首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Visually triggered forearm movements were analyzed by an Information Theory approach. Human subjects made smooth movements which were characterized by moderate speeds, ranging about 100 degrees per second, by continuity in the position and velocity traces, and attainment of final average EMG levels before completion of the movement. We calculated the information transmitted by final position, biceps EMG, triceps EMG, and the ratio of the EMGs. The results were: (1) The information transmitted by final joint angle increased with number of targets but gradually levelled off. The maximum value was slightly over 3 bits, corresponding to an equivalent number of less than nine independent arm positions for a single movement. (2) The information transmitted by the ratio of the EMGs exceeds that transmitted by the biceps or triceps alone. (3) A previous theoretical prediction based on a spring model (Sakitt, 1980a) gives a moderately good fit to the experimental EMG ratio as a function of final position over a large range of angles. Our results lend consistency to two ideas about the nature of visually triggered forearm movements. First, our finding about the EMG ratio suggests that the basic motor program for final position is probably in terms of relative allocation of innervations, rather than looking up individual values. Second, single movements of this kind transmit surprisingly little information. If this is the case, it suggests that very fine accuracy is not achieved by a single program but requires feedback in order to program and execute additional movement.Laboratoire de Physiologie Neurosensorielle, CNRS, Paris, France  相似文献   

2.
This study deals with the finger ridge counts and the distribution of their frequencies drawn from a Spanish sample consisting of 833 school-children (417 males and 416 females), which has been collected from the geographical area of Tierra de Campos. Paired t-test and Student-t-test were used to explore bimanual and sexual differences, respectively. The results showed: a bimanual asymmetry marked by significantly higher right hand ridge count for thumb and index pairs in both males and females, ridge counts of males are always higher than the corresponding values of females; the differences being significant excepting for right and left index and for left ring-finger. The frequency distribution of TFRC was slightly, but significantly, different from normality only in males, as Kolmogorov test showed. A great homogeneity between values for TFRC of males and females from Tierra de Campos and those of the available Spanish and Portuguese populations has been found, the values being high not only in the variation ranges of the Spanish and Portuguese populations, but also in the ranges reported for other European populations.  相似文献   

3.
Recently, it was found that rhythmic movements (e.g. locomotion, swimmeret beating) are controlled by mutually coupled endogeneous neural oscillators (Kennedy and Davis, 1977; Pearson and Iles, 1973; Stein, 1974; Shik and Orlovsky, 1976; Grillner and Zangger, 1979). Meanwhile, it has been found out that the phase resetting experiment is useful to investigate the interaction of neural oscillators (Perkel et al., 1963; Stein, 1974). In the preceding paper (Yamanishi et al., 1979), we studied the functional interaction between the neural oscillator which is assumed to control finger tapping and the neural networks which control some tasks. The tasks were imposed on the subject as the perturbation of the phase resetting experiment. In this paper, we investigate the control mechanism of the coordinated finger tapping by both hands. First, the subjects were instructed to coordinate the finger tapping by both hands so as to keep the phase difference between two hands constant. The performance was evaluated by a systematic error and a standard deviation of phase differences. Second, we propose two coupled neural oscillators as a model for the coordinated finger tapping. Dynamical behavior of the model system is analyzed by using phase transition curves which were measured on one hand finger tapping in the previous experiment (Yamanishi et al., 1979). Prediction by the model is in good agreement with the results of the experiments. Therefore, it is suggested that the neural mechanism which controls the coordinated finger tapping may be composed of a coupled system of two neural oscillators each of which controls the right and the left finger tapping respectively.  相似文献   

4.
We hypothesized that movement fluctuations in the index finger reflect the integrated result of the coordination of multiple muscles because index finger movements are determined by the cooperation of multiple muscles spanning the metacarpophalangeal (MCP) joint. To evaluate this hypothesis, the aim of the present study was to examine the fluctuations of the index finger in abduction-adduction and extension-flexion directions during a position-holding task using two laser displacement sensors. Eleven healthy men maintained their index finger position while supporting a load at 5% of the maximal voluntary contraction force. To maintain the position of the index finger, displacement of the index finger in the abduction-adduction and extension-flexion directions was measured from a distance with two laser displacement sensors that were positioned to the lateral side of and above the index finger. The index finger movements fluctuated around the target position in not only the abduction-adduction direction but also the extension-flexion direction. The path length of finger displacement and the standard deviation of finger acceleration were significantly greater in the extension-flexion direction than in the abduction-adduction direction. These results suggest that the index finger movements quantified by two laser displacement sensors reflect the coordination of multiple muscles spanning the MCP joint.  相似文献   

5.
We describe and analyze a Neandertal postcranial skeleton and dentition, which together show unambiguous signs of right-handedness. Asymmetries between the left and right upper arm in Regourdou 1 were identified nearly 20 years ago, then confirmed by more detailed analyses of the inner bone structure for the clavicle, humerus, radius and ulna. The total pattern of all bones in the shoulder and arm reveals that Regourdou 1 was a right-hander. Confirmatory evidence comes from the mandibular incisors, which display a distinct pattern of right oblique scratches, typical of right-handed manipulations performed at the front of the mouth. Regourdou's right handedness is consistent with the strong pattern of manual lateralization in Neandertals and further confirms a modern pattern of left brain dominance, presumably signally linguistic competence. These observations along with cultural, genetic and morphological evidence indicate language competence in Neandertals and their European precursors.  相似文献   

6.
When a part of the body moves, the sensation evoked by a probe stimulus to that body part is attenuated. Two mechanisms have been proposed to explain this robust and general effect. First, feedforward motor signals may modulate activity evoked by incoming sensory signals. Second, reafferent sensation from body movements may mask the stimulus. Here we delivered probe stimuli to the right index finger just before a cue which instructed subjects to make left or right index finger movements. When left and right cues were equiprobable, we found attenuation for stimuli to the right index finger just before this finger was cued (and subsequently moved). However, there was no attenuation in the right finger just before the left finger was cued. This result suggests that the movement made in response to the cue caused 'postdictive' attenuation of a sensation occurring prior to the cue. In a second experiment, the right cue was more frequent than the left. We now found attenuation in the right index finger even when the left finger was cued and moved. This attenuation linked to a movement that was likely but did not in fact occur, suggests a new expectation-based mechanism, distinct from both feedforward motor signals and postdiction. Our results suggest a new mechanism in motor-sensory interactions in which the motor system tunes the sensory inputs based on expectations about future possible actions that may not, in fact, be implemented.  相似文献   

7.
According to current concepts, the execution of expedient actions well-coordinated in space becomes possible owing to the creation of a system for internal representation, which includes a body coordinate system, in the central nervous system. The goal of this study was to assess the effects induced by the exclusion of vision and a left-right inversion in visual space on the accuracy in the internal representation of hands and on aimed arm movements. The study cohort included 16 participants aged from 18 to 25 years. The experiment consisted of two test series. In the first series, a subject placed his/her left hand under a transparent plexiglass screen. Upon the experimenter’s command, the subject had to indicate the position of his/her left wrist and the terminal phalanges of the thumb, middle and little fingers with his/her right index finger on the plexiglass, which was accompanied by the corresponding marks displayed on the screen. The positional accuracy in the subject’s perception of his/her own hand position was recorded in the conditions of a leftright inversion of visual space, which were created by wearing prismatic spectacles and the exclusion of visual control. In the second case, the subject’s left hand was replaced on the table under the transparent screen by a similarly shaped left hand belonging to another person. It has been shown that the positions of the middle fingertip and the wrist were sufficiently precisely perceived by the subject through prismatic spectacles. However, the position of the tips of the thumb and little finger relative to the axis connecting the wrist and the terminal phalanx of the middle finger (the hand axis) was perceptually inverted. The accuracy of the indication was reduced for all fingers when the eyes were closed. In testing another person’s hand, a left–right inversion in the visual space created an illusory 90° turn of the hand’s axis and an illusory bias relative to the wrist towards elongation in the marker points corresponding to another person’s fingers. We can suggest that when the alien hand replaced the subject’s own hand, in accordance with the modulations in the motor task conditions, the egocentric system of coordinates was replaced by the allocentric system. The role of vision in the execution of spatially oriented and accurate hand movements increased in this case.  相似文献   

8.
Somatosensory vertex potentials (SVPs) were examined in 12 healthy subjects in response to painful electrical stimulation of the finger. SVPs consisted of N1, P1, and N2. The average latencies of the 3 peaks were 150, 225, and 350 msec, respectively. The latency and amplitude of each potential were reproducible for each subject. Recovery functions of the SVPs were analyzed in 10 subjects. A pair of stimuli were delivered to the right or left finger with interstimulus intervals (ISIs) of 50, 100, 150, 200, 350, 500 and 650 msec. SVPs partially recovered with the shortest ISI (50 msec). Full recovery could not be obtained even with the longest ISI (650 msec). Differences in recoveries within 650 msec of ISI were not observed between right and left stimulations. To examine the interaction between SVPs evoked by right and left finger stimulation, recovery functions from prior contralateral finger stimulation were analyzed with the same ISIs. SVP recoveries for right after left or left after right patterns of stimulus delivery were nearly the same as those for ipsilateral ones. It is suggested that SVPs are generated at nearly the same site in the sensory pathway regardless of the side stimulated.  相似文献   

9.
Information about head orientation, position, and movement with respect to the trunk relies on the visual, vestibular, extensive muscular, and articular proprioceptive system of the neck. Various factors can affect proprioception since it is the function of afferent integration, and tuning of muscular and articular receptors. Pain, muscle fatigue, and joint position have been shown to affect proprioceptive capacity. Thus, it can be speculated that changes in body posture can alter the neck proprioception. This study was undertaken to investigate the effect of body posture on cervicocephalic kinesthetic sense in healthy subjects. Cervicocephalic kinesthetic sensibility was measured by the kinesthetic sensibility test in healthy young adults while in (a) habitual slouched sitting position with arms hanging by the side (SS), (b) habitual slouched sitting position with arms unloaded (supported) (SS-AS), and (c) upright sitting position with arms hanging by the side (US) during maximum and 30 degree right, left rotations, flexion, and extension. Thirty healthy male adults (mean age 27.83; SD 3.41) volunteered for this study. The least mean error was found for the SS-AS position (0.48; SD 0.24), followed by SS (0.60; SD 0.43) and US (0.96; SD 0.71), respectively. For all test conditions, there was significant difference in mean absolute error while head repositioning from maximum and 30 degree rotation during SS and SS-AS positions (p?相似文献   

10.
Psychology and neuroscience have a long-standing tradition of studying blind individuals to investigate how visual experience shapes perception of the external world. Here, we study how blind people experience their own body by exposing them to a multisensory body illusion: the somatic rubber hand illusion. In this illusion, healthy blindfolded participants experience that they are touching their own right hand with their left index finger, when in fact they are touching a rubber hand with their left index finger while the experimenter touches their right hand in a synchronized manner (Ehrsson et al. 2005). We compared the strength of this illusion in a group of blind individuals (n = 10), all of whom had experienced severe visual impairment or complete blindness from birth, and a group of age-matched blindfolded sighted participants (n = 12). The illusion was quantified subjectively using questionnaires and behaviorally by asking participants to point to the felt location of the right hand. The results showed that the sighted participants experienced a strong illusion, whereas the blind participants experienced no illusion at all, a difference that was evident in both tests employed. A further experiment testing the participants' basic ability to localize the right hand in space without vision (proprioception) revealed no difference between the two groups. Taken together, these results suggest that blind individuals with impaired visual development have a more veridical percept of self-touch and a less flexible and dynamic representation of their own body in space compared to sighted individuals. We speculate that the multisensory brain systems that re-map somatosensory signals onto external reference frames are less developed in blind individuals and therefore do not allow efficient fusion of tactile and proprioceptive signals from the two upper limbs into a single illusory experience of self-touch as in sighted individuals.  相似文献   

11.
中国十一个少数民族的皮纹研究 Ⅰ.指纹   总被引:1,自引:1,他引:0  
研究了中国11个少数民族(12个群体)5013人的指纹花样和指纹脊线数,计算出各项基本参数,比较分析了不同性别、左右侧、不同民族和人种间的差异以及指纹花样和指纹脊线数在不同手指上的分布特点。分析表明,这些民族的指纹具有各自的特点又具有蒙古人种的一般特性。  相似文献   

12.
The primary motor cortex (M1) was mapped with intracortical microstimulation (ICMS) in a 15 year-old macaque whose right upper extremity was amputated at the shoulder joint prior to 2 years of age. Movements of the right shoulder girdle and stump were evoked by ICMS throughout the left M1 upper extremity region. The size of the left M1 upper extremity region contralateral to the amputated arm was not appreciably different from the size of the right upper extremity region contralateral to the intact arm. Long stimulus trains and/or higher stimulus currents were needed to evoke detectable movements at significantly more loci in the left than in the right M1 upper extremity region. These observations would be consistent with unmasking of a high threshold representation of shoulder musculature that normally exists throughout the central core of the upper extremity region, where it underlies a lower threshold representation of the distal forelimb. Alternatively, invasion of the de-efferented distal forelimb core by surrounding shoulder representation may have occurred. Differences between the limited M1 reorganization observed in the present study and the more extensive reorganization of S1 observed in other studies may reflect fundamental differences between M1 and S1, and/or differences in the extent of de-efferentation versus deafferentation.  相似文献   

13.
14.
Touch differs from other exteroceptive senses in that the body itself forms part of the tactile percept. Interactions between proprioception and touch provide a powerful way to investigate the implicit body representation underlying touch. Here, we demonstrate that an intrinsic primary quality of a tactile object, for example its size, is directly affected by the perceived size of the body part touching it. We elicited proprioceptive illusions that the left index finger was either elongating or shrinking by vibrating the biceps or triceps tendon of the right arm while subjects grasped the tip of their left index finger. Subjects estimated the distance between two simultaneous tactile contacts on the left finger during tendon vibration. We found that tactile distances feel bigger when the touched body part feels elongated. Control tests showed that the modulation of touch was linked to the perceived index-finger size induced by tendon vibration. Vibrations that did not produce proprioceptive illusion had no effect on touch. Our results show that the perception of tactile objects is referenced to an implicit body representation and that proprioception contributes to this body representation. We also provide, for the first time, a quantitative, implicit measure of distortions of body size.  相似文献   

15.
Gottfried JA 《Neuron》2005,47(4):473-476
It is widely thought that locating the source of a smell is an ability best left to nonhuman members of the animal kingdom. In this issue of Neuron, two complementary articles highlight the neural mechanisms underlying the localization of an odor, either to the left or right side of the nose (Porter et al.) or to the inside or outside of the mouth (Small et al.). Together, these studies validate the idea that the human brain is equipped with the apparatus necessary to pinpoint the location of an odor source.  相似文献   

16.
Unit activity was recorded in motor cortex on one side, while monkeys were moving left or right fingers, wrists, or arms. On hundred and eighty five movement-related neurons were obtained from two monkeys. Of these, 122 were related to contralateral movements, 50 were to movements of both sides, and the remaining 13 to ipsilateral movements. It was found that ipsilateral-movement-related neurons tended to appear in groups of neurons that were related more to arm movements than to finger and/or wrist movements.  相似文献   

17.
Proprioceptive signals coming from both arms are used to determine the perceived position of one arm in a two-arm matching task. Here, we examined whether the perceived position of one arm is affected by proprioceptive signals from the other arm in a one-arm pointing task in which participants specified the perceived position of an unseen reference arm with an indicator paddle. Both arms were hidden from the participant’s view throughout the study. In Experiment 1, with both arms placed in front of the body, the participants received 70–80 Hz vibration to the elbow flexors of the reference arm (= right arm) to induce the illusion of elbow extension. This extension illusion was compared with that when the left arm elbow flexors were vibrated or not. The degree of the vibration-induced extension illusion of the right arm was reduced in the presence of left arm vibration. In Experiment 2, we found that this kinesthetic interaction between the two arms did not occur when the left arm was vibrated in an abducted position. In Experiment 3, the vibration-induced extension illusion of one arm was fully developed when this arm was placed at an abducted position, indicating that the brain receives increased proprioceptive input from a vibrated arm even if the arm was abducted. Our results suggest that proprioceptive interaction between the two arms occurs in a one-arm pointing task when the two arms are aligned with one another. The position sense of one arm measured using a pointer appears to include the influences of incoming information from the other arm when both arms were placed in front of the body and parallel to one another.  相似文献   

18.
Recently, an increasing number of supermarkets have been introducing the point of sales (POS) system. The scanner counter of this POS system makes repetitive operations including taking goods out of basket, letting them pass through the scanner for their bar codes and then putting them in the next basket. The basket is about 25.5 cm deep, and the counter must be high enough to satisfy two conditions that the base surface and the upper edge of the basket are not too low and not too high, respectively to take goods out of it. In the present study, repetitive operations of taking goods from 16 spots at their respective different heights 49.5, 57.5, 65.5 and 73.5 cm of four corners of the basket was made to measure the posture, heart rate (HR) and electromyograms (EMG) on four sites (right shoulder and loin , left loin and right femoris) of the operator and to examine the height of the counter. EMGs on the right loin , left loin and right femoris showed significant differences (P less than 0.05) in case of goods' position, operator side less than contralateral side and of counter's height, 73.5 less than 65.5 less than 57.5 less than 49.5 cm. EMG on the right shoulder showed significant differences (P less than 0.05) in case of the goods' position, operator side less than contralateral side and of the counter's height, 73.5 cm greater than another height on operator side.  相似文献   

19.
本文报告了安徽省亳州地区400例 (男女各200人) 回族健康人的皮纹参数正常值。调查分析了指纹类型、指嵴纹计数、掌嵴纹计数、主线止区、atd角、t距比、掌褶和掌部花纹类型等项参数。比较了不同性别、左右侧、不同民族和人种间的差异。结果表明,回族有自己的手纹特点,又显示蒙古人种的一般特征。  相似文献   

20.
Abstract

The present study investigated whether the deviation of the performed movement cycle from the required cycle during polyrhythmic bimanual (BM) movement depends on the loci of the visual cues that guide the rhythm of finger movements. Twelve healthy right-handed males rhythmically abducted and adducted the index finger or index fingers with the rhythm of the visual cues. During UM movement, the visual cue guiding the rhythm of finger movement was provided in the left or right visual hemifield. During 2:3 polyrhythmic BM movement, two visual cues, one guiding the rhythm of the left finger movement and another guiding the rhythm of the right finger movement, were provided in a single visual hemifield, or each visual cue guiding each finger movement was provided in each visual hemifield. During polyrhythmic BM movement, the cycle duration of the slower side of the movement guided by the rhythm of the visual cues provided in one visual hemifield was shorter than the required cycle duration, and the magnitude of the shortage in this condition was greater than that guided by each visual cue provided in each visual hemifield. Slower side of the movement is more precisely performed by each visual cue guiding each finger movement in each visual hemifield rather than that guided by visual cues provided in one visual hemifield during polyrhythmic BM movement. This may be explained by bottle-neck model in which visual information overflows the processing capacity when two visual processes are simultaneously provided in a single visual cortex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号