinea pig pancreatic excretory ducts isolated by a simple procedure employing collagenase digestion and manual selection, through which virtually all of the ductal system can be recovered. The isolated fragments were cultured in enriched Waymouth's medium on extracellular matrices of various composition and thickness, including: thin (<5 μm) and thick (0.5 mm) layers of rat tail collagen; thin layers of human placental collagen; thin layers of Matrigel (a reconstituted basement membrane material); uncoated tissue culture plastic; and the cellulose ester membranes of Millipore Millicells. Cells spread rapidly from duct fragments cultured on uncoated plastic or on plastic coated with thin layers of rat tail collagen or human placental collagen and formed epithelial monolayers. However, these cells were squamous and lacked the abundant basolateral membrane amplification and apical microvilli characteristic of freshly isolated duct epithelial cells. Cells did not spread from duct fragments cultured on Matrigel. In contrast, when fragments of pancreatic ducts were explanted onto either a thick layer of rat tail collagen or onto Millicell membranes, cells readily spread and formed confluent monolayers of cuboidal epithelial cells characterized by abundant mitochondria, apical microvilli, and basolateral plasma membrane elaboration. These results demonstrate that different forms of extracellular matrix modulate the growth and differentiation of pancreatic duct epithelial cells, and that culture on a permeable substrate markedly enhances the maintenance of differentiated characteristics in this cell type. The monolayers formed on Millicell membranes should provide a useful model system for physiologic analysis of the regulation of electrolyte secretion by this epithelium. This research was supported by grants DK32994 and DK35912 from the National Institutes of Health, Bethesda, MD.  相似文献   

17.
Summary This report describes the development of a culture system for long-term growth and cloning of human fetal adrenocortical cells. Optimal conditions for stimulating clonal growth were determned by testing the efficacy of horse serum (HS), fetal bovine serum (FBS), fibroblast growth factor (FGF), epidermal growth factor (EGF), fibronectin, and a combination of growth factors, UltroSer G, in stimulating growth from low density. Optimal conditions for clonal growth were achieved using fibronectin-coated dishes and DME/F12 medium with 10% FEBS, 10% HS, 2% UltroSer G, and 100 ng/ml FGF or 100 pM EGF. Conditions for growth at clonal density were found to be optimal for growth of early passage, nonclonal cultures at higher densities. The improved growth conditions used for cloning were shown to allow continued long-term growth of nonclonal human adrenocortical cells without fibroblasts overgrowth. All cells in cultures grown in HS, FBS, and UltroSer G had morphologic characteristics of adrenocortical cells, whereas cells grown in FBS only rapidly became overgrown with fibroblasts. Clonal and nonclonal early passage human adrenocortical cells had smilar mitogenic responses to FGF and EGF. Whereas FGF, EGF, and UltroSer G showed similar stimulation of DNA synthesis and clonal growth in human adrenocortical cells and human adrenal gland fibroblasts, the tumor promoter 12-O-teradecanoylphorbol-13-acetate stimulated growth only in adrenocortical cells and was strongly inhibitory to growth in fibroblasts. In both cell types, forskolin inhibited DNA synthesis. Human adrenocortical cell cultures were functional and synthesized cortisol, dehydroepiandrosterone, and dehydroepiandrosterone sulfate. The improved growth conditions for clonal growth of human adrenocortial cells also provided optimal conditions for long-term growth of cultured rat adrenocortical cells and ncreased the cloning efficiency of cultured bovine adrenocortical cells. This work was supported by Research grants AG-00936 and AG-06108 from the National Institute on Aging, Bethesda, MD.  相似文献   

18.
The role of collagen or collagen-like protein(s) in the in vitro formation of the sea urchin embryonic skeleton was investigated using isolated micromeres of Strongylocentrotus purpuratus. Micromeres were cultured in sea water containing 4% horse serum on tissue culture plastic or an extracellular matrix of type I collagen. The effect of proline analogs and an inhibitor of collagen hydroxylation on in vitro spicule formation in both culture systems was monitored. When micromeres are cultured in the presence of proline analogs l-azetidine-2-carboxylic acid and l-3,4-dehydroproline which disrupt collagen metabolism, spicule formation is significantly less inhibited on a collagen substratum than on plastic. Culturing micromeres on plastic in the presence of α,α′-dipyridyl, an inhibitor of collagen hydroxylation, resulted in almost complete inhibition of spicule formation. The inhibition by α,α′-dipyridyl can be overcome by culturing micromeres on collagen substratum. These results do not support the idea of collagen being the calcified organic matrix of the spicule. Rather, they suggest that micromeres synthesize a collagen-like extracellular matrix which is necessary for spicule formation. Inhibition of this activity by proline analogs or a collagen processing inhibitor can be overcome by providing the cells with a previously deposited extracellular matrix.  相似文献   

19.
Hypoxia not only controls organogenesis, embryogenesis, and wound repair, but also triggers tumor progression and metastasis. Matrix metalloproteinases (MMP), especially gelatinases (MMP-2, MMP-9) regulate the composition and stability of the extracellular matrix (ECM), which affects cell proliferation, migration, and differentiation. This study investigated the effect of hypoxia alone and in combination with ECM compounds and nutrition on MMP-2 and MMP-9 expression, activity, and synthesis in human lung fibroblasts and pulmonary vascular smooth muscle cells (VSMC). We also determined the expression of the tissue inhibitors of MMP (TIMP-1, -2). Cells were grown on plastic, collagen-I, collagen-IV, or gelatin and in either starving medium (0.1% serum) or growth medium (5% serum), and were subjected to normoxia or hypoxia (1% O(2)). Collagenases expression was determined by zymography. TIMP-1, -2 expression was assessed by Western blotting and RT-PCR. Depending on serum concentration human lung cells expressed pro-MMP-2 on all substrates. Hypoxia increased pro-MMP-2 expression, on collagen type I or type IV further via Erk1/2 and p38 MAP kinase signaling. MMP-9 was only expressed when cells were grown on collagen type IV and increased with serum concentration, and by hypoxia. TIMP-1 expression was only expressed when cells were grown on collagen type I and was significantly increased by hypoxia, while TIMP-2 expression was unchanged. We demonstrated that the hypoxia, ECM composition, and nutrition, rather than one of these conditions alone, modulate the expression and activity of collagenases and their inhibitors in primary human lung fibroblasts.  相似文献   

20.
Summary One bovine mammary epithelial cell clone, designated PS-BME-C1, and two bovine mammary epithelial cell lines, designated PS-BME-L6 and PS-BME-L7, were derived from mammary tissue of a pregnant (270 day) Holstein cow. The cells exhibit the distinctive morphologic characteristics of mammary epithelial cells and express the milk fat globule membrane protein, PAS-III. They form domes when cultured on plastic substrata and acinilike aggregates when cultured on a collagen matrix. These cells are capable of synthesizing and secretingα-lactalbumin andα-s1-casein when cultured on a collagen matrix in the presence of insulin, cortisol, and prolactin. The cells have a near-normal diploid number and do not grow in suspension culture. When transplanted to the cleared mammary fat pads of female athymic nude mice, the cells readily proliferate forming noninvasive palpable spherical cellular masses within 8 wk after inoculation. The cells may become a useful tool to study the regulation of ruminant mammary epithelial cell growth and differentation. This work was supported by the Pennsylvania State University Experiment Station. The PS-BME cells are the property of The Pennsylvania Research Corporation. Scientists interested in obtaining the PS-BME clone or cell lines for their research may request them from the corresponding author.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号