首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Colon cancer is second leading cause of cancer-related deaths in Western countries. Diet and smoking, which contain aromatic and heterocyclic amines, are major risk factors for colon cancer. Colorectal cancers have a natural history of long latency and therefore provide ample opportunities for effective chemoprevention. 3,2'-Dimethyl-4-aminobiphenyl (DMABP) is an experimental aromatic amine that causes cancer in rat colon and serves as an experimental model for arylamine and heterocyclic amine mutagens derived from diet and smoking. In this study, we investigated the effects of celecoxib, a selective cyclooxygenase-2 (COX-2) inhibitor on DMABP-induced DNA adduct formation in rat liver and colon. Male F-344 rats (5-week old) were provided free access to modified AIN-76A rat chow containing 0 (control), 500, 1000, or 1500 ppm celecoxib. Two weeks later, the rats received a subcutaneous injection of 100mg/kg DMABP in peanut oil. Two days after DMABP treatment, the rats were killed and DMABP-derived adducts were analyzed in colon and liver DNA by butanol extraction-mediated (32)P-postlabeling. Two major DNA adducts, identified as dG-C8-DMABP and dG-N(2)-DMABP, were detected in liver and colon of rats treated with DMABP. These DNA adducts were diminished approximately 35-40% with 500 ppm and 65-70% with 1,000 ppm celecoxib. In the colon, no further decline in DNA adducts was observed at 1500 ppm. The same DMABP-DNA adducts also were detected in the liver and were also diminished by celecoxib treatment. The reduction in DMABP-DNA adduct levels in celecoxib-treated animals provides further support for celecoxib as a chemopreventive agent for colorectal cancer.  相似文献   

2.
Otteneder M  Lutz U  Lutz WK 《Mutation research》2002,500(1-2):111-116
Styrene by inhalation had been shown to increase the lung tumor incidence in mice at 20 ppm and higher, but was not carcinogenic in rats at up to 1000 ppm. Styrene-7,8-oxide, the major metabolic intermediate, has weak electrophilic reactivity. Therefore, DNA adduct formation was expected at a low level and a 32P-postlabeling method for a determination of the two regioisomeric 2'-deoxyguanosyl-O6-adducts at the alpha(7)- and beta(8)-positions had been established. The first question was whether DNA adducts could be measured in the rat at the end of the 2 years exposure of a bioassay for carcinogenicity, even though tumor incidence was not increased. Liver samples of male and female CD rats were available for DNA adduct analysis. Adducts were above the limit of detection only in the highest dose group (1000 ppm), with median levels of 9 and 8 adducts per 10(7) nucleotides in males and females, respectively (sum of alpha- and beta-adducts). The result indicates that the rat liver tolerated a relatively high steady-state level of styrene-induced DNA adducts without detectable increase in tumor formation. The second question was whether different DNA adduct levels in the lung of rats and mice could account for the species difference in tumor incidence. Groups of female CD-1 mice were exposed for 2 weeks to 0, 40, and 160 ppm styrene (6h per day; 5 days per week), female CD rats were exposed to 0 and 500 ppm. In none of the lung DNA samples were adducts above a limit of detection of 1 adduct per 10(7) DNA nucleotides. The data indicate that species- and organ-specific tumor induction by styrene is not reflected by DNA adduct levels determined in tissue homogenate. The particular susceptibility of the mouse lung might have to be based on other reactive metabolites and DNA adducts, indirect DNA damage and/or cell-type specific toxicity and tumor promotion.  相似文献   

3.
In this study, the in vivo binding of 14C-labelled 2-mercaptobenzothiazole (MBT) to DNA was investigated. Male and female Fischer 344 rats were gavaged with 375 mg MBT/kg body weight and killed 8 hours later. DNA was extracted from the liver, adrenal glands, pituitary gland, pancreas, and bone marrow and the amount of radioactivity associated with the DNA was determined. Results from this study indicate that MBT does not significantly bind to DNA from any of the tissues examined. CBI values for liver for the 3 methods of purification were -1-3 which are on the low end of the covalent binding index. The CBI values for the other tissues were always less than 1. Other chemicals with similar CBI values include estrone and diethylstilbesterol. Strong hepatocarcinogens such as dimethylnitrosamine and aflatoxin have CBI values ranging from 6000 to greater than 20000.  相似文献   

4.
Male Sprague-Dawley rats and B6C3F1 mice were exposed to either a single 6h or a multiple (5) daily (6h) nose-only dose of 1,3-[2,3-(14)C]-butadiene at exposure concentrations of nominally 1, 5 or 20 ppm. The aim was to compare the results with those from a similar previous study at 200 ppm. DNA isolated from liver, lung and testis of exposed rats and mice was analysed for the presence of butadiene related adducts, especially the N7-guanine adducts. Total radioactivity present in the DNA from liver, lung and testis was quantified and indicated more covalent binding of radioactivity for mouse tissue DNA than rat tissue DNA. Following release of the depurinating DNA adducts by neutral thermal hydrolysis, the liberated depurinated DNA adducts were measured by reverse phase HPLC coupled with liquid scintillation counting. The guanine adduct G4, assigned as N7-(2,3,4-trihydroxybutyl)- guanine, was the major adduct measured in liver, lung and testis DNA in both rats and mice. Higher levels of G4 were detected in all mouse tissues compared with rat tissue. The dose-response relationship for the formation of adduct G4 was approximately linear for all tissues studied for both rats and mice exposed in the 1-20 ppm range. The formation of G4 in liver tissue was about three times more effective for mouse than rat in this exposure range. Average levels of adduct G4 measured in liver DNA of rats and mice exposed to 5 x 6 h 1, 5 and 20 ppm 1,3-[2,3-(14)C]-butadiene were, respectively, for rats: 0.79 +/- 0.30, 2.90 +/- 1.19, 16.35 +/- 4.8 adducts/10(8) nucleotides and for mice: 2.23 +/- 0.71, 12.24 +/- 2.15, 48.63 +/- 12.61 adducts/10(8) nucleotides. For lung DNA the corresponding values were for rats: 1.02 +/- 0.44, 3.12 +/- 1.06, 17.02 +/- 4.07 adducts/10(8) nucleotides, and for mice: 3.28 +/- 0.32, 14.04 +/- 1.55, 42.47 +/- 13.12 adducts/10(8) nucleotides. Limited comparative data showed that the levels of adduct G4 formed in liver and lung DNA of mice exposed to a single exposure to butadiene in the present 20 ppm study and earlier 200 ppm study were approximately directly proportional across dose, but this was not observed in the case of rats. From the available evidence it is most likely that adduct G4 was formed from a specific isomer of the diol-epoxide metabolite, 3,4-epoxy-1,2-butanediol rather than the diepoxide, 1,2,3,4-diepoxybutane. Another adduct G3, possibly a diastereomer of N7-(2,3,4-trihydroxybutyl)-guanine or most likely the regioisomer N7-(1-hydroxymethyl-2,3-dihydroxypropyl)-guanine, was also detected in DNA of mouse tissues but was essentially absent in DNA from rat tissue. Qualitatively similar profiles of adducts were observed following exposures to butadiene in the present 20 ppm study and the previous 200 ppm study. Overall the DNA adduct levels measured in tissues of both rats and mice were very low. The differences in the profiles and quantity of adducts seen between mice and rats were considered insufficient to explain the large difference in carcinogenic potency of butadiene to mice compared with rats.  相似文献   

5.
1,2:3,4-Diepoxybutane is hypothesized to be the main intermediate involved in mutagenicity following exposure to low levels of 1,3-butadiene (BD) in mice, while metabolites of 3-butene-1,2-diol (BD-diol) are thought to become involved in both rats and mice at higher exposures. BD-diol is biotransformed to hydroxymethylvinyl ketone (HMVK), a potentially mutagenic metabolite, and 3,4-epoxy-1,2-butanediol (EB-diol), a known mutagen. To determine the relative importance of HMVK and EB-diol in BD-diol associated mutagenesis, we have examined the dosimetry of a HMVK derived DNA adduct, as well as EB-diol derived DNA and hemoglobin adducts, in rodents exposed to BD-diol. We previously demonstrated similarities in the shapes of the dose-response curves for EB-diol derived DNA adducts, hemoglobin adducts, and Hprt mutant frequencies in BD-diol exposed rodents, indicating that EB-diol was involved in the mutagenic response associated with BD-diol exposure. To examine the role of HMVK in BD-diol mutagenicity, a method to quantify the alpha-regioisomer of HMVK derived 1,N(2)-propanodeoxyguanosine (alpha-HMVK-dGuo) was developed. The method involved enzymatic hydrolysis of DNA, HPLC purification, and adduct measurement by liquid chromatography - tandem mass spectrometry. Intra- and inter-experimental variabilities were determined to be 2.3-18.2 and 4.1%, respectively. The limit of detection was approximately 5 fmol of analyte standard injected onto the column or 5 fmol/200 microg DNA. The method was used to analyze liver DNA from control female F344 rats and female F344 rats exposed to 36 ppm BD-diol. In addition, liver samples from female Sprague-Dawley rats exposed to 1000 ppm BD were analyzed. alpha-HMVK-dGuo was not detected in any of the samples analyzed. Several possible explanations exist for the negative results including the possibility that alpha-HMVK-dGuo may be a minor adduct or may be efficiently repaired. Alternatively, HMVK itself may be readily detoxified by glutathione (GSH) conjugation. While experiments must be conducted to understand the exact mechanism(s), these results, in addition to published EB-diol derived adduct dosimetry and existing HMVK derived mercapturic acid data, suggest that EB-diol is primarily responsible for BD-diol induced mutagenicity in rodents.  相似文献   

6.
Mitomycin C (MMC) is a clinically used drug with mutagenic and antitumor activities, presumably elicited through its covalent binding to DNA, however, little is known about MMC binding to DNA in vivo. A 32P-postlabeling method that does not require radiolabeled test compounds was employed here to study the formation of DNA adducts in somatic and reproductive tissues of rats 24 h after an i.p. dose of 9 mg/kg MMC. Among 14 tissues studied in female rats, MMC-DNA adduct levels were within a 2-fold range in 11 tissues, i.e. bladder, colon, esophagus, heart, kidney, liver, lung, ovary, pancreas, small intestine and stomach (minimum levels of 9.6-21.9 adducts per 10(7) N). Three other tissues, i.e. brain, spleen and thymus, exhibited lower adduct levels (0.2 5.4 and 1.4 adducts, respectively, per 10(7) N). Liver DNA adduct levels were 32% lower in male than in female rats. Testicular DNA contained 2.5 adducts per 10(7) N, i.e. 5.3 times less than ovarian DNA. 32P-labeled adduct patterns were qualitatively similar among the different tissues and consisted of 10 adducts, one of which comprised 71 (+/- 5)% of the total. All these adducts were chromatographically identical to adducts formed by the reaction of chemically reduced MMC with DNA in vitro, demonstrating that metabolic activation of MMC occurred via reduction. Using homopolydeoxyribonucleotides modified with MMC, in vivo adducts were shown to be mostly (greater than 90%) guanine derivatives and small amounts of adenine, cytosine and thymine products. Most of the adducts appeared to be monofunctional derivatives of DNA nucleotides. Dose-dependent MMC-DNA adduct formation was determined in rat liver over an 82-fold range of MMC administered (0.11-9.0 mg/kg). The lowest dose level studied was 4.5 times lower than the recommended single dose for human cancer chemotherapy (20 mg/m2). Thus, these results predict that 32P-postlabeling methodology is suitable to monitor and quantify DNA adducts in tissue biopsies of patients receiving MMC chemotherapy.  相似文献   

7.
Malachite green, a triphenylmethane dye used in aquaculture as an antifungal agent, is rapidly reduced in vivo to leucomalachite green. Previous studies in which female B6C3F1 mice were fed malachite green produced relatively high levels of liver DNA adducts after 28 days, but no significant induction of liver tumors was detected in a 2-year feeding study. Comparable experiments conducted with leucomalachite green resulted in relatively low levels of liver DNA adducts but a dose-responsive induction of liver tumors. In the present study, we fed transgenic female Big Blue B6C3F1 mice with 450 ppm malachite green and 204 and 408 ppm leucomalachite green (the high doses used in the tumor bioassays) and evaluated genotoxicity after 4 and 16 weeks of treatment. Neither malachite green nor leucomalachite green increased the peripheral blood micronucleus frequency or Hprt lymphocyte mutant frequency at either time point; however, the 16-week treatment with 408 ppm leucomalachite green did increase the liver cII mutant frequency. Similar increases in liver cII mutant frequency were not seen in the mice treated for 16 weeks with malachite green or in female Big Blue rats treated with a comparable dose of leucomalachite green for 16 weeks in a previous study [Mutat. Res. 547 (2004) 5]. These results indicate that leucomalachite green is an in vivo mutagen in transgenic female mouse liver and that the mutagenicities of malachite green and leucomalachite green correlate with their tumorigenicities in mice and rats. The lack of increased micronucleus frequencies and lymphocyte Hprt mutants in female mice treated with leucomalachite green suggests that its genotoxicity is targeted to the tissue at risk for tumor induction.  相似文献   

8.
Perfluorinated fatty acids alter hepatic lipid metabolism and are potent peroxisome proliferators in rodents. Two such perfluorinated acids, perfluorodecanoic acid (PFDA) and perfluorooctanoic acid (PFOA), were examined to determine if they covalently bind cellular proteins. PFDA and PFOA were found to covalently bind proteins when administered to rats in vivo. The liver, plasma and testes of male rats treated with [1-14C]PFDA or PFOA (9.4 mumol/kg) contained detectable levels of covalently bound 14C (0.1-0.5% of the tissue 14C content). Characterization of PFDA covalent binding to albumin in vitro showed that cysteine significantly decreased binding with no effect of methionine, suggesting protein sulfhydryl groups are involved. In cytosolic and microsomal incubation there was no effect of the addition of CoA, ATP or NADPH on the magnitude of the covalent binding of PFDA. Therefore PFDA need not be metabolically activated to form covalent adducts. Despite demonstration of covalent binding of PFDA and PFOA to proteins both in vivo and in vitro, the role of this macromolecular binding in perfluorinated fatty acid toxicity is not known.  相似文献   

9.
The results of efforts to identify and quantify macromolecular adducts of ethylene oxide (ETO), to determine the source and significance of background levels of these adducts, and to generate molecular dosimetry data on these adducts are reviewed. A time-course study was conducted to investigate the formation and persistence of 7-(2-hydroxyethyl)guanine (7-HEG; Fig. 1) in various tissues of rats exposed to ETO by inhalation, providing information necessary for designing investigations on the molecular dosimetry of adducts of ETO. Male F344 rats were exposed 6 h/day for up to 4 weeks (5 days/wk) to 300 ppm ETO by inhalation. Another set of rats was exposed for 4 weeks to 300 ppm ETO, and then killed 1–10 days after cessation of exposures. DNA samples from control and treated rats were analyzed for 7-HEG using neutral thermal hydrolysis, HPLC separation, and fluorescence detection. The adduct was detectable in all tissues of treated rats following 1 day of ETO exposure and increased approximately linearly for 3–5 days before the rate of increase began to level off. Concentrations of 7-HEG were greatest in brain, but the extent of formation was similar in all tissues studied. The adduct disappeared slowly from DNA, with an apparent half-life approx. 7 days. The shape of the formation curve and the in vivo half-life indicate that 7-HEG will approach steady-state concentrations in rat DNA by 28 days of ETO exposure. The similarity in 7-HEG formation in target and nontarget tissues indicates that the tissue specificity for tumor induction is due to factors in addition to DNA-adduct formation.  相似文献   

10.
When a single dose of [14C]trinitrotoluene was administered intraperitoneally (i.p.) to rats at 1, 10 or 50 mg/kg of body weight, covalently bound radioactivity was detected in globin, plasma proteins and proteins in the liver and kidney. The extent of covalent binding was dose dependent and was highest in plasma and renal proteins at all times up to 4 h after dosing. Covalent adduct levels in globin, however, decline slower than others. At a dose of 50 mg/kg of body weight, globin covalent adduct levels peaked at 1 h after dosing at 182 pmol/mg protein and subsequently decreased to approximately 50 pmol/mg protein between days 1 and 8. Of the covalent adduct levels in liver and kidney, those in the 10,000 x g and microsomal fractions were found to be higher than that in the cytosolic fraction. Radioactivity covalently bound to globin and the hepatic proteins was susceptible to dilute acid hydrolysis from which 2-amino-4,6-dinitrotoluene (2A) and 4-amino 2,6-dinitrotoluene (4A) were the major products recovered by solvent extraction. Upon acetylation, the hydrolysate gave rise to derivatives identified as the acetates of 2A and 4A on the basis of mass spectrometry and HPLC cochromatography with authentic samples. Four hours after an i.p. dose of [14C]TNT at 50 mg/kg of body weight about 0.4% of the dose was found as bound adducts to hemoglobin, of which approximately 48% was recovered as solvent extractable radioactivity after acid hydrolysis. About 2% of the radioactive dose was in the liver, of which approximately 30% was covalently bound to hepatic proteins, and approximately 49% of that was convertible to solvent extractable radioactivity upon acid hydrolysis. In vitro incubation of [14C]TNT with blood showed that there was a linear increase of covalent adducts in globin during the first 2 h of incubation; the concentration of covalent adducts was slightly higher than that with plasma proteins. The major compounds recovered from the hydrolysate of the globin adducts were also 2A and 4A as obtained from globin in the in vivo studies. On the basis of the in vitro and in vivo study results, we have confirmed the formation of protein adducts following a single i.p. administration of [14C]TNT at 1, 10 or 50 mg/kg of body weight to the rat or by in vitro incubation with blood.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

11.
Recent changes in the risk assessment landscape underscore the need to be able to compare the results of toxicity and dose-response testing between a growing list of animal models and, quite possibly, an array of in vitro screening assays. How do we compare test results for a given compound between vastly different species? For example, what dose level in the ambient water of a small fish model would be equivalent to 10 ppm of a given compound in the rat's drinking water? Where do we begin? To initially address these questions, and in order to compare dose-response tests in a standard rodent model with a fish model, we used the concept of molecular dose. Assays that quantify types of DNA damage that are directly relevant to carcinogenesis integrate the factors such as chemical exposure, uptake, distribution, metabolism, etc. that tend to vary so widely between different phyletic levels. We performed parallel exposures in F344 rats and Japanese medaka (Oryzias latipes) to the alkylating hepatocarcinogen, dimethylnitrosamine (DMN). In both models, we measured the DNA adducts 8-hydroxyguanine, N(7)-methylguanine and O(6)-methylguanine in the liver; mutation frequency using lambda cII transgenic medaka and lambda cII transgenic (Big Blue(R)) rats; and early morphological changes in the livers of both models using histopathology and immunohistochemistry. Pulse dose levels in fish were 0, 10, 25, 50, or 100 ppm DMN in the ambient water for 14 days. Since rats are reported to be especially sensitive to DMN, they received 0, 0.1, 1, 5, 10, or 25 ppm DMN in the drinking water for the same time period. While liver DNA adduct concentrations were similar in magnitude, mutant frequencies in the DMN-exposed medaka were up to 20 times higher than in the Big Blue rats. Future work with other compounds will generate a more complete picture of comparative dose response between different phyletic levels and will help guide risk assessors using "alternative" models.  相似文献   

12.
The nematocide, grain fumigant, and gasoline additive 1,2-dibromoethane (DBE) is both a cellular and a genetic toxin that is metabolically activated in rats and mice by mixed function oxidases (MFO) as well as glutathione 5-transferases (GST). The purpose of this study was to determine whether DBE is similarly metabolized and bioactivated by human liver in vitro. Human liver microsomal and cytosolic metabolism of DBE was monitored by the production of aqueous-soluble metabolites from [14-C]-DBE. Reactive intermediates were detected as irreversibly bound adducts to protein or DNA. 1,2-Dibromoethane was metabolized by human liver cytosolic GST, microsomal GST, and microsomal MFO. Cytosolic GST activity (9 +/- 2 nmol/20 min/mg protein) was about four times greater than the other two activities. Only MFO activity resulted in adducts irreversibly bound to protein (1.5 +/- .4 nmol/20 min/mg protein) and was inhibited by the presence of glutathione. Both MFO and GST activity resulted in irreversibly bound adducts to DNA. Microsomal and cytosolic GST activity each produced about twice as many DNA adducts as microsomal MFO activity. These results suggest that human liver, like rat and mouse liver, metabolizes DBE to aqueous-soluble metabolites by both MFO and GST activity. Furthermore, each of these activities produces reactive metabolites that can irreversibly bind to cellular macromolecules.  相似文献   

13.
This study examines the initial activation of benzene, exploring key aspects of its metabolism by measurement of benzene oxide (BO) and BO-protein adducts in vitro and in vivo. To assess the potential influence of various factors on the production of BO, microsomes were prepared from tissues that were either targets of benzene toxicity, i.e. the bone marrow and Zymbal glands, or not targets, i.e. liver and kidneys, of control and acetone-treated F344 rats. No BO or phenol was detected in microsomal preparations of bone marrow or Zymbal glands (less than 0.007 nmol BO/mg protein and 0.7 nmol phenol/mg protein). On the other hand, BO and phenol were readily detected in preparations of liver and kidney microsomes and acetone pretreatment resulted in a 2-fold (kidney) increase or 3.7-fold (liver) increase in production of these metabolites. Initial rates of BO production in the liver isolates were 30 (control) to 50 (acetone-treated) times higher than in the corresponding kidney tissues. The estimated half-life of BO in bone marrow homogenates was 6.0 min and the second-order reaction rate constant was estimated to be 1.35 x 10(-3) l (g bone marrow)(-1) (h)(-1). These kinetic constants were used with measurements of BO-bone marrow adducts in F344 rats, receiving a single gavage dosage of 50-400 mg benzene (kg body weight)(-1) (McDonald, T.M., et al. (1994), Cancer Res. 54, 4907-4914), to predict the bone marrow dose of BO. Among the rats receiving 400 mg (kg body weight) (-1), a BO dose of 1.13 x 10(3) nM BO-h was estimated for the bone marrow, or roughly 40% of the corresponding blood dose predicted from BO-albumin adducts. Together these data suggest that, although BO is not produced at detectable levels in the bone marrow or Zymbal glands of F344 rats, BO is rapidly distributed via the bloodstream to these tissues where it may play a role in toxicity.  相似文献   

14.
We investigated the effect of punicalagin (PC) on benzo[a]pyrene (BP)-induced DNA adducts in vitro and in vivo. Incubation of BP (1 μM) with rat liver microsomes, appropriate co-factors and DNA in the presence of vehicle or punicalagin (1-40 μM) showed dose-dependent inhibition of the resultant DNA adducts, with essentially complete (97%) inhibition at 40 μM. However, PC failed to inhibit anti-BPDE-induced DNA adducts when tested in an in vitro non-microsomal system, suggesting that the inhibition of the microsomal BP-DNA adducts occurred due to inhibition of P450 1A1 by PC. To determine its efficacy in vivo, female S/D rats were administered punicalagin via the diet (1500 ppm; approximately 19 mg/day/animal) or subcutaneous polymeric implants (two 2-cm, 200mg with 20% drug load; 40 mg PC/implant) and then treated with continuous low-dose of BP by a subcutaneous polymeric implant (2 cm, 200mg with 10% load; 20mg BP/implant) and euthanized after 10 days. Analysis of the lung DNA by (32)P-postlabeling showed significant (60%; p=0.029) inhibition of DNA adducts by PC administered via the implants; the dietary route showed modest (34%) but statistically insignificant inhibition. Furthermore, total PC administered by implants was approximately 38-fold lower compared with the dietary route. Analysis of the lung microsomes showed significant inhibition of cytochrome P450 1A1 activity and induction of glutathione. Release of PC from the implants was found to be biphasic starting with a burst release, followed by a gradual decline. Ultra performance liquid chromatography analysis showed no detectable PC in the plasma but its hydrolyzed product, ellagic acid was readily detected. The plasma concentration of ellagic acid was over two orders of magnitude higher (589 ± 78 ng/mL) in the implant group compared with diet (4.36 ± 0.83 ng/mL). Together, our data show that delivery of PC by implants can reduce its effective dose substantially, and that the inhibition of DNA adducts in vivo occurred presumably due to the conversion of PC to ellagic acid.  相似文献   

15.
2-Acetylaminofluorene (AAF) or trans-4-acetylaminostilbene (AAS) was orally or intraperitoneally administered to female Wistar rats. DNA from liver cells was analyzed for single-strand breaks by the alkaline elution assay. Only borderline effects were observed with doses (100 μMol/kg) used in animal carcinogenesis experiments. Even high doses of AAF (1,000 μMol/kg) were not effective. Methyl methanesulfonate (MMS) in vivo and gamma irradiation in vitro were shown to produce dose-dependent DNA single-strand breaks (positive control). Only a marginal effect was obtained with 100 μMollkg MMS. The elution rate of DNA was increased by a factor of 34 in liver cells in vitro with 400 rad of gamma irradiation. Only a fraction of this rate could be demonstrated immediately after irradiation in vivo, and no lesions were found two hours later. This strongly indicates the rapid repair of single-strand breaks. Additional experiments showed that AAS, a nonhepatocarcinogen, produced more interstrand cross-links in the rat liver DNA than did AAF.  相似文献   

16.
In vivo and in vitro experiments have shown that [14C] niridazole ( NDZ ) can covalently bind to the proteins of rat liver, kidney and testes, but not to the DNA in these tissues. The covalent binding was dose dependent, and the greatest amount of binding was found in the microsomal fraction. The binding of [14C] NDZ to microsomal protein was linear with time and with protein concentration. Reduced nicotinamide adenine dinucleotide phosphate was necessary for the binding, while cobaltous chloride pretreatment inhibited it, demonstrating that a cytochrome P-450 dependent mixed function oxidase mediated the binding. Pretreatment of rats with other compounds, such as phenobarbital, 3-methyl-cholanthrene and chloracetamide which alter the rate of metabolism of [14C] NDZ similarly affected the extent of hepatic binding of the radiolabelled metabolite. The possible relationships between these results and the cytotoxic effects of NDZ have been discussed.  相似文献   

17.
The significance in hepatocarcinogenesis of various arylamine/amide adducts with nucleic acid was investigated by the use of comparison studies on several different parameters. Female Fischer and Sprague-Dawley rats are comparably sensitive to hepatocarcinogenesis by 2-acetamidofluorene (AAF), while male rats are more sensitive. 7-Fluoro-AAF is more carcinogenic in Sprague-Dawley rats than is AAF, but is strikingly so toward the liver of the female rat. Based on these observations, binding of both compounds to liver nucleic acids was determined for male and female Fischer rats at 1 and 3 days after a single injection of carcinogen, and in female Sprague-Dawley rats from 1 to 28 days after a single injection. As shown by others, no 8-(N-2-fluorenylacetamido)guanine adduct could be found in RNA or DNA of female Sprague-Dawley rats treated with AAF (nor was the corresponding 7-fluoro derivative detectable). These adducts were present, however, in comparable amounts in both male and female Fischer rats. The binding of 7-fluoro-AAF derivatives was higher than that of AAF derivatives in female Sprague-Dawley rats. Feeding of either AAF or 7-fluoro-AAF to Sprague-Dawley rats for 4 weeks before a single injection of [3H]7-fluoro-AAF resulted in reduction of the 8-(N-2-(7-fluoro)fluorenylacetamido)guanine adduct in males to undetectable levels in DNA and to 10% of control level in RNA. Non-acetylated adducts were increased in males, but decreased in females by AAF prefeeding; 7-fluoro-AAF prefeeding resulted in little change in adduct formation in females and in a major increase in non-acetylated adducts in males. AAF adducts disappeared from DNA more rapidly than did 7-fluoro-AAF adducts. Assay of the urinary metabolites from the animals in the prefeeding experiment showed that all compounds fed (including the non-hepatocarcinogens 4-acetamidobiphenyl and 2-acetamidophenanthrene) increased the proportion of N-hydroxy-7-fluoro-AAF among the metabolites. Defluorination of 7-fluoro-AAF to 7-hydroxy-AAF was also demonstrated and the ratio of 7-hydroxy-AAF to 5-hydroxy-7-fluoro-AAF was comparable to that observed for 7-hydroxy-AAF/5-hydroxy-AAF and AAF itself, suggesting that fluoro substitution does not increase activity by preventing detoxication.  相似文献   

18.
Estrogens, used widely from hormone replacement therapy to cancer treatment, are themselves carcinogenic, causing uterine and breast cancers. However, the mechanism of their carcinogenic action is still not known. Recently, we found that estrone (E1) and 17β-estradiol (E2) could be activated by the versatile epoxide-forming oxidant dimethyldioxirane (DMDO), resulting in the inhibition of rat liver nuclear and nucleolar RNA synthesis in a dose-dependent manner in vitro. Since epoxidation is often required for the activation of chemical carcinogens, we proposed that estrogen epoxidation is the underlying mechanism for the initiation of estrogen carcinogenesis (Carcinogenesis 17 (1996) 1957–1961). It is known that initiation requires the binding of a carcinogen to DNA with the formation of DNA adducts. One of the critical tests of our hypothesis is therefore to determine whether E1 and E2 after activation are able to bind DNA. This paper reports that after DMDO activation, [3H]E1 and [3H]E2 were able to bind to both A-T and G-C containing DNAs. Furthermore, the formation of E1–DNA and E2–DNA adducts was detected by 32P-postlabeling analysis.  相似文献   

19.
Carcinogen-induced formation of DNA adducts and other types of DNA lesions are the critical molecular events in the initiation of chemical carcinogenesis and modulation of such events by chemopreventive agents could be an important step in limiting neoplastic transformation in vivo. Vanadium, a dietary micronutrient has been found to be effective in several types of cancers both in vivo and in vitro and also possesses profound anticarcinogenicity against rat models of mammary, colon and hepatocarcinogenesis. Presently, we report the chemopreventive potential of vanadium on diethylnitrosamine (DEN)-induced early DNA damages in rat liver. Hepatocarcinogenesis was induced in male Sprague-Dawley rats with a single, necrogenic, intraperitoneal (i.p.) injection of DEN (200 mg/kg body weight) at week 4. There was a significant induction of tissue-specific ethylguanines, steady elevation of modified DNA bases 8-hydroxy-2'-deoxyguanosines (8-OHdGs) (P<0.0001; 89.93%) along with substantial increment of the extent of single-strand breaks (SSBs) (P<0.0001) following DEN exposure. Supplementation of 0.5 ppm of vanadium throughout the experiment abated the formations of O(6)-ethylguanines and 7-ethylguanines (P<0.0001; 48.71% and 67.54% respectively), 8-OHdGs (P<0.0001; 81.37%), length:width (L:W) of DNA mass (P<0.01; 62.12%) and the mean frequency of tailed DNA (P<0.001; 53.58%), and hepatic nodulogenesis in preneoplastic rat liver. The study indicates that 0.5 ppm vanadium is potentially and optimally effective, as derived from dose-response studies, in limiting early molecular events and preneoplastic lesions, thereby modulating the initiation stage of hepatocarcinogenesis. Vanadium is chemopreventive against DEN-induced genotoxicity and resulting hepatocellular transformation in rats.  相似文献   

20.
Methyl n-amyl ketone (2-heptanone), a reported metabolite of 2-ethylhexanol which in turn is a primary metabolite of plasticizers such as di-(2-ethylhexyl) phthalate, is metabolized in male Fischer 344 rats to CO2, acetate and a variety of compounds that could be either anabolic or catabolic or a combination of the two. A significant percentage of the radioactivity given orally (gavage) as [2-14C]-2 heptanone, at least 10%, was not excreted from the body in 48 h. Radioactivity was incorporated into liver protein in the form of three unidentified products as well as [14C]arginine, and into DNA both as 14C-labeled normal nucleosides (50-75%) and as presently unidentified hydrophobic materials (25-50%). Urea and cholesterol were significantly labeled, indicative of anabolic reutilization of [2-14C]-2-heptanone breakdown products. The 2-heptanone also bound to DNA spontaneously in vitro, to the extent of 400 pmol/mg DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号