首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
TIMP-3 binds to sulfated glycosaminoglycans of the extracellular matrix   总被引:17,自引:0,他引:17  
Of the four known tissue inhibitors of metalloproteinases (TIMPs), TIMP-3 is distinguished by its tighter binding to the extracellular matrix. The present results show that glycosaminoglycans such as heparin, heparan sulfate, chondroitin sulfates A, B, and C, and sulfated compounds such as suramin and pentosan efficiently extract TIMP-3 from the postpartum rat uterus. Enzymatic treatment by heparinase III or chondroitinase ABC also releases TIMP-3, but neither one alone gives complete release. Confocal microscopy shows colocalization of heparan sulfate and TIMP-3 in the endometrium subjacent to the lumen of the uterus. Immunostaining of TIMP-3 is lost upon digestion of tissue sections with heparinase III and chondroitinase ABC. The N-terminal domain of human TIMP-3 was expressed and found to bind to heparin with affinity similar to that of full-length mouse TIMP-3. The A and B beta-strands of the N-terminal domain of TIMP-3 contain two potential heparin-binding sequences rich in lysine and arginine; these strands should form a double track on the outer surface of TIMP-3. Synthetic peptides corresponding to segments of these two strands compete for heparin in the DNase II binding assay. TIMP-3 binding may be important for the cellular regulation of activity of the matrix metalloproteinases.  相似文献   

2.
Collagen-fibronectin complexes, formed by binding of fibronectin to gelatin or collagen insolubilized on Sepharose, were found to bind 20–40% of radioactivity in [35S]heparin. Fibronectin attached directly to Sepharose also bound [35S]heparin, while gelatin-Sepharose without fibronectin did not. Unlabeled heparin and highly sulfated heparan sulfate efficiently inhibited the binding of [35S]heparin, hyaluronic acid and dermatan sulfate were slightly inhibitory, while chondroitin sulfates and heparan sulfate with a low sulfate content did not inhibit.The interaction of heparin with fibronectin bound to gelatin resulted in complexes which required higher concentrations of urea to dissociate than complexes of fibronectin and gelatin alone. Heparin as well as highly sulfated heparan sulfate and hyaluronic acid brought about agglutination of plastic beads coated with gelatin when fibronectin was present. Neither fibronectin nor glycosaminoglycans alone agglutinated the beads.It is proposed that the multiple interactions of fibronectin, collagen and glycosaminoglycans revealed in these assays could play a role in the deposition of these substances as an insoluble extracellular matrix. Alterations of the quality or quantity of any one of these components could have important effects on cell surface interactions, including the lack of cell surface fibronectin in malignant cells.  相似文献   

3.
Leech-derived antistasin is a potent anticoagulant and antimetastatic protein that binds sulfatide (Gal(3-SO4)beta 1-1Cer) and sulfated polysaccharides. In this study, the synthetic fragment [A103,106,108] antistasin 93-119, which corresponds to the carboxyl terminus, showed specific and saturable binding to sulfatide. Binding was competitively blocked by glycosaminoglycans (GAGs) in the order: dextran sulfate 5000 congruent to dextran sulfate 500,000 greater than heparin greater than dermatan sulfate much greater than chondroitin sulfates A and C. This rank order of inhibitory potency was identical to that observed with whole antistasin. We suggest that residues 93-119 of antistasin represent a critical domain for binding GAGs and sulfated glycolipids.  相似文献   

4.
Human basophils were obtained from three donors with myelogenous leukemia. Proteoglycans were labeled by using [35S]sulfate as precursor and were extracted in 1 M NaCl with protease inhibitors to preserve their native structure. [35S]proteoglycans filtered on Sepharose 4B with an average m.w. similar to that of a rat heparin proteoglycan that has an estimated m.w. of 750,000. The [35S]glycosaminoglycan side chains filtered with an average m.w. slightly smaller than a 60,000-m.w. glycosaminoglycan marker. The [35S]glycosaminoglycans were resistant to heparinase and susceptible to degradation by chondroitin AC lyase and chondroitin ABC lyase. The intact [35S]glycosaminoglycans chromatographed on DEAE Sepharose as a single peak eluting just before an internal heparin marker. These findings indicate that the [35S]glycosaminoglycans were made up only of chondroitin sulfates. No heparin was identified. The chondroitin sulfate disaccharides that resulted from the action of chondroitin ABC lyase on the basophil glycosaminoglycans consisted of 92% delta Di-4S, 6% delta Di-6S, and 2% disulfated disaccharides. The [35S]chondroitin sulfate proteoglycans were susceptible to cleavage with proteases and could be shown to be released intact from basophils during degranulation initiated by the calcium ionophore A23187. The basophil proteoglycans and glycosaminoglycans were capable of binding histamine in water, but not in phosphate-buffered saline, and had no anticoagulant activity.  相似文献   

5.
Infection of cells with Classical swine fever virus (CSFV) is mediated by the interaction of envelope glycoprotein E(rns) and E2 with the cell surface. In this report we studied the role of the cell surface glycoaminoglycans (GAGs), chondroitin sulfates A, B, and C (CS-A, -B, and -C), and heparan sulfate (HS) in the initial binding of CSFV strain Brescia to cells. Removal of HS from the surface of swine kidney cells (SK6) by heparinase I treatment almost completely abolished infection of these cells with virus that was extensively passaged in swine kidney cells before it was cloned (clone C1.1.1). Infection with C1.1.1 was inhibited completely by heparin (a GAG chemically related to HS but sulfated to a higher extent) and by dextran sulfate (an artificial highly sulfated polysaccharide), whereas HS and CS-A, -B, and -C were unable to inhibit infection. Bound C1.1.1 virus particles were released from the cell surface by treatment with heparin. Furthermore, C1.1.1 virus particles and CSFV E(rns) purified from insect cells bound to immobilized heparin, whereas purified CSFV E2 did not. These results indicate that initial binding of this virus clone is accomplished by the interaction of E(rns) with cell surface HS. In contrast, infection of SK6 cells with virus clones isolated from the blood of an infected pig and minimally passaged in SK6 cells was not affected by heparinase I treatment of cells and the addition of heparin to the medium. However, after one additional round of amplification in SK6 cells, infection with these virus clones was affected by heparinase I treatment and heparin. Sequence analysis of the E(rns) genes of these virus clones before and after amplification in SK6 cells showed that passage in SK6 cells resulted in a change of an Ser residue to an Arg residue in the C terminus of E(rns) (amino acid 476 in the polyprotein of CSFV). Replacement of the E(rns) gene of an infectious DNA copy of C1.1.1 with the E(rns) genes of these virus variants proved that acquisition of this Arg was sufficient to alter an HS-independent virus to a virus that uses HS as an E(rns) receptor.  相似文献   

6.
Heparin and heparan sulfate (HS) are structurally diverse glycosaminoglycans (GAG) that are known to interact, via unique structural motifs, with a wide range of functionally distinct proteins and modulate their biological activity. To define the GAG motifs that interact with proteins, we assessed the ability of 15 totally synthetic HS mimetics to interact with 10 functionally diverse proteins that bind heparin/HS. The HS mimetics consisted of cyclitol-based pseudo-sugars coupled by linkers of variable chain length, flexibility, orientation, and hydrophobicity, with variations in sulfation also being introduced into some molecules. Three of the proteins tested, namely hepatocyte growth factor, eotaxin, and elastase, failed to interact with any of the sulfated linked cyclitols. In contrast, each of the remaining seven proteins tested exhibited a unique reactivity pattern with the panel of HS mimetics, with tetrameric cyclitols linked by different length alkyl chains being particularly informative. Thus, compounds with short alkyl spacers (2-3 carbon atoms) effectively blocked the interaction of fibroblast growth factor-1 (FGF-1) and lipoprotein lipase with heparin/HS, whereas longer chain spacers (7-10 carbon atoms) were required for optimal inhibition of FGF-2 and vascular endothelial growth factor binding. This effect was most pronounced with the chemokine, interleukin-8, where alkyl-linked tetrameric cyclitols were essentially inactive unless a spacer of >7 carbon atoms was used. The heparin-inhibitable enzymes heparanase and cathepsin G also displayed characteristic inhibition patterns, cathepsin G interacting promiscuously with most of the sulfated cyclitols but heparanase activity being inhibited most effectively by HS mimetics that structurally resemble a sulfated pentasaccharide. These data indicate that a simple panel of HS mimetics can be used to probe the HS binding specificity of proteins, with the position of anionic groups in the HS mimetics being critical.  相似文献   

7.
IL-4 induces the differentiation of monocytes toward dendritic cells (DCs). The activity of many cytokines is modulated by glycosaminoglycans (GAGs). In this study, we explored the effect of GAGs on the IL-4-induced differentiation of monocytes toward DCs. IL-4 dose-dependently up-regulated the expression of DC-specific ICAM-3-grabbing nonintegrin (DC-SIGN), CD80, CD206, and CD1a. Monocytes stained positive with Abs against heparan sulfate (HS) and chondroitin sulfate (CS) B (CSB; dermatan sulfate), but not with Abs that recognize CSA, CSC, and CSE. Inhibition of sulfation of monocyte/DC cell surface GAGs by sodium chlorate reduced the reactivity of sulfate-recognizing single-chain Abs. This correlated with hampered IL-4-induced DC differentiation as evidenced by lower expression of DC-SIGN and CD1a and a decreased DC-induced PBL proliferation, suggesting that sulfated monocyte cell surface GAGs support IL-4 activity. Furthermore, removal of cell surface chondroitin sulfates by chondroitinase ABC strongly impaired IL-4-induced STAT6 phosphorylation, whereas removal of HS by heparinase III had only a weak inhibitory effect. IL-4 bound to heparin and CSB, but not to HS, CSA, CSC, CSD, and CSE. Binding of IL-4 required iduronic acid, an N-sulfate group (heparin) and specific O sulfates (CSB and heparin). Together, these data demonstrate that monocyte cell surface chondroitin sulfates play an important role in the IL-4-driven differentiation of monocytes into DCs.  相似文献   

8.
Sulfated glycosaminoglycans were isolated from 23 species of 13 phyla of invertebrates and characterized by their electrophoretic migration in three different buffer systems coupled with enzymatic degradation using bacterial heparinase, heparitinases and chondroitinase AC. Heparan sulfate is a ubiquitous compound present in all species analyzed whereas chondroitin sulfate was present in 20 species and heparin-like compounds in 12 species of the invertebrates. The heparin-like compounds were purified from the echinoderm Mellita quinquisperforata (sand dollar) and the crustacean Ucides cordatus (crab) with anticoagulant activities of 60 and 52 IU/mg, respectively. Degradation of these heparins with heparinase produced significant amounts of the trisulfated disaccharide typical of mammalian heparins. This was confirmed by 13C-NMR spectroscopy of the crab heparin. An updated phylogenetic tree of the distribution of sulfated glycosaminoglycans in the animal kingdom is also presented.  相似文献   

9.
A dot blot assay for detection of low amounts of heparin and sulfated glycosaminoglycans (GAGs) is described. The detection range is between 25 ng/ml and 1000 ng/ml of heparin. The assay is based on the interference of sulfated GAGs with the binding of a synthetic ligand (described in this paper) to defined receptors like collagen type V and histones. Ligand binding to type V collagen was suppressed specifically by heparin, but not by other sulfated GAGs like heparin sulfate and chondroitin sulfate. Ligand binding to histones was suppressed most strongly by heparin, but also by chondroitin sulfate. Hyaluronic acid did not interfere.  相似文献   

10.
Fully sulfated heparin and other glycosaminoglycans, namely heparan, chondroitin, and dermatan sulfates, and hyaluronan have been prepared by using sulfur trioxide under mild chemical conditions. All these derivatives were assayed for antiproliferative activity on cultured bovine pulmonary artery smooth muscle cells (BPASMCs). No appreciable difference was found between heparin and fully sulfated heparin. Chondroitin and dermatan sulfates actually stimulated BPASMCs growth but full sulfonation made them strongly antiproliferative. Native hyaluronan was not antiproliferative but became strongly so after sulfonation. Neither acharan sulfate nor N-sulfoacharan sulfate had any antiproliferative activity. This suggests that O-sulfonation of the polysaccharide is critical for antiproliferative activity, whereas N-sulfonation of glucosamine residues is not.  相似文献   

11.
Identification of chondroitin sulfate E in human lung mast cells   总被引:3,自引:0,他引:3  
Human lung mast cells (HLMC) enriched up to 99% purity by counter current elutriation and density gradient centrifugation were labeled with 35S-sulfate to determine cell-associated proteoglycans. The 35S-labeled proteoglycans were extracted by the addition of detergent and 4 M guanidine-HCl, and separated from unincorporated precursor by Sephadex G-50 chromatography. 35S-Proteoglycans chromatographed over Sepharose 4B with a Kav of 0.48. 35S-Glycosaminoglycans separated from the parent 35S-proteoglycans by beta-elimination and chromatographed over Sepharose 4B with a Kav of 0.63. Characterization of 35S-proteoglycans by chondroitin ABC lyase treatment revealed approximately 36% of the proteoglycan to be composed of chondroitin sulfates. Analysis by HPLC of component disaccharides liberated by chondroitin ABC lyase using an amino-cyano-substituted silica column indicated that the chondroitin sulfates consisted of the monosulfated A disaccharide (GlcUA----GaINAc4SO4) (75%) and the over-sulfated E disaccharide (GlcUA----GaINAc4,6-diSO4) (25%). Nitrous acid/heparinase-susceptible heparin proteoglycans accounted for approximately 62% of the total 35S-proteoglycans present in the HLMC. Proteoglycans remaining after exposure of the original proteoglycan extract to either heparinase or chondroitin ABC lyase were of similar size, suggesting that the majority of heparin and chondroitin sulfate glycosaminoglycans were on separate protein cores. Proteoglycans extracted from HLMC were protease insensitive. Hence, in addition to heparin proteoglycans, HLMC synthesize a hitherto unrecognized quantity of chondroitin sulfate E proteoglycans.  相似文献   

12.
Circulating macrophages and metastatic tumor cells can penetrate the vascular endothelium and migrate from the circulatory system to extravascular compartments. Both activated murine macrophages and different metastatic tumor cells (B16-BL6 melanoma; ESb T-lymphoma) attach, invade, and penetrate confluent vascular endothelial cell monlayer in vitro, by degrading heparan sulfate proteoglycans in the subendothelial extracellular matrix. The sensitivity of the enzymes from the various sources degrading the heparan sulfate proteoglycan was challenged and compared by a series of inhibitors. Activated macrophages demonstrate a heparanase with an endoglycosidase activity that cleaves from the [35S]O4 = -labeled heparan sulfate proteoglycans of the extracellular matrix 10 kDa glycosaminoglycan fragments. The macrophages do not store the heparanase intracellularly but it is instead found pericellularly and requires a continuous cell-matrix contact at the optimal pH for maintaining cell growth. The degradation of [35S]O4 = -labeled extracellular matrix proteoglycans by the macrophages' heparanase is significantly inhibited in the presence of heparan sulfate (10 micrograms/ml), arteparon (10 micrograms/ml), and heparin at a concentration of 3 micrograms/ml. In contrast, other glycosaminoglycans such as hyaluronic acid, dermatan sulfate, and chondroitin sulfate as well as the specific inhibitor of exo-beta-glucuronidase D-saccharic acid 1,4-lactone failed to inhibit the degradation of sulfated proteoglycans in the subendothelial extracellular matrix. Degradation of this heparan sulfate proteoglycan is a two-step sequential process involving protease activity followed by heparanase activity. However, the following antiproteases--alpha 2-macroglobulin, antithrombin III, leupeptin, and phenylmethylsulfony fluoride (PMSF)--failed to inhibit this degradation process, and only alpha 1-antitrypsin inhibited the heparanase activity. B16-BL6 metastatic melanoma cell heparanase, which is also a cell-associated enzyme, was inhibited by heparin to the same extent as the macrophage heparanase. On the other hand, heparanase of the highly metastatic variant (ESb) of a methylcholanthrene-induced T lymphoma, which is an extracellular enzyme released by the cells to the incubation medium, was more sensitive to heparin and arteparon than the macrophages' heparanase, inhibited at concentrations of 1 and 3 micrograms/ml, respectively. These results may indicate the potential use of heparin or other glycosaminoglycans as specific and differential inhibitors for the formation in certain cases of blood-borne tumor metastasis.  相似文献   

13.
Summary Keratinocytes and melanocytes, which together form units of structure and function within human epidermis, are known to differ in expression of autocrine growth factors, particularly those with heparin binding affinity. Because such cytokines could be regulated by the endogenous heparinlike glycosaminoglycan, heparan sulfate, proteoglycan synthesis was compared between human keratinocytes and melanocytes cultured from a common donor. Following steady-state isotopic labeling under conditions of active growth (low density cultures) and growth inhibition (high density cultures), the sulfated polymers were isolated from conditioned media and cell extracts. We found that keratinocytes produced substantially more sulfated glycosaminoglycans than did the melanocytes. There was no evidence for hyaluronic acid synthesis by the melanocytes. The majority of [35S]-sulfate labeling was in the heparan sulfates of the keratinocytes and in the chondroitin sulfates of the melanocytes. During the transition from active growth to growth inhibition, there was increased heparan sulfate proteoglycan and free chain synthesis by keratinocytes but not by melanocytes, and chondroitin sulfate proteoglycan production declined in both cell lineages. The differences may reflect divergent evolution as each cell type came to exploit those complex polysaccharides in different ways to regulate molecular pathways of growth and differentiation. The coupling of growth inhibition with augmented synthesis of heparan sulfates observed for the keratinocytes suggests a regulatory role in growth factor signaling in that cell type.  相似文献   

14.
The synthesis of metabolically labeled proteoglycans and glycosaminoglycans from medium, cell layer and substrate attached material by rat glomerular mesangial cells in culture was characterized. The cellular localization of the labeled proteoglycans and glycosaminoglycans was determined by treating the cells with Flavobacterial heparinase. Of the total sulfated glycosaminoglycans, 33% were heparan sulfate; 55% of the cell layer material was heparan sulfate; 80% of sulfated proteins in the medium were chondroitin sulfate/dermatan sulfate. Putative glycosaminoglycan free chains of heparan sulfate and chondroitin sulfate were found in both the medium and cell layer; 95% of total proteoglycans and most (90%) of the putative heparan sulfate free chains were removed from the cell layer by the heparinase, whereas only 50% of the chondroitin sulfate and 25% of dermatan sulfate were removed. Large amounts of hyaluronic acid labeled with 3H glucosamine were found in the cell layer. In summary, approximately 60% of total sulfated glycoproteins was in the form of putative glycosaminoglycan free chains. Thus rat mesangial cells may synthesize large amounts of putative glycosaminoglycan free chains, which may have biological functions in the glomerulus independent of proteoglycans.  相似文献   

15.
The pericellular matrix fibers of cultured human fibroblasts contain fibronectin, other glycoproteins, and heparan and chondroitin sulfate proteoglycans. In the present study, cell-free pericellular matrices were isolated from metabolically labeled fibroblast cultures. The isolated matrices were digested with heparinase from Flavobacterium heparinum, and then analyzed for sulfated glycosaminoglycans (GAGs). Nitrous acid degradation was used to distinguish the N-sulfated GAGs (heparan sulfate) from chondroitin sulfate. Fibronectin and the other major matrix polypeptides were studied using gel electrophoresis, enzyme immunoassay and immunofluorescence. Upon heparinase digestion, greater than 95% of sulfated GAGs were degraded in the matrix without detectable release of fibronectin or other matrix polypeptides or alteration of the fibrillar matrix structure. We conclude that in fibroblast cultures the integrity of the fibrillar matrix is independent of sulfated GAGs. Together with earlier observations, this suggests that filamentous polymerization of fibronectin forms the backbone of early connective tissue matrix.  相似文献   

16.
The fate of exogenous glycosaminoglycans in cultures of strongly (RMS 0) and weakly (RMS 8) metastatic rat rhabdomyosarcoma cells was studied. The time course and concentration dependence of binding and internalization of the radiolabeled sulfated glycosaminoglycans were determined. Weakly metastatic cells took up heparin, heparan and dermatan sulfates into their pericellular compartment at a higher rate than the strongly metastatic RMS 0 cells. The RMS 8 cells exhibited about two times more binding sites for these iduronic acid containing glycosaminoglycans, and internalized higher amounts of them than the RMS 0 cells. The uptake of the chondroitin sulfate into the peri- and intracellular compartments of both cell types was about 5-15% of that of the other glycosaminoglycans studied. The specificity of displacement of the pericellular heparin and dermatan sulfate by the unlabeled glycosaminoglycans indicates the involvement of specific structural features of the polysaccharide chains in the interactions of glycosaminoglycans with the surface of rhabdomyosarcoma cells, beside ionic forces due to the polyanionic character of the glycosaminoglycans. Heparin and heparan sulfate degradation products, mainly large oligosaccharides, were recovered from the surface of RMS 0 cells but were absent on the surface of the RMS 8 cells. About 30% of the internalized heparin and heparan sulfate was present in the partially degraded form in both cell types. Oligosaccharides derived from glycosaminoglycans were not released into the medium. The decrease in the amount of iduronic acid containing glycosaminoglycans internalized by the highly invasive cells seems to be correlated with an increased cell-associated degradation and with an apparent loss of glycosaminoglycan binding sites on the cell surface.  相似文献   

17.
Role of glycosaminoglycans for binding and infection of hepatitis B virus   总被引:3,自引:0,他引:3  
Many parts of the life cycle of hepatitis B virus (HBV) infection of hepatocytes have been unravelled, but the attachment and entry process leading to infection is largely unknown. Using primary Tupaia hepatocyte cultures as an in vitro infection system, we determined that HBV uses cell-surface heparan sulfate proteoglycans as low-affinity receptor, because HBV infection was inhibited by heparin (IC50: 5 μg ml−1) or other higher-sulfated polymers, but not by lower-sulfated glycosaminoglycans, such as chondroitin sulfate. Pretreatment of primary hepatocytes with heparinase decreased viral binding and inhibited HBV infection completely. Interestingly, after preS1-dependent viral binding at 16°C to the cell surface, subsequent infection could still be inhibited by HBV preS1-lipopeptides, but not by heparin any more, suggesting a shift of the virus to a high-affinity receptor. In summary, we suggest following multistep attachment process: in vivo , HBV is initially trapped within the liver in the space of Dissé by heparan sulfate proteoglycans. Thereafter, HBV binds via its preS1 attachment site and the N-terminal myristic acid to a yet unknown, high-affinity receptor that confers uptake in a yet unknown compartment.  相似文献   

18.
We examined effects of mast cell glycosaminoglycans on the establishment of the intestinal nematode, Strongyloides venezuelensis, in the mouse small intestine. When intestinal mastocytosis occurred, surgically implanted adult worms could not invade and establish in the intestinal mucosa. In mast cell-deficient W/Wv mice, inhibition of adult worm invasion was not evident as compared with littermate +/+ control mice. Mucosal mastocytosis and inhibition of S. venezuelensis adult worm mucosal invasion was tightly correlated. To determine effector molecules for the invasion inhibition, adult worms were implanted with various sulfated carbohydrates including mast cell glycosaminoglycans. Among sulfated carbohydrates tested, chondroitin sulfate (ChS)-A, ChS-E, heparin, and dextran sulfate inhibited invasion of adult worms into intestinal mucosa in vivo. No significant inhibition was observed with ChS-C, desulfated chondroitin, and dextran. ChS-E, heparin, and dextran sulfate inhibited adhesion of S. venezuelensis adult worms to plastic surfaces in vitro. Furthermore, binding of intestinal epithelial cells to adhesion substances of S. venezuelensis, which have been implicated in mucosal invasion, was inhibited by ChS-E, heparin, and dextran sulfate. Because adult worms of S. venezuelensis were actively moving in the intestinal mucosa, probably exiting and reentering during infection, the possible expulsion mechanism for S. venezuelensis is inhibition by mast cell glycosaminoglycans of attachment and subsequent invasion of adult worms into intestinal epithelium.  相似文献   

19.
A cloned bovine corneal endothelial cell line was transformed in vitro by simian virus 40, and the subendothelial extracellular matrix-associated sulfated glycosaminoglycans synthesized by the cells were isolated and compared with their untransformed counterpart. The transformed endothelial cells grew at faster rates to higher stationary cell densities in the absence of fibroblast growth factor than did the untransformed cells. On a per-cell basis, the transformed cells produced slightly lower amounts of sulfated glycosaminoglycans. The rate of production of sulfated glycosaminoglycans in extracellular matrix increased during seven days of culture. At confluency the extracellular matrix-associated sulfated glycosaminoglycans synthesized by the untransformed endothelial cells consisted of about 80% heparan sulfate and about 20% chondroitin sulfate. Extracellular matrix-associated sulfated glycosaminoglycans of transformed endothelial cells were composed of about 70% heparan sulfate and about 30% chondroitin sulfate plus dermatan sulfate. High-speed gel permeation chromatography profiles on Fractogel TSK HW-55(S) of matrix-associated heparan sulfate from untransformed and transformed endothelial cells were very similar, and gave single peaks (Kav = 0.19). Apparent Mr estimated from the eluting position of the peaks were approximately 47000. Heparan sulfate from both untransformed and transformed endothelial cells was degraded by incubation with a metastatic B16 melanoma cell lysate containing heparanase (heparan-sulfate-specific endo-beta-glucuronidase). The eluting position of the heparan sulfate degradation products on gel permeation column were similar (Kav = 0.43). Size analysis and anion-exchange chromatography of the degradation products after nitrous acid deamination at low pH indicated that the degree of N-sulfation of heparan sulfate was similar in untransformed and transformed endothelial cells. The results indicated that transformation of endothelial cells only slightly changes the molecular nature of subendothelial matrix-associated sulfated glycosaminoglycans.  相似文献   

20.
The catabolism of 35S-labeled aggrecan and loss of tissue glycosaminoglycans was investigated using bovine articular cartilage explant cultures maintained in medium containing 10(-6) M retinoic acid or 40 ng/ml recombinant human interleukin-1alpha (rHuIL-1alpha) and varying concentrations (1-1000 microg/ml) of sulfated glycosaminoglycans (heparin, heparan sulfate, chondroitin 4-sulfate, chondroitin 6-sulfate, dermatan sulfate and keratan sulfate) and calcium pentosan polysulfate (10 microg/ml). In addition, the effect of the sulfated glycosaminoglycans and calcium pentosan polysulfate on the degradation of aggrecan by soluble aggrecanase activity present in conditioned medium was investigated. The degradation of 35S-labeled aggrecan and reduction in tissue levels of aggrecan by articular cartilage explant cultures stimulated with retinoic acid or rHuIL-1alpha was inhibited by heparin and heparan sulfate in a dose-dependent manner and by calcium pentosan polysulfate. In contrast, chondroitin 4-sulfate, chondroitin 6-sulfate, dermatan sulfate and keratan sulfate did not inhibit the degradation of 35S-labeled aggrecan nor suppress the reduction in tissue levels of aggrecan by explant cultures of articular cartilage. Heparin, heparan sulfate and calcium pentosan polysulfate did not adversely affect chondrocyte metabolism as measured by lactate production, incorporation of [35S]-sulfate or [3H]-serine into macromolecules by articular cartilage explant cultures. Furthermore, heparin, heparan sulfate and calcium pentosan polysulfate inhibited the proteolytic degradation of aggrecan by soluble aggrecanase activity. These results suggest that highly sulfated glycosaminoglycans have the potential to influence aggrecan catabolism in articular cartilage and this effect occurs in part through direct inhibition of aggrecanase activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号