首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Mitochondrial aspartate aminotransferase is synthesized on free polysomes as a higher molecular weight precursor (Sonderegger, P., Jaussi, R., Christen, P., and Gehring, H. (1982) J. Biol. Chem. 257, 3339-3345). The present study examines whether the coenzyme pyridoxal phosphate or pyridoxamine phosphate is required for the uptake of the precursor into mitochondria. Chicken embryo fibroblasts were cultured in medium prepared with and without pyridoxal. In cells grown in the presence of pyridoxal only holoform of aspartate aminotransferase and no apoenzyme was detected. Cells cultured under pyridoxal deficiency contained about 30% of apoenzyme in secondary cultures. All of this apoform was identified as mitochondrial isoenzyme. In order to differentiate whether this apoenzyme corresponded to newly synthesized protein or originated from pre-existing holoenzyme, double isotope-labeling experiments were performed. Secondary cultures of chicken embryo fibroblasts grown under pyridoxal depletion were labeled with [3H]methionine, and then pulsed with [35S]methionine. In another series of experiments, the 3H-labeled cells were pulsed with [35S]methionine in the presence of the protonophore carbonyl cyanide m-chlorophenylhydrazone in order to accumulate the precursor. Subsequently, the accumulated precursor was chased into the mitochondria by addition of the carbonyl cyanide m-chlorophenylhydrazone antagonist cysteamine. The holo- and apoenzyme from the ultrasonic extract of the double-labeled cells were separated by affinity chromatography on a phosphopyridoxyl-AH-Sepharose column, immunoprecipitated, and analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and fluorography. Under both experimental conditions, the 3H/35S ratio of the apoenzyme was less than half of that of the holoenzyme. Therefore, the apoenzyme and not the holoenzyme is the first product of the precursor in the mitochondria. Apparently, the precursor of mitochondrial aspartate aminotransferase is transported into mitochondria as apoprotein and is processed there independently of the coenzyme.  相似文献   

2.
The pyridoxal form of the alpha subform of cytosolic aspartate aminotransferase (EC 2.6.1.1) is fully active and binds pyridoxal 5'-phosphate via an aldimine formation with Lys-258 whereas the gamma subform is virtually inactive and lacks the aldimine linkage. Comparison of 1H NMR spectra between the alpha and gamma subforms suggested that peak 1 of the alpha subform at 8.89 ppm contains a resonance assignable to the internal aldimine 4'-H. Reaction with a reagent that cleaves or modifies the internal aldimine bond [(amino-oxy)acetate, L-cysteinesulfinate, NH2OH, NaBH4, or NaCNBH3] caused the disappearance of a resonance line at 8.89 ppm that possessed a broad line width and corresponded in intensity to a single proton. These reagents were also used successfully for the identification of the aldimine 4'-H resonance in the mitochondrial isoenzyme. In contrast to the cytosolic isoenzyme whose resonance for the 4'-H did not show any detectable change in chemical shift with pH, the corresponding resonance in the mitochondrial isoenzyme exhibited pH-dependent chemical shift change (8.84 ppm at pH 5 and 8.67 ppm at pH 8) with a pK value of 6.3, reflecting the interisozymic difference in the microenvironment provided for the internal aldimine. Validity of the signal assignment was further shown by the two findings: the resonance assigned to the 4'-H emerged upon conversion of the pyridoxamine into the pyridoxal form, and the resonance appeared upon reconstitution of the apoenzyme with [4'-1H]pyridoxal phosphate but not with [4'-2H]pyridoxal phosphate.  相似文献   

3.
Various proteases (proteinase K, subtilisin, trypsin and chymotrypsin) were used to study the selective inactivation of the aspartate aminotransferase (EC 2.6.1.1) isoenzymes of grey mullet (Mugil auratus Risso; Osteichthyes). The cytosolic isoenzyme was significantly inactivated by proteinase K, subtilisin and chymotrypsin, while the mitochondrial isoenzyme was sensitive only to proteinase K and to high doses of trypsin. Further identification of the aspartate aminotransferase isoenzymes was based on their discrete sensitivity toward chymotrypsin. Chymotrypsin (1 mg/ml) successfully inhibited purified cytosolic aspartate aminotransferase as well as cytosolic isoenzyme from plasma, whereas the mitochondrial form persisted unaffected. Similar results were obtained when examining liver and red muscle homogenates. This method revealed that the increased total activity of aspartate aminotransferase in fish plasma with induced acute liver injury, was partially a result of the mitochondrial isoenzyme leakage from damaged tissue.  相似文献   

4.
The primary structure of mitochondrial aspartate aminotransferase from chicken is reported. The enzyme is a dimer of identical subunits. Each subunit contains 401 amino acid residues; the calculated subunit molecular weight of the apoform is 44,866. The degree of sequence identity with the homologous cytosolic isoenzyme from chicken is 46%. A comparison of the primary structures of the mitochondrial and the cytosolic isoenzyme from pig and chicken shows that 40% of all residues are invariant. The degree of interspecies sequence identity both of the mitochondrial and the cytosolic isoenzyme from chicken and pig (86% and 83%, respectively) markedly exceeds that of the intraspecies identity between mitochondrial and cytosolic aspartate aminotransferase in chicken (46%) or in pig (48%). Based on these values, the duplication of the aspartate aminotransferase ancestral gene is estimated to have occurred approximately 1000 million years ago, i.e. at the time of the emergence of eukaryotic cells. By sequence comparison it is possible to identify amino acid residues and segments of the polypeptide chain that have been conserved specifically in the mitochondrial isoenzyme during phylogenetic evolution. These segments comprise about a third of the total polypeptide chain and appear to cluster in a certain surface region. The cluster carries an excess of positively charged residues which exceeds the overall charge difference between the cytosolic (pI approximately 6) and the mitochondrial isoenzyme (pI approximately 9).  相似文献   

5.
A method for the purification of mitochondrial isoenzyme of sheep liver aspartate aminotransferase (EC 2.6.1.1) is described. The final preparation is homogeneous by ultracentrifuge analyses and polyacrylamide-gel electrophoresis and has a high specific activity (182 units/mg). The molecular weight determined by sedimentation equilibrium is 87,100 +/- 680. The amino acid composition is presented; it is similar to that of other mitochondrial isoenzymes, but with a higher content of tyrosine and threonine. Subforms have been detected. On isoelectric focusing a broad band was obtained, with pI 9.14. The properties of the mitochondrial aspartate aminotransferase are compared with those of the cytoplasmic isoenzyme. The Km for L-aspartate and 2-oxoglutarate for the cytoplasmic enzyme were 2.96 +/- 0.20 mM and 0.093 +/- 0.010 mM respectively; the corresponding values for the mitochondrial form were 0.40 +/- 0.12 mM and 0.98 +/- 0.14 mM. Cytoplasmic aspartate aminotransferase showed substrate inhibition by concentrations of 2-oxoglutarate above 0.25 mM in the presence of aspartate up to 2mM. The mitochondrial isoenzyme was not inhibited in this way. Pi at pH 7.4 inhibited cytoplasmic holoenzyme activity by up to about 60% and mitochondrial holoenzyme activity up to 40%. The apparent dissociation constants for pyridoxal 5'-phosphate were 0.23 micrometer (cytoplasmic) and 0.062 micrometer (mitochondrial) and for pyridoxamine 5'-phosphate they were 70 micrometer (cytoplasmic) and 40 micrometer (mitochondrial). Pi competitively inhibited coenzyme binding to the apoenzymes; the inhibition constants at 37 degree C were 32 micrometer for the cytoplasmic isoenzyme and 19.5 micrometer for the mitochondrial form.  相似文献   

6.
The complete amino acid sequence of rat liver cytosolic alanine aminotransferase (EC 2.6.1.2) is presented. Two primary sets of overlapping fragments were obtained by cleavage of the pyridylethylated protein at methionyl and lysyl bonds with cyanogen bromide and Achromobacter protease I, respectively. The protein was found to be acetylated at the amino terminus and contained 495 amino acid residues. The molecular weight of the subunit was calculated to be 55,018 which was in good agreement with a molecular weight of 55,000 determined by SDS-PAGE and also indicated that the active enzyme with a molecular weight of 114,000 was a homodimer composed of two identical subunits. No highly homologous sequence was found in protein sequence databases except for a 20-residue sequence around the pyridoxal 5'-phosphate binding site of the pig heart enzyme [Tanase, S., Kojima, H., & Morino, Y. (1979) Biochemistry 18, 3002-3007], which was almost identical with that of residues 303-322 of the rat liver enzyme. In spite of rather low homology scores, rat alanine aminotransferase is clearly homologous to those of other aminotransferases from the same species, e.g., cytosolic tyrosine aminotransferase (24.7% identity), cytosolic aspartate aminotransferase (17.0%), and mitochondrial aspartate aminotransferase (16.0%). Most of the crucial amino acid residues hydrogen-bonding to pyridoxal 5'-phosphate identified in aspartate aminotransferase by X-ray crystallography are conserved in alanine aminotransferase. This suggests that the topology of secondary structures characteristic in the large domain of other alpha-aminotransferases with known tertiary structure may also be conserved in alanine aminotransferase.  相似文献   

7.
The distribution of aspartate aminotransferase activity in yeasts was determined. The number of species of the enzyme in each yeast was determined by zymogram analysis. All the yeasts, except for the genus Saccharomyces, showed two or three activity bands on a zymogram. From among the strains, Rhodotorula minuta [corrected] and Torulopsis candida were selected for examination of the existence of yeast mitochondrial isoenzymes, because these strains showed two clear activity bands on the zymogram and contained a high amount of the enzyme. Only one aspartate aminotransferase was purified from T. candida: the component in the minor band on the zymogram was not an isoenzyme of aspartate aminotransferase. On the other hand, two aspartate aminotransferases were purified to homogeneity from R. minuta [corrected]. The components in the main and minor activity bands on the zymogram were identified as the mitochondrial and cytosolic isoenzymes, respectively, in a cell-fractionation experiment. The enzymatic properties of these isoenzymes were determined. The yeast mitochondrial isoenzyme resembled the animal mitochondrial isoenzymes in molecular weight (subunits and native form), absorption spectrum, and substrate specificity. The amino acid composition was closely similar to that of pig mitochondrial isoenzyme. Rabbit antibody against the yeast mitochondrial isoenzyme, however, did not form a precipitin band with the pig mitochondrial isoenzyme.  相似文献   

8.
Physical interactions between pyridoxal kinase and aspartate aminotransferase were detected by means of emission anisotropy and affinity chromatography techniques. Binding of aspartate aminotransferase (apoenzymes) to pyridoxal kinase tagged with a fluorescent probe was detected by emission anisotropy measurements at pH 6.8 (150 mM KCl). Upon saturation of the kinase with the aminotransferase, the emission anisotropy increases 22%. The protein complex is characterized by a dissociation constant of 3 microM. Time-dependent emission anisotropy measurements conducted with the mixture 5-naphthylamine-1-sulfonic acid-kinase aspartate aminotransferase (apoenzyme), revealed the presence of two rotational correlation times of phi 1 = 36 and phi 2 = 62 ns. The longer correlation time is attributed to the stable protein complex. By immobilizing one enzyme (pyridoxal kinase) through interactions with pyridoxal-Sepharose, it was possible to demonstrate that aspartate aminotransferase releases pyridoxal kinase. A test of compartmentation of pyridoxal-5-phosphate within the protein complex using alkaline phosphatase as trapping agent, indicates that the cofactor generated by the catalytic action of the kinase is channeled to the apotransaminase. The main function of the stable complex formed by the kinase and the aminotransferase is to hinder the release of free pyridoxal-5-phosphate into the bulk solvent.  相似文献   

9.
One sulfhydryl group of the mitochondrial isoenzyme of aspartate aminotransferase from both chicken and pig heart exhibits syncatalytic reactivity changes similar to those found previously in the cytosolic isoenzyme from pig heart (Birchmeier, W., Wilson, K.J., and Christen, P. (1973) J. Biol. Chem. 248, 1751–1759). The reactivity of the only titratable sulfhydryl group toward 5,5′-dithiobis-(2-nitrobenzoate) is at a minimum in the free pyridoxal and pyridoxamine form of the enzyme and is increased by approximately one order of magnitude when covalent enzyme-substrate intermediates are formed. The modification of the sulfhydryl group does not affect enzymatic activity. This finding supports the earlier conclusion that the syncatalytic reactivity changes are not due to a direct participation of this group in the active site but rather to conformational adaptations of the enzyme-coenzyme-substrate compound occurring in the catalytic mechanism of aspartate aminotransferases.  相似文献   

10.
Alanine:glyoxylate aminotransferase was present as the apoenzyme in the peroxisomes and as the holoenzyme in the mitochondria in chick embryos. The peroxisomal enzyme predominated in the early stage and gradually decreased during embryonic development and disappeared after hatching. In contrast, the mitochondrial enzyme gradually increased and predominated in the later stage of chick embryos. Peroxisomal alanine:glyoxylate aminotransferase in chick embryos was a single peptide with a molecular weight of about 40,000. The enzyme differed from the mitochondrial enzyme in the embryos, and mammalian alanine:glyoxylate aminotransferases 1 (with a molecular weight of about 80,000 with two identical subunits) and 2 (with a molecular weight of about 200,000 with four identical subunits) in molecular weights and immunological properties. Mitochondrial alanine:glyoxylate aminotransferase in chick embryos had an identical molecular weight and immunologically cross-reacted with mammalian mitochondrial alanine:glyoxylate aminotransferase 2. Pyridoxal 5'-phosphate dissociated easily from the peroxisomal enzyme saturated with pyridoxal 5'-phosphate. Hepatic aspartate:2-oxoglutarate aminotransferase and alanine:2-oxoglutarate aminotransferase in chick embryos, and hepatic alanine:glyoxylate aminotransferases in different animal species were all present as the holoenzyme.  相似文献   

11.
A protease from Streptomyces violaceochromogenes (Murao, S., Nishino, Y., & Maeda, Y. (1984) Agric. Biol. Chem. 48, 2163-2166) is known to inactivate pig heart aspartate aminotransferase [EC 2.6.1.1]. Chemical analysis of the core proteins and peptide fragments produced upon proteolysis of the aminotransferase revealed that peptide bond cleavage occurred specifically at Leu 20 with concomitant inactivation. Neither inactivation nor peptide bond cleavage was observed with the mitochondrial isoenzyme. The proteolytically produced derivative 21-412 of the cytosolic isoenzyme retained approximately 0.1% enzymic activity for transamination with natural dicarboxylic substrates. The pyridoxal form of the derivative 21-412 was fully converted by cysteinesulfinate or alanine to the pyridoxamine form and conversely the pyridoxamine form of the derivative was also fully converted by 2-oxoglutarate or pyruvate into the pyridoxal form, indicating that the derivative was still catalytically competent. However, the rates of reaction with dicarboxylic substrates were much reduced whereas the rates with monocarboxylic substrates remained at an order of magnitude similar to that observed with the native enzyme. Thus the NH2-terminal segment appears to be an import structural component which determines the substrate specificity of aspartate aminotransferase for dicarboxylic keto and amino acids. A substantial alteration in the molecular structure accompanying the loss of the NH2-terminal 20 residues was also reflected by the decrease in heat stability and in the lowering of the pKa value for His 68, which is involved in the intersubunit interaction of this dimeric enzyme.  相似文献   

12.
The enzyme mitochondrial aspartate aminotransferase from beef liver is a dimer of identical subunits. The enzymatic activity of the resolved enzyme is restored upon addition of the cofactor pyridoxal 5-phosphate. The binding of 1 molecule of cofactor restores 50% of the original enzymatic activity, whereas the binding of a 2nd molecule of cofactor brings about more than 95% recovery of the catalytic activity. Following addition of 1 mol of pyridoxal-5-P per dimer, three forms of the enzyme may exist in solution: apoenzyme-2 pyridoxal 5'-phosphate, apoenzyme-1 pyridoxal 5'-phosphate, and apoenzyme. The enzyme species are separated by affinity chromatography and the following distribution was found: apoenzyme-2 pyridoxal 5'-phosphate/apoenzyme-1 pytidoxal 5'-phosphate/apoenzyme, 2/6/2. Similar distribution was observed after reduction with NaBH4 of the mixture containing apoenzyme and pyridoxal-5-P at a mixing ratio of 1:1. Fluorometric titrations conducted on samples of apoenzyme and apoenzyme-1 pyridoxal 5'-phosphate reveal that the enzyme species display identical affinity towards the inhibitor 4-pyridoxic-5-P (KD equals 1.1 times 10- minus 6 M). It is concluded that the binding of the cofactor to one of the catalytic sites does not affect the affinity of the second site for the inhibitor. These results, obtained by two independent methods, lend strong support to the hypothesis that the two subunits of the enzyme function independently.  相似文献   

13.
Cytosolic and mitochondrial aspartate aminotransferase cDNAs were cloned from a lambda gt11 rat liver cDNA library. The complete coding sequence and the 3' non-coding sequence of the cytosolic isozyme mRNA were obtained from two overlapping cDNA clones. Partial sequences of the mitochondrial enzyme cDNAs were found to be identical to the recently published complete sequence (Mattingly, J. R., Jr., Rodriguez-Berrocal, F. J., Gordon, J., Iriarte, A., and Martinez-Carrion, M. (1987) Biochem. Biophys. Res. Commun. 149, 859-865). A single mRNA (2.4 kb (kilobase pair] hybridizing to the mitochondrial cDNA probe was detected by Northern blot analysis, whereas the cytosolic cDNA probe labeled one major (2.1 kb) and two minor (1.8 and 4 kb) mRNAs. The 1.8-kb and the 2.1-kb cytosolic aspartate aminotransferase mRNAs differ in their 3' ends and probably result from the use of either of the two polyadenylation signals present in the 3' noncoding region of the major cytosolic aspartate aminotransferase mRNA. Glucocorticoid hormones increased the activity of cytosolic but not mitochondrial aspartate aminotransferase in both liver and kidney. The increase in the enzyme activity was accompanied by an increase in the amount of the three corresponding mRNAs, while the mitochondrial enzyme mRNA was not significantly modified.  相似文献   

14.
Titrations of mitochondrial apo-aspartate aminotransferase with pyridoxal 5'-phosphate in the presence of AMP, contrary to what has been observed in the case of the cytosolic isoenzyme [(1983) FEBS Lett. 153, 98-102], show sigmoidal isotherms, with Hill coefficients ranging from nH = 1.4, in the absence of AMP, to nH = 1.8, in the presence of 5.9 mM AMP. The experimental data were successfully fitted by the Monod-Wyman- Changeaux model. The best fit, in the absence of AMP, was obtained with L = 30, KR = 4.72 X 10(-7) M and KT = 1.18 X 10(-5) M. Binding curves in the presence of AMP fit the model by keeping KR as a constant. This implies that AMP could bind to the apoenzyme only in the T state. In contrast, binding curves in the presence of phosphate ion (Pi) showed a less pronounced cooperativity, the Hill coefficient dropping to nH = 1.0 in the presence of 0.1 mM Pi. The above results suggest a regulatory role of AMP and Pi in the reconstitution of aspartate aminotransferase.  相似文献   

15.
The present work describes the purification from rat heart of the mitochondrial and cytosolic forms of the enzymes of the malate--aspartate shuttle, aspartate aminotransferase (EC 2.6.1.1) and malate dehydrogenase (EC 1.1.1.37), by a single procedure after the preparation of the original crude extract. In 10 purification steps, the four enzymes were obtained electrophoretically pure in yields ranging from 6 to 54% of their respective isoenzyme levels in the crude extract. Apoenzymes were formed from the aminotransferases by reacting them with cysteine sulfinate and dialyzing. Complete reconstitution was obtained after a brief incubation with pyridoxal phosphate. All four enzymes are dimers. The mitochondrial isoenzymes are of slightly lower molecular weight than their respective cytosolic forms. Michaelis constants and maximal velocities were derived by the use of primary and secondary plots. In general, the properties of the enzymes from rat heart are similar to the properties of the enzymes from other animal sources.  相似文献   

16.
The streptozotocin diabetic rat was selected as a model to study how insulin deficiency alters vitamin B6 utilization by focusing on pyridoxal phosphate levels and aspartate aminotransferase activities in liver tissues. Diabetes of 15 weeks' duration lowered plasma pyridoxal phosphate levels by 84%. Normal plasma pyridoxal phosphate was 480 pmole/ml. Fractionation of liver into mitochondrial and extramitochondrial compartments demonstrated that diabetes caused a 43% diminution in mitochondrial pyridoxal phosphate per gram of liver. There was no cytoplasmic change in these diabetic rats. Mitochondrial aspartate aminotransferase activity was decreased 53% per gram of diabetic liver and cytoplasmic aspartate aminotransferase activity was elevated 3.4-fold. Damage to diabetic mitochondria during preparation procedures could not account for the rise in cytoplasmic aspartate aminotransferase activity. Electrophoresis showed that in the diabetic cytoplasm both cathodal and anodal forms of the enzyme were elevated. Speculations concerning mitochondrial loss and cytoplasmic gain of enzyme activity as well as those on the reduction of plasma pyridoxal phosphate in the diabetic rat are presented.  相似文献   

17.
The sequences of the coenzyme-binding peptide of both cytoplasmic and mitochondrial aspartate aminotransferases from sheep liver were determined. The holoenzymes were treated with NaBH4 and digested with chymotrypsin; peptides containing bound pyridoxal phosphate were then isolated. One phosphopyridoxyl peptide was obtained from sheep liver cytoplasmic aspartate aminotransferase. Its sequence was Ser-Ne-(phosphopyridoxyl)-Lys-Asn-Phe. This sequence is identical with that reported for the homologous peptide from pig heart cytoplasmic aspartate aminotransferase. Two phosphopyridoxyl peptides with different RF values were isolated from the sheep liver mitochondrial isoenzyme. They had the same N-terminal amino acid and similar amino acid composition. The mitochondrial phosphopyridoxyl peptide of highest yield and purity had the sequence Ala-Ne-(phosphopyridoxyl)-Lys-Asx-Met-Gly-Leu-Tyr. The sequence of the first four amino acids is identical with that already reported for the phosphopyridoxyl tetrapeptide from the pig heart mitochondrial isoenzyme. The heptapeptide found for the sheep liver mitochondrial isoenzyme closely resembles the corresponding sequence taken from the primary structure of the pig heart cytoplasmic aspartate aminotransferase.  相似文献   

18.
Separate enzymatic microassays for aspartate aminotransferase isoenzymes   总被引:2,自引:0,他引:2  
The properties of the cytosolic and mitochondrial isoenzymes of aspartate aminotransferase were studied using a commercial preparation of the cytosolic isoenzyme, a mitochondrial preparation, and whole brain homogenate. Based on these properties, microassays were developed and shown to be highly specific and quantitatively accurate for measuring the activity of either the cytosolic or mitochondrial isoenzyme in microgram quantities of tissue. The assays have been successfully applied to homogenates of a wide variety of tissues. They can be used to measure the activities of aspartate aminotransferase isoenzymes in sub-microgram samples of freeze-dried tissue.  相似文献   

19.
Induction of cytosolic aspartate aminotransferase (glutamic oxaloacetic transaminase) was observed in rat liver on administration of a high-protein diet. The enzyme activity in the liver of rats given 60% and 80% protein diet increased to 1.8- and 1.9-fold that in the liver of rats maintained on 20% protein diet, with about 2-fold increases in the levels of functional sGOT mRNA, measured by in vitro translation. Whereas the activity of mitochondrial aspartate aminotransferase did not increase. Induction of cytosolic aspartate aminotransferase was also detected immunocytochemically.  相似文献   

20.
A data base was compiled containing the amino acid sequences of 12 aspartate aminotransferases and 11 other aminotransferases. A comparison of these sequences by a standard alignment method confirmed the previously reported homology of all aspartate aminotransferases and Escherichia coli tyrosine aminotransferase. However, no significant similarity between these proteins and any of the other aminotransferases was detected. A more rigorous analysis, focusing on short sequence segments rather than the total polypeptide chain, revealed that rat tyrosine aminotransferase and Saccharomyces cerevisiae and Escherichia coli histidinol-phosphate aminotransferase share several homologous sequence segments with aspartate aminotransferases. For comparison of the complete sequences, a multiple sequence editor was developed to display the whole set of amino acid sequences in parallel on a single work-sheet. The editor allows gaps in individual sequences or a set of sequences to be introduced and thus facilitates their parallel analysis and alignment. Several clusters of invariant residues at corresponding positions in the amino acid sequences became evident, clearly establishing that the cytosolic and the mitochondrial isoenzyme of vertebrate aspartate aminotransferase, E. coli aspartate aminotransferase, rat and E. coli tyrosine aminotransferase, and S. cerevisiae and E. coli histidinol-phosphate aminotransferase are homologous proteins. Only 12 amino acid residues out of a total of about 400 proved to be invariant in all sequences compared; they are either involved in the binding of pyridoxal 5'-phosphate and the substrate, or appear to be essential for the conformation of the enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号