首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Varying the parameters such as agitation time, dye concentration, adsorbent dose, pH and temperature carried out the potential feasibility of thermally activated coir pith carbon prepared from coconut husk for removal of methylene blue. Greater percentage of dye was removed with decrease in the initial concentration of dye and increase in amount of adsorbent used. Kinetic study showed that the adsorption of dye on coir pith carbon was a gradual process. Lagergren first-order, second-order, intra particle diffusion model and Bangham were used to fit the experimental data. Equilibrium isotherms were analysed by Langmuir, Freundlich, Dubnin-Radushkevich, and Tempkin isotherm. The adsorption capacity was found to be 5.87 mg/g by Langmuir isotherm for the particle size 250-500 microm. The equilibrium time was found to be 30 and 60 min for 10 and 20 mg/L and 100 min for 30, 40 mg/L dye concentrations, respectively. A maximum removal of 97% was obtained at natural pH 6.9 for an adsorbent dose of 100 mg/50 mL and 100% removal was obtained for an adsorbent dose of 600 mg/50 mL of 10 mg/L dye concentration. The pH effect and desorption studies suggest that chemisorption might be the major mode of the adsorption process. The change in entropy (DeltaS0) and heat of adsorption (DeltaH0) of coir pith carbon was estimated as 117.20 J/mol/K and 30.88 kJ/mol, respectively. The high negative value of change in Gibbs free energy indicates the feasible and spontaneous adsorption of methylene blue on coir pith carbon.  相似文献   

2.
Coir pith, a waste biomass, from coconut coir industry was used to prepare activated carbon with ZnCl2 and employed for the removal of 2-chlorophenol (2-CP) from aqueous solution and wastewater. Zinc chloride–activated coir pith carbon (ZnCPC) was prepared by mixing coir pith with ZnCl2 in the ratio 2:1 and carbonized at 700°C for 1 h. ZnCPC was characterized using standard physicochemical methods, Brunaver, Emmett, and Teller (BET) surface area, and scanning electron microscopy (SEM) studies. Batch mode adsorption studies were carried out to evaluate the effect of contact time, initial concentration, adsorbent dose, pH, and temperature. The Langmuir adsorption capacity Q 0 was found to be 149.3 mg g?1. Kinetic studies showed that the adsorption obeyed second-order and Bangham's model. Equilibrium adsorption data fit better into Langmuir, Freundlich, and D-R isotherms. pH effect and desorption studies showed that ion-exchange mechanism was involved in the adsorption process. Effect of temperature was not significant. Quantitative removal of 2-CP from synthetic wastewater was also achieved. ZnCPC is economically effective compared to commercial activated carbon, because the raw material is abundantly and freely available and it can be used effectively in the treatment of water contaminated with 2-CP.  相似文献   

3.
This study is aimed to remove Cd(II) ions from aqueous solutions by adsorption. As adsorbent, activated carbon prepared from olive stone, an agricultural solid by-product was used. Different activating agent (ZnCl(2)) amounts and adsorbent particle size were studied to optimize adsorbent surface area. The adsorption experiments were conducted at different parameters such as, adsorbent dose, temperature, equilibrium time and pH. According to the experiments results, the equilibrium time, optimum pH, adsorbent dosage were found 60 min, pH > 6 and 1.0 g/50 ml respectively. The kinetic data supports pseudo-second order model and intra-particle model but shows very poor fit for pseudo-first order model. Adsorption isotherms were obtained from three different temperatures. These adsorption data were fitted with the Langmuir and Freundlich isotherms. In addition, the thermodynamic parameters, standard free energy (DeltaG(0)), standard enthalpy (DeltaH(0)), standard entropy (DeltaS(0)) of the adsorption process were calculated. To reveal the adsorptive characteristics of the produced active carbon, BET surface area measurements were made. Structural analysis was performed using SEM-EDS. The resulting activated carbons with 20% ZnCl(2) solution was the best sample of the produced activated carbons from olive stone with the specific surface area of 790.25 m(2)g(-1). The results show that the produced activated carbon from olive stone is an alternative low-cost adsorbent for removing Cd(II).  相似文献   

4.
5.
Coir pith was chemically modified for the adsorption of cobalt(II) ions from aqueous solution. Chemical modification was done by esterification using succinic anhydride followed by activation with NaHCO(3) in order to improve the adsorption of Co(II). Adsorptive removal of Co(II) from aqueous solution onto modified coir pith was evaluated in batch studies under varying conditions of agitation time and metal ion concentration to assess the kinetic and equilibrium parameters. A pseudo-second-order kinetic model fitted well for the sorption of Co(II) onto modified coir pith. Sorption kinetics showed that the loading of Co(II) by this material was quite fast under ambient conditions. The Langmuir and Freundlich equilibrium isotherm models provided excellent fits for the adsorption data, with R(2) of 0.99 and 0.98, respectively. After esterification, the maximum Co(II) sorption loading Q(0); was greatly improved. It is evident that chemically modified adsorbent exhibits better Co(II) removal capability than raw adsorbent suggesting that surface modification of the adsorbent generates more adsorption sites on its solid surface for metal adsorption. A complete recovery of the adsorbed metal ions from the spent adsorbent was achieved by using 1.0N HCl.  相似文献   

6.
Khan MM  Ray M  Guha AK 《Bioresource technology》2011,102(3):2394-2399
The interaction of Acid Yellow 99 (AY 99) with coir pith has been investigated in aqueous medium to understand the mechanism of adsorption and explore the potentiality of this biomass towards controlling pollution resulting from textile dyes. The obtained results establish that one gram of coir pith can adsorb 442.13 mg of AY 99. The adsorption process is found to be a function of pH of the solution, the optimum pH value being 2.0. The process follows Langmuir-Freundlich dual isotherm model. Scanning electron microscopic analysis demonstrates that on dye adsorption the biomass develops uneven and irregular surface. X-ray diffraction study indicates incorporation of the dye into the micropores and macropores of the adsorbent and thereby enhancing its degree of crystallinity. The results of Fourier transform infrared (FTIR) spectroscopy and chemical modification of the functional groups establish that binding of AY 99 on coir pith occurs through electrostatic and complexation reaction.  相似文献   

7.
Adsorption studies were conducted to study the removal of 2,4-dichlorophenol (2,4-DCP) from aqueous solution on palm pith carbon under varying experimental conditions such as agitation time, adsorbent dose, pH and temperature. Higher 2,4-DCP was removed with decrease in the initial concentration of 2,4-DCP and increase in amount of adsorbent used. Kinetic study showed that the adsorption of 2,4-DCP on palm pith carbon was a gradual process. Adsorption capacities were 19.16 mg/g for the particle size of 250-500 microm. The equilibrium time was 60 and 80 min for 10 and 20 mg/L and 100 min for both 30 and 40 mg/L phenol concentrations, respectively. Acidic pH was favourable for the adsorption of 2,4-DCP. Studies on pH effect and desorption showed that chemisorption seemed to play a major role in the adsorption process. Thermodynamic study showed that adsorption of 2,4-DCP on palm pith carbon was more favoured. The change in entropy (DeltaS0) and heat of adsorption (DeltaH0) of palm pith carbon was estimated as 30.72 J/mol/k and 7.16 kJ/mol, respectively. The high positive value of change in Gibbs free energy indicated the feasible and spontaneous adsorption of 2,4-DCP on palm pith carbon. The results indicated that palm pith carbon was an attractive candidate for removing phenols from wastewater.  相似文献   

8.
Coconut coir pith, an agricultural solid waste was used as biosorbent for the removal of chromium(VI) after modification with a cationic surfactant, hexadecyltrimethylammonium bromide. Optimum pH for Cr(VI) adsorption was found to be 2.0. Reduction of Cr(VI) to Cr(III) occurred to a slight extent during the removal. Langmuir, Freundlich and Dubinin Radushkevich (D-R) isotherms were used to model the adsorption equilibrium data and the system followed all the three isotherms. The adsorption capacity of the biosorbent was found to be 76.3 mg g(-1), which is higher or comparable to the adsorption capacity of various adsorbents reported in literature. Kinetic studies showed that the adsorption obeyed second order and Elovich model. Thermodynamic parameters such as delta G0, delta H0 and delta S0 were evaluated, indicating that the overall adsorption process was endothermic and spontaneous. Effects of foreign anions were also examined. The adsorbent was also tested for the removal of Cr(VI) from electroplating effluent.  相似文献   

9.
In this study, hard shell of apricot stones was selected from agricultural solid wastes to prepare effective and low cost adsorbent for the gold separation from gold-plating wastewater. Different adsorption parameters like adsorbent dose, particle size of activated carbon, pH and agitation speed of mixing on the gold adsorption were studied. The results showed that under the optimum operating conditions, more than 98% of gold was adsorbed onto activated carbon after only 3 h. The equilibrium adsorption data were well described by the Freundlich and Langmuir isotherms. Isotherms have been used to obtain thermodynamic parameters. Gold desorption studies were performed with aqueous solution mixture of sodium hydroxide and organic solvents at ambient temperatures. Quantitative recovery of gold ions is possible by this method. As hard shell of apricot stones is a discarded as waste from agricultural and food industries, the prepared activated carbon is expected to be an economical product for gold ion recovery from wastewater.  相似文献   

10.
The removal efficiency of activated carbon prepared from coir pith towards three highly used reactive dyes in textile industry was investigated. Batch experiments showed that the adsorption of dyes increased with an increase in contact time and carbon dose. Maximum de-colorisation of all the dyes was observed at acidic pH. Adsorption of dyes was found to follow the Freundlich model. Kinetic studies indicated that the adsorption followed first order and the values of the Lagergren rate constants of the dyes were in the range of 1.77 x 10(-2)-2.69 x 10(-2)min(-1). The column experiments using granular form of the carbon (obtained by agglomeration with polyvinyl acetate) showed that adsorption efficiency increased with an increase in bed depth and decrease of flow rate. The bed depth service time (BDST) analysis carried out for the dyes indicated a linear relationship between bed depth and service time. The exhausted carbon could be completely regenerated and put to repeated use by elution with 1.0M NaOH. The coir pith activated carbon was not only effective in removal of colour but also significantly reduced COD levels of the textile wastewater.  相似文献   

11.
The present study is aimed at simultaneous cellulase synthesis and coir pith degradation by Aspergillus nidulans using coir pith as chief substrate. The lignocellulosic biomass, coir pith is known to be an excellent carbon source for microbial cellulase production under solid state fermentation. The alkali pretreatment with sodium hydroxide was seen to enhance enzymatic hydrolysis. The effect of coir pith weight, moisture content, initial pH and growth temperature on cellulase activity and yield were investigated by response surface methodology (RSM) employing a four-factor-five-level central composite design (CCD). The results of Fourier transform infrared spectroscopy (FTIR), X-Ray diffraction (XRD) and Scanning electron microscopy (SEM) of coir pith showed structural changes through pretreatment, in favor of enzymatic hydrolysis. Maximum carboxy methyl cellulase activity (CMCase) of 28.64 U/g and cellulase yield of 66.32% were achieved with 8 g coir pith at 70% moisture content and 40 °C temperature with pH 5 as evident from run numbers 25 and 30. Filter paper (FPase) and cellobiase (CBase) activities of 10.23 U/g and 4.31 U/g respectively were observed on the 11th day after the inoculation.  相似文献   

12.
In this batch study, the adsorption of malathion by using granular activated carbon with different parameters due to the particle size, dosage of carbons, as well as the initial concentration of malathion was investigated. Batch tests were carried out to determine the potential and the effectiveness of granular activated carbon (GAC) in removal of pesticide in agricultural run off. The granular activated carbon; coconut shell and palm shells were used and analyzed as the adsorbent material. The Langmuir and Freundlich adsorption isotherms models were applied to describe the characteristics of adsorption behavior. Equilibrium data fitted well with the Langmuir model and Freundlich model with maximum adsorption capacity of 909.1 mg/g. The results indicate that the GAC could be used to effectively adsorb pesticide (malathion) from agricultural runoff.  相似文献   

13.
Adsorption of metal complex dyes from aqueous solutions by pine sawdust   总被引:2,自引:0,他引:2  
An attempt to alleviate the problem caused by the presence of metal complex dyes, mostly used in textile industries, in the textile effluents was undertaken. The effects of adsorbent particle size, pH, adsorbent dose, contact time and initial dye concentrations on the adsorption of metal complex dyes by pine sawdust was investigated. Acidic pH was favorable for the adsorption of metal complex dyes. A contact time of 120 min was required to reach the equilibrium. The experimental isotherm data were analyzed using the Langmuir, Freundlich and Temkin equations. The equilibrium data fit well the Langmuir isotherm. The monolayer adsorption capacities are 280.3 and 398.8 mg dye per g of pine sawdust for Metal Complex Blue and Metal Complex Yellow, respectively. The results indicate that pine sawdust could be employed as low-cost alternative to commercial activated carbon in aqueous solution for the removal of metal complex dyes.  相似文献   

14.
The adsorption on activated carbons of dark colored compounds contained in sugar beet vinasse was studied. Four commercial activated carbons with different properties (particle size, residual acidity and microporous properties) were respectively checked for efficiency at two temperature levels (25 °C and 40 °C) and at four pH levels (2, 3.5, 7, 10). The adsorption of organic molecules was determined by quantifying the amounts of total polyphenolic compounds and total organic carbon. The results showed that the adsorption capacity of dark colored compounds was enhanced by the decrease in both temperature and pH values of the solution. In this study, it is shown that this capacity depends on activated carbon characteristics which can be classified in the following order: particle size > residual acidity > microporous volume. Three models (Langmuir, Freundlich and Dubinin–Radushkevich) were tested from experimental data and compared. The Langmuir model provided the best correlation on all the activated carbons studied.  相似文献   

15.
Cr(VI) is considered to be potentially carcinogenic to humans. Removal of Cr(VI) ions from aqueous solution under different conditions was investigated using activated alumina (AA) and activated charcoal (AC) as adsorbents. Batch mode experiments were conducted to study the effects of adsorbent dose, contact time, pH, temperature and initial concentration of Cr(VI). Results showed that the adsorption of Cr(VI) depended significantly on pH and temperature. Equilibrium studies showed that Cr(VI) had a high affinity for AA at pH 4 and AC at pH 2. For AA, maximum adsorption was found at 25 degrees C, indicating exothermic adsorption, while for AC, maximum adsorption was at 40 degrees C. Freundlich and Langmuir adsorption isotherms were also applied and they showed good fits to the experimental data. The results suggest that both AA and AC could be used as effective adsorbents for the removal of Cr(VI) ions.  相似文献   

16.
The preparation of activated carbon from apricot stone with H2SO4 activation and its ability to remove a basic dye, astrazon yellow 7GL, from aqueous solutions were reported in this study. The adsorbent was characterized by FTIR, BET and SEM, respectively. The effects of various experimental parameters, such as initial dye concentration, pH, adsorbent dosage and temperature were investigated in a batch-adsorption technique. The optimum conditions for removal of the basic dye were found to be pH 10, 6 g/l of adsorbent dosage and equilibrium time of 35 min, respectively. A comparison of three kinetic models, the pseudo first-order, second-order and diffusion controlled kinetic models, on the basic dye-adsorbent system showed that the removal rate was heavily dependent on diffusion controlled kinetic models. The adsorption isotherm data were fitted well to Langmuir and Freundlich isotherms. The adsorption capacity was calculated as 221.23 mg/g at 50 °C. Thermodynamics parameters were also evaluated. The values of enthalpy and entropy were 49.87 kJ/mol and 31.93 J/mol K, respectively, indicating that this process was spontaneous and endothermic. The experimental studies were indicated that ASC had the potential to act as an alternative adsorbent to remove the basic dye from aqueous solutions.  相似文献   

17.
The shell of the seed of Chrysophyllum albidum carbon was used to adsorb lead (Pb) from aqueous solution, the sorption process with respect to its equilibria and kinetics as well as the effects of pH, contact time, adsorbent mass, adsorbate concentration, and particle size on adsorption were also studied. The most effective pH range was found to be between 4.5 and 5 for the sorption of the metal ion. The first-order rate equation by Lagergren was tested on the kinetic data and the adsorption process followed first-order rate kinetics. Isotherm data were analyzed for possible agreement with the Langmuir and Freundlich adsorption isotherms; the Freundlich and Langmuir models for dynamics of metal ion uptake proposed in this work fitted the experimental data reasonably well. However, equilibrium sorption data were better represented by Langmuir model than Freundlich. The adsorption capacity calculated from Langmuir isotherm was 72.1 mg Pb (II) g- 1 at initial pH of 5.0 at 30°C for the particle size of 1.00 to 1.25 mm with the use of 2.0 g/100 ml adsorbent mass. The structural features of the adsorbent were characterized by Fourier transform infrared (FTIR) spectrometry; the presence of hydroxyl, carbonyl, amide, and phosphate groups confirms the potential mechanism adsorption of the adsorbent. This readily available adsorbent is efficient in the uptake of Pb (II) ion in aqueous solution, thus, it could be an excellent alternative for the removal of heavy metals and organic matter from water and wastewater.  相似文献   

18.
Low-cost activated carbon was prepared from Spartina alterniflora by phosphoric acid activation for the removal of Pb(II) from dilute aqueous solution. The effect of experimental parameters such as pH, initial concentration, contact time and temperature on the adsorption was studied. The obtained data were fitted with the Langmuir and Freundlich equations to describe the equilibrium isotherms. The kinetic data were fitted with the Lagergren-first-order, pseudo-second-order and Elovich models. It was found that pH played a major role in the adsorption process. The maximum adsorption capacity for Pb(II) on S. alterniflora activated carbon (SAAC) calculated from Langmuir isotherm was more than 99 mg g−1. The optimum pH range for the removal of Pb(II) was 4.8–5.6. The Freundlich isotherm model was found to best describe the experimental data. The kinetic rates were best fitted to the pseudo-second-order model. Thermodynamic study showed the adsorption was a spontaneous exothermic process.  相似文献   

19.
Activated carbon (AC) prepared from waste Parthenium was used to eliminate Ni(lI) from aqueous solution by adsorption. Batch mode adsorption experiments are carried out, by varying contact time, metal ion concentration, carbon concentration, pH and desorption to assess kinetic and equilibrium parameters. They allowed initial adsorption coefficient, adsorption rate constant and maximum adsorption capacities to be computed. The adsorption data were modeled by using both Langmuir and Freundlich classical adsorption isotherms. The adsorption capacity (Q0) calculated from the Langmuir isotherm was 54.35 mg Ni(II)/g of AC at initial pH of 5.0 and 20 degrees C, for the particle size 250-500 microm. Increase in pH from 2 to 10 increased percent removal of metal ion. The regeneration by HCl of Ni(II)-saturated carbon by HCl, allowed suggestion of an adsorption mechanism by ion-exchange between metal ion and H+ ions on the AC surfaces. Quantitative recovery of Ni(II) was possible with HCl.  相似文献   

20.
以石油焦基为原料,采用KOH活化法制取高比表面积活性炭。考察了高比表面积活性炭吸附水中Pb^2 时,pH值、Pb^2 浓度、吸附时间和活性炭用量等因素对Pb^2 吸附量和水中Pb^2 残余浓度的影响。实验结果表明:高比表面积活性炭在适宜条件下对Pb^2 具有较大的吸附量和良好的再生效果。为高比表面积活性炭在废水中的实际应用提供了理论依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号