首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A new flow through instrument that simultaneously measures cell volume (resistance pulse technique) and cell fluorescence in the same orifice will be described. The fluorescence pulses of the hydrodynamically focussed cells are picked up by the optics via the axial direction (principle of Dittrich and Goehde, Z Naturforsch 24b:360, 1969). There is no coordination problem between the fluorescence and the resistance pulses to be observed because a new type of transducer is used. The electronic system provides gating of one or two parameter histograms. Function tests are performed with the incorporated two-parameter test spectrum generator. Different examples of using the instrument in practice are shown. The volume that may be measured with an orifice of 70 micron diameter ranges between 4 and 1400 micron3 (1:350). Coefficients of variation of the fluorescence below 2% are measured.  相似文献   

2.
A quartz crystal microbalance (QCM) immunosensor was described for the detection of Salmonella Typhimurium with simultaneous measurements of the resonant frequency and motional resistance. The immunosensor was fabricated using protein A for the antibody immobilization. High-frequency impedance analysis indicated that the changes in resonant frequency and motional resistance (DeltaF and DeltaR) of the QCM were significant while the changes in static capacitance, motional capacitance, and motional inductance were insignificant. In the direct detection of S. Typhimurium in chicken meat sample, DeltaF and DeltaR were proportional to the cell concentration in the range of 10(5) - 10(8) and 10(6) - 10(8) cells/ml, respectively. Using anti-Salmonella-magnetic beads as a separator/concentrator for sample pretreatment as well as a marker for signal amplification, the detection limit was lowered to 10(2) cells/ml based on the DeltaR measurement; however, DeltaF was not related to the cell concentration. No interference was observed from E. coli K12 or the sample matrix.  相似文献   

3.
We have studied the admittance of patch-clamped mast cells during exocytosis and found that they are adequately described by a four parameter equivalent circuit. On the basis of these measurements, we show that, contrary to current belief, when using a phase sensitive detector, small capacitance changes due to exocytosis or endocytosis should be studied by measuring current 90 degrees out of phase, relative to the component that corresponds to changes in series resistance. We have extended the theory on phase-detectors to include the errors in the estimation of step changes of membrane capacitance. We show that the measured capacitance of a secretory granule can be up to 80% smaller than its true value, during the course of a typical mast cell degranulation. We also describe a software-based phase-detector that simplifies capacitance measurements.  相似文献   

4.
Embryonic chick heart cells were grown in tissue culture on an oriented substrate (channels cut in an agar coated slide), so that they formed narrow(5-100mu) strands of arbitrary length. The electrical properties of these strands were examined using intracellular microelectrodes. ac and dc cable studies were performed to determine the passive cable parameters. Quantitative histology, using light and electronmicroscopy, permitted calculation of intrinsic capacitances and resistivities. Electrical coupling between polarizing and recording electrodes was ubiquitous, falling off exponentially with distance. It was concluded that individual cells were electrically connected, since coupling was observed at distances greater than 3 mm, and the maximum cell length was estimated to be less that 300 mu. The strands were usually spontaneously active, with phase 4 depolarization (pacemaker potential) occurring almost simultaneously in all cells of a strand. The passive electrical properties determined during phase 4 were: core resistivity (cytoplasm plus cell-to-cell resistance), 245 ohm/cm; membrane capacitance, 1.46 muF/CM2. The membrane resistance increased from 16 to 136 kohm/cm2 during phase 4. The space and time constants showed commensurate changes, from 0.95 to 3.2 mm, and from 29 to 269 msec, respectively. The input resistance also increased, from 1.1 to 3.8 Mohm.  相似文献   

5.
We describe here a technique called phase tracking that greatly improves the accuracy of measurements of the membrane capacitance of single cells. We have modified the original phase detection technique to include a method for creating calibrated changes in the resistance in series with the cell. This provides a method to automate the adjustment of the phase detector to the appropriate phase angle for measuring membrane capacitance. The phase determination depends only on the cell's electrical parameters and does not require matching of the cell impedance with that of the slow capacitance cancellation circuitry of the patch-clamp amplifier. We show here that phase tracking can accurately locate the phase of the capacitance signal and can keep the detector aligned with this signal during measurements of exocytosis in mast cells, irrespective of the large drifts which occur in cell membrane resistance, membrane capacitance, or series resistance. The phase tracking technique is a valuable tool for quantifying exocytosis and endocytosis in single cells.  相似文献   

6.
A method based on dielectric properties of dispersed systems was developed to investigate red blood cell (RBC) aggregation in blood and RBC suspensions. Measurements of capacitance and resistance were made in a rectangular channel at low (0.2 MHz) and high (14 MHz) frequencies relative to the mid-point of the beta-dispersion range. Compared to capacitance, minimal post-shearing changes of resistance were observed; capacitance changes at 0.2 MHz were two orders of magnitude larger than those at 14 MHz and hence subsequent measurements were carried out at the lower frequency. It is shown that post-shearing changes in the capacitance are affected by the recovery of RBC shape and relaxation processes at the electrode-suspension interface. However, the dominant factor contributing to time-dependent changes in the capacitance is the dynamic process of RBC aggregation. It is experimentally shown that the time record of the capacitance at 0.2 MHz quantitatively reflects the aggregation process in RBC-plasma suspensions with hematocrit up to 0.56 (v/v) and in suspensions of RBCs in artificial aggregating media. It is concluded that a dielectric approach to the study of RBC aggregation in whole blood offers great potential for basic studies and for diagnostic use.  相似文献   

7.
Studies of cell pellets: I. Electrical properties and porosity.   总被引:2,自引:1,他引:1  
I G Abidor  L H Li    S W Hui 《Biophysical journal》1994,67(1):418-426
Cell pellets formed by centrifugation provided a good system to study the osmotic behavior, electroporation, and interaction between cells. Rabbit erythrocyte pellets were used in this study because they were simpler than nucleated cells to model analytically. Structurally, cell pellets possessed properties of porous solid bodies and gels. Electrically, cell pellets were shown to behave as a parallel set of resistance, Rp, and capacitance, Cp. Information on pellet structures was obtained from electric measurements. The pellet resistance reflected the intercellular conductivity (porosity and gap conductivity), whereas the pellet capacitance depended mostly on membrane capacitance. The pellet resistance was more sensitive to experimental conditions. The intercellular gap distance can be derived from pellet porosity measurements, providing the cell volume and surface area were known. Rp increased and relaxed exponentially with time when centrifugation started and stopped; the cycles were reversible. When supernatants were exchanged with solutions containing hypotonic electrolytes or macromolecules (such as PEG) after the pellets were formed, complicated responses to different colloidal osmotic effects were observed. A transient decrease followed by a large increase of Rp was observed after the application of a porating electric pulse, as expected from a momentary membrane breakdown, followed by a limited colloidal-osmotic swelling of pelleted cells. The equilibrium values of Rp, Cp, pellet porosity, and intercellular distances were measured and calculated as functions of cell number, centrifugation force, and ionic strength of the exchanged supernatant. Thus, the structure and properties of cell pellets can be completely characterized by electrical measurements.  相似文献   

8.
Passive Glial Cells, Fact or Artifact?   总被引:3,自引:0,他引:3  
Astrocytes that are recorded in acute tissue slices of rat hippocampus using whole-cell patch-clamp, commonly exhibit voltage-activated Na+ and K+ currents. Some reports have described astrocytes that appear to lack voltage-activated currents and proposed that these cells constitute a subpopulation of electrophysiologically passive astrocytes. We show here that these cells can spontaneously change during a recording unmasking expression of previously suppressed voltage-activated currents, suggesting that such cells do not represent a subpopulation of passive astrocytes. Superfusion of a low Ca2+/EGTA solution was able to reversibly suppress voltage-activated K+ currents in cultured astrocytes. Currents were restored upon addition of normal bath Ca2+. These effects of Ca2+ on both outward and inward K+ currents were dose- and time-dependent, with increasing concentrations of Ca2+ (from 0 to 800 μm) leading to a gradual unmasking of voltage-dependent outward and inward K+ currents. The transition from an apparently passive cell to one exhibiting prominent voltage-activated currents was not associated with any changes in membrane capacitance or access resistance. By contrast, in cells in which low access resistance or poor seal accounted for the absence of voltage-activated currents, improvement of cell access was always accompanied by changes in series resistance and membrane capacitance. We propose that spillage of pipette solution containing low Ca2+/EGTA during cell approach in slice recordings and/or poor cell access, lead to a transient masking of voltage-activated currents even in astrocytes that express prominent voltage-activated currents. These cells, however, do not constitute a subpopulation of electrophysiologically passive astrocytes. Received: 22 April 1998/Revised: 8 September 1998  相似文献   

9.
Measurement of the magnitude and kinetics of exocytosis from intact epithelia has historically been difficult. Using well-differentiated cultures of human bronchial epithelial cells, we describe the use of transepithelial impedance analysis to enable the real-time quantification of mucin secretagogue-induced changes in membrane capacitance (surface area) and conductance. ATPgammaS, UTP, ionomycin, and PMA induced robust increases in total cellular capacitance that were demonstrated to be dominated by a specific increase in apical membrane surface area. The UTP-induced increase in capacitance occurred in parallel with goblet cell emptying and the secretion of mucin and was associated with decreases in apical and basolateral membrane resistances. The magnitude and kinetics of the capacitance increases were dependent on the agonist and the sidedness of the stimulation. The peak increase in capacitance induced by UTP was approximately 30 mucin granule fusions per goblet cell. Secretagogue-induced decreases in apical membrane resistance were independent of exocytosis, although each of the secretagogues induced profound reductions in basolateral membrane resistance. Transepithelial impedance analysis offers the potential to study morphological and conductance changes in cultured human bronchial epithelial cells.  相似文献   

10.
Cochlear outer hair cells are crucial for active hearing. These cells have a unique form of motility, named electromotility, whose main features are the cell's length changes, active force production, and nonlinear capacitance. The molecular motor, prestin, that drives outer hair cell electromotility has recently been identified. We reveal relationships between the active energy produced by the outer hair cell molecular motors, motor effectiveness, and the capacitive properties of the cell membrane. We quantitatively characterize these relationships by introducing three characteristics: effective capacitance, zero-strain capacitance, and zero-resultant capacitance. We show that zero-strain capacitance is smaller than zero-resultant capacitance, and that the effective capacitance is between the two. It was also found that the differences between the introduced capacitive characteristics can be expressed in terms of the active energy produced by the cell's molecular motors. The effectiveness of the cell and its molecular motors is introduced as the ratio of the motors'active energy to the energy of the externally applied electric field. It is shown that the effectiveness is proportional to the difference between zero-strain and zero-resultant capacitance. We analyze the cell and motor's effectiveness within a broad range of cellular parameters and estimate it to be within a range of 12%-30%.  相似文献   

11.
Resistance to adriamycin generally is explained through changes of cell/drug interactions that possibly reflect structural alterations of intracellular targets. One of the main targets of adriamycin is believed to be nuclear chromatin. In order to recognize chromatin alterations, we studied cell nuclei morphology and chromatin structure by means of digital image analysis. The studies were performed in both adriamycin-sensitive and -resistant Sarcoma 180 cell lines which were cultured under growth-stimulated and nonstimulated conditions. Using specially developed methods, we extracted parameters characterizing geometrical, optical, and structural properties of the cell nuclei from light microscopical images. The latter parameters concerned microscopical appearances of condensed chromatin and were described by features of high-optical-density regions. The results demonstrated that the quantitative criteria applied enabled the discrimination of sensitive and resistant cells. The most important parameters are the nuclear size, number, distribution, and optical density of condensed chromatin regions. In addition, the criteria permit recognition of changes related to differences in the growth conditions of the cells. The data of the image analysis suggest that adriamycin resistance in Sarcoma 180 cells is associated with characteristic patterns of cell nuclear morphology which can be described with a sufficient number of appropriate parameters. The advantages of image analysis are evident when these results are compared with the flow cytometric findings. The conclusion is that structural features of nuclear chromatin provide information essential for the assessment of drug resistance.  相似文献   

12.
Electrical impedance spectroscopy was used to characterize the cell environment of multilayered cell cultures (MCCs), a culture system in which cells are grown on a permeable support membrane to form a thick disc of cells with tumor-like properties. Cultures were grown using SiHa tumor cells as well as V79 wild-type cells and V79/DOX cells cultivated to exhibit multidrug resistance. Electrical impedance measurements were made on MCCs over a frequency range of 0. 1 kHz to 1 MHz. Data analysis using a simple electrical model for the cell environment yielded estimates for parameters related to the intra- and extracellular resistance and net membrane capacitance, which were then related to MCC thickness. The extracellular fraction and tortuosity of the MCCs were determined in separate experiments where the rate of diffusion and the equilibrium level of C14-inulin, which does not penetrate the cell membrane, was measured within MCCs. Impedance measurements predicted the barrier to diffusion posed by the extracellular space of MCCs to be roughly two times greater than that inferred from the C14-inulin experiments. However, the relative ranking of the three cell types used to grow MCCs was similar for the two methods. Results indicate that impedance spectroscopy is well suited for use in characterizing the MCC cell environment, offering a fast, nondestructive method for monitoring cell culture growth and integrity.  相似文献   

13.
The rotation of human red blood cells (RBC) as they flow in the shear field established by a Coulter type orifice is modeled. This model, based on hydrodynamics of ellipsoid rotation in laminar creeping flow, is used to calculate the probability of the cells entering the orifice with a specific orientation. The electrical resistance change produced by a cell passing through the orifice of an electronic cell volume detector is the product of an orientation-dependent shape factor and the cell volume. This paper presents a method to calculate the shape factor probability distribution which can be used to predict its effect on the cell volume distribution. Experimental results confirm the theoretical prediction that the right skewness of resistance change distributions is in part a result of the nonspherical shape of red cells.  相似文献   

14.
Synchrony provides a large number of cells at defined points of the cell cycle. Highly synchronised cells are powerful and effective tools for molecular analyses and for studying the biochemical events of the cell cycle in plants. Usually, plant cell suspensions can be synchronised by chemical agents, which arrest the cell cycle by acting on the driving forces of the cell cycle engine such as cyclin-dependent kinase activity, enzymes involved in DNA synthesis or proteolysis of cell cycle regulators or by acting on the cell cycle apparatus (mitotic spindle). The specificity, reversibility and efficiency of each type of cell cycle inhibitor are described and related to their mode of action.  相似文献   

15.
16.
The changes in the dielectric properties of cells that occur during their exposure to various lethal environmental stresses were measured using both dielectric spectroscopy and dielectrophoresis. It is shown that the dielectric properties of both dying and dead yeast cells were strongly dependent on the method used to induce cell death. Methods which directly affected the membrane permeability, and consequently the membrane conductivity and internal conductivity, resulted in large changes in the suspension capacitance and dielectrophoretic behaviour, whilst methods which affected the cell interior but had little effect on the cell membrane resulted in few or no changes in the dielectric properties of the cells. The findings indicate that, depending on the method by which cell death is induced, dielectric spectroscopy may not always be able to observe differences between viable and non-viable cells, and that dielectrophoresis will not always be able to separate viable from non-viable cells.  相似文献   

17.
The dielectric properties of baby hamster kidney fibroblast (BHK(C-13)) cells have been measured using electrorotation before and after infection with herpes simplex virus type 1 (HSV-1). The dielectric properties and morphology of the cells were investigated as a function of time after infection. The mean specific capacitance of the uninfected cells was 2.0 microF/cm2, reducing to a value of 1. 5 microF/cm2 at 12 h after infection. This change was interpreted as arising from changes in the cell membrane morphology coupled with alterations in the composition of the cell membrane as infection progressed. The measured changes in the cell capacitance were correlated with alterations in cellular morphology determined from scanning electron microscope (SEM) images. Between 9 and 12 h after infection the internal permittivity of the cell exhibited a rapid change, reducing in value from 75epsilono to 58epsilono, which can be correlated with the generation of large numbers of Golgi-derived membrane vesicles and enveloped viral capsids. The data are discussed in relation to the known life cycle of HSV-1 and indicate that electrorotation can be used to observe dynamic changes in both the dielectric and morphological properties of virus-infected cells. Calculations of the dielectrophoretic spectrum of uninfected and infected cells have been performed, and the results show that cells in the two states could be separated using appropriate frequencies and electrode arrays.  相似文献   

18.
Using an electrical measurement known as electric cell-substrate impedance sensing (ECIS), we have recorded the dynamics of viral infections in cell culture. With this technique, cells are cultured on small gold electrodes where the measured impedance mirrors changes in attachment and morphology of cultured cells. As the cells attach and spread on the electrode, the measured impedance increases until the electrode is completely covered. Viral infection inducing cytopathic effect results in dramatic impedance changes, which are mainly due to cell death. In the current study, two different fish cell lines have been used: chinook salmonid embryonic (CHSE-214) cells infected with infectious pancreatic necrosis virus (IPNV) and epithelioma papulosum cyprini (EPC) carp cells infected with infectious hematopoeitic necrosis virus (IHNV). The impedance changes caused by cell response to virus are easily measured and converted to resistance and capacitance. An approximate linear correlation between log of viral titer and time of cell death was determined.  相似文献   

19.
Microelectrode penetration of small cells leads to a sustained depolarization of the resting membrane potential due to a transmembrane shunt resistance (Rs) introduced by the microelectrode. This has led to underestimation of the resting membrane potential of various cell types. However, measurement of the fast potential transient occurring within the first few milliseconds after microelectrode penetration can provide information about pre-impalement membrane electrophysiological properties. We have analyzed an equivalent circuit of a microelectrode measurement to establish the conditions under which the peak of the impalement transients (Ep) approaches the pre-impalement resting membrane potential (Em) of small cells most closely. The simulation studies showed that this is the case when the capacitance of the microelectrode is low and the membrane capacitance of the cell high. In experiments performed to assess the reliability of Ep as a measure of Em, whole-cell patch clamp measurements were performed in the current clamp mode to monitor, free from the effects of Rs, Em in cultured human monocytes. Microelectrode impalement of such patch clamped cells and measurement of Ep made it possible to detect correlation between Ep and Em and showed that for small cells such as human monocytes Ep is on average 6 mV less negative than the resting membrane potential.  相似文献   

20.
Mammalian cells selected for resistance to concanavalin A (ConA) cytotoxicity exhibit modifications in some fundamental cellular properties. Three independently isolated ConA-resistant hamster cell lines exhibit a complex phenotype which includes: obvious temperature-sensitive growth properties; altered cellular morphology on solid surfaces; enhanced sensitivity to membrane-active agents such as phenethyl alcohol and sodium butyrate; altered lectin agglutination properties; modified adhesiveness to substratum properties; and defective lectin-receptor mobility characteristics. Selection of a reverant cell line which showed a near wild-type sensitivity to the cytotoxic effects of ConA also showed growth and membrane-associated properties that were very similar to parental wild-type cells. Somatic cell hybrids formed through the fusion of wild-type and lectin-resistant cells exhibited the ConA-sensitive phenotype, and possessed growth and membrane-associated properties that were very similar to pseudodiploid wild-type cells and control cultures of pseudotetraploid hybrid cells. The results presented in this communication support the view that ConA is an excellent selective agent for obtaining mammalian cells with altered growth and surface membrane properties and provides convincing evidence that the altered cellular properties exhibited by the lectin-resistant cell lines are directly related to ConA resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号