首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Neurofilament-L (NF-L) is a major element of the neuronal cytoskeleton and is essential for neuronal survival. Moreover, abnormalities in NF-L result in neurodegenerative disorders. Carnosine and the related endogeneous histidine dipeptides prevent protein modifications such as oxidation and glycation. In the present study, we investigated whether histidine dipeptides, carnosine, homocarnosine, or anserine protect NF-L against oxidative modification during reaction between cytochrome c and H(2)O(2). Carnosine, homocarnosine and anserine all prevented cytochrome c/H(2)O(2)-mediated NF-L aggregation. In addition, these compounds also effectively inhibited the formation of dityrosine, and this inhibition was found to be associated with the reduced formations of oxidatively modified proteins. Our results suggest that carnosine and histidine dipeptides have antioxidant effects on brain proteins under pathophysiological conditions leading to degenerative damage, such as, those caused by neurodegenerative disorders.  相似文献   

2.
Han Q  Li G  Li J 《Biochimica et biophysica acta》2000,1523(2-3):246-253
A specific chorion peroxidase is present in Aedes aegypti and this enzyme is responsible for catalyzing chorion protein cross-linking through dityrosine formation during chorion hardening. Peroxidase-mediated dityrosine cross-linking requires H(2)O(2), and this study discusses the possible involvement of the chorion peroxidase in H(2)O(2) formation by mediating NADH/O(2) oxidoreduction during chorion hardening in A. aegypti eggs. Our data show that mosquito chorion peroxidase is able to catalyze pH-dependent NADH oxidation, which is enhanced in the presence of Mn(2+). Molecular oxygen is the electron acceptor during peroxidase-catalyzed NADH oxidation, and reduction of O(2) leads to the production of H(2)O(2), demonstrated by the formation of dityrosine in a NADH/peroxidase reaction mixture following addition of tyrosine. An oxidoreductase capable of catalyzing malate/NAD(+) oxidoreduction is also present in the egg chorion of A. aegypti. The cooperative roles of chorion malate/NAD(+)oxidoreductase and chorion peroxidase on generating H(2)O(2) with NAD(+) and malate as initial substrates were demonstrated by the production of dityrosine after addition of tyrosine to a reaction mixture containing NAD(+) and malate in the presence of both malate dehydrogenase fractions and purified chorion peroxidase. Data suggest that chorion peroxidase-mediated NADH/O(2) oxidoreduction may contribute to the formation of the H(2)O(2) required for chorion protein cross-linking mediated by the same peroxidase, and that the chorion associated malate dehydrogenase may be responsible for the supply of NADH for the H(2)O(2) production.  相似文献   

3.
Dityrosine formation leads to the cross-linking of proteins intra- or intermolecularly. The formation of dityrosine in lens proteins oxidized by metal-catalyzed oxidation (MCO) systems was estimated by chemical and immunochemical methods. Among the four MCO systems examined (H(2)O(2)/Cu, H(2)O(2)/Fe-ethylenediaminetetraacetic acid (Fe-EDTA), ascorbate/Cu, ascorbate/Fe-EDTA), the treatment with H(2)O(2)/Cu preferentially caused dityrosine formation in the lens proteins. The success of oxidative protein modification with all the MCO systems was confirmed by carbonyl formation estimated using 2,4-dinitrophenylhydrazine. The loss of tyrosine by the MCO systems was partly due to the formation of protein-bound 3,4-dihydroxyphenylalanine. The formation of dityrosine specific to H(2)O(2)/Cu was confirmed by using poly-(Glu, Ala, Tyr) and N-acetyl-tyrosine as a substrate. The dissolved oxygen concentration in the H(2)O(2)/Cu system hardly affected the amount of dityrosine formation, suggesting that dityrosine generation by the H(2)O(2)/Cu system is independent of oxygen concentration. Moreover, the combination of copper ion with H(2)O(2) is the most effective system for dityrosine formation among various metal ions examined. The addition of reducing agents, glutathione or ascorbic acid, into the H(2)O(2)/Cu system suppressed the generation of the dityrosine moiety, suggesting effective quench of tyrosyl radicals by the reducing agents.  相似文献   

4.
Photodynamic treatment (PDT) is an emerging therapeutic procedure for the management of cancer, based on the use of photosensitizers, compounds that generate highly reactive oxygen species (ROS) on irradiation with visible light. The ROS generated may oxidize a variety of biomolecules within the cell, loaded with a photosensitizer. The high reactivity of these ROS restricts their radius of action to 5-20 nm from the site of their generation. We studied oxidation of intracellular proteins during PDT using the ROS-sensitive probe acetyl-tyramine-fluorescein (acetylTyr-Fluo). This probe labels cellular proteins, which become oxidized at tyrosine residues under the conditions of oxidative stress in a reaction similar to dityrosine formation. The fluorescein-labeled proteins can be visualized after gel electrophoresis and subsequent Western blotting using the antibody against fluorescein. We found that PDT of rat or human fibroblasts, loaded with the photosensitizer Hypocrellin A, resulted in labeling of a set of intracellular proteins that was different from that observed on treatment of the cells with H2O2. This difference in labeling patterns was confirmed by 2D electrophoresis, showing that a limited, yet distinctly different, set of proteins is oxidized under either condition of oxidative stress. By matching the Western blot with the silver-stained protein map, we infer that alpha-tubulin and beta-tubulin are targets of PDT-induced protein oxidation. H2O2 treatment resulted in labeling of endoplasmic reticulum proteins. Under conditions in which the extent of protein oxidation was comparable, PDT caused massive apoptosis, whereas H2O2 treatment had no effect on cell survival. This suggests that the oxidative stress generated by PDT with Hypocrellin A activates apoptotic pathways, which are insensitive to H2O2 treatment. We hypothesize that the pattern of protein oxidation observed with Hypocrellin A reflects the intracellular localization of the photosensitizer. The application of acetylTyr-Fluo may be useful for characterizing protein targets of oxidation by PDT with various photosensitizers.  相似文献   

5.
It is believed that both mitochondrial dysfunction and oxidative stress play important roles in the pathogenesis of Parkinson's disease (PD). We studied the effect of chronic systemic exposure to the mitochondrial inhibitor rotenone on the uptake, content, and release of striatal neurotransmitters upon neuronal activity and oxidative stress, the latter simulated by H(2)O(2) perfusion. The dopamine content in the rat striatum is decreased simultaneously with the progressive loss of tyrosine hydroxylase (TH) immunoreactivity in response to chronic intravenous rotenone infusion. However, surviving dopaminergic neurons take up and release only a slightly lower amount of dopamine (DA) in response to electrical stimulation. Striatal dopaminergic neurons showed increased susceptibility to oxidative stress by H(2)O(2), responding with enhanced release of DA and with formation of an unidentified metabolite, which is most likely the toxic dopamine quinone (DAQ). In contrast, the uptake of [(3)H]choline and the electrically induced release of acetylcholine increased, in coincidence with a decline in its D(2) receptor-mediated dopaminergic control. Thus, oxidative stress-induced dysregulation of DA release/uptake based on a mitochondrial deficit might underlie the selective vulnerability of dopaminergic transmission in PD, causing a self-amplifying production of reactive oxygen species, and thereby contributing to the progressive degeneration of dopaminergic neurons.  相似文献   

6.
Alpha-synuclein co-exists with lipids in the Lewy bodies, a pathological hallmark of Parkinson's disease. Molecular interaction between alpha-synuclein and lipids has been examined by observing lipid-induced protein self-oligomerization in the presence of a chemical coupling reagent of N-(ethoxycarbonyl)-2-ethoxy-1,2-dihydroquinoline. Lipids such as phosphatidic acid, phosphatidylinositol, phosphatidylserine, phosphatidylethanolamine, and even arachidonic acid induced the self-oligomerization whereas phosphatidylcholine did not affect the protein. Because the oligomerizations occurred from critical micelle concentrations of the lipids, the self interaction of alpha-synuclein was shown to be a lipid-surface dependent phenomenon with head group specificity. By employing beta-synuclein and a C-terminally truncated alpha-synuclein (alpha-syn97), the head-group dependent self-oligomerization was demonstrated to occur preferentially at the N-terminal region while the fatty acid interaction leading to the protein self-association required the presence of the acidic C-terminus of alpha-synuclein. In the presence of Cu2+ and H2O2, phosphatidylinositol (PI), along with other acidic lipids, actually enhanced the metal-catalyzed oxidative self-oligomerization of alpha-synuclein. The dityrosine crosslink formation responsible for the PI-enhanced covalent self-oligomerization was more sensitive to variation of copper concentrations than that of H2O2 during the metal-catalyzed oxidation. The enhancement by PI was shown to be due to facilitation of copper localization to the protein because actual binding affinity between copper and alpha-synuclein increased from Kd of 44.7 microm to 5.9 microm in the presence of the lipid. Taken together, PI not only affects alpha-synuclein to be more self-interactive by providing the lipid surface, but also enhances the metal-catalyzed oxidative protein self-oligomerization by facilitating copper localization to the protein when the metal and H2O2 are provided. This observation therefore could be implicated in the formation of Lewy bodies as lipids and metal-catalyzed oxidative stress have been considered to be a part of pathological causes leading to the neurodegeneration.  相似文献   

7.
Metal-catalysed oxidation (MCO) reactions result in the formation of reactive oxygen species (ROS) in biological systems. These ROS cause oxidative stress that contributes to a number of pathological processes leading to a variety of diseases. Tyrosine is one residue that is very susceptible to oxidative modification and the formation of dityrosine (DT) and 3,4-dihydroxyphenylalanine (DOPA) have been widely reported in a number of diseases. However, the mechanisms of MCO of tyrosine in biological systems are poorly understood and require further investigation. In this study we investigated the mechanism of DT and DOPA formation by MCO using N-acetyl tyrosine ethyl ester as a model for tyrosine in proteins and peptides. The results showed that DT formation could be observed upon Cu2+/H2O2 oxidation at pH 7.4. Our results indicate that it is unlikely to be via Fenton chemistry since Cu+/H2O2 oxidative conditions did not lead to the formation of DT.  相似文献   

8.
There is increasing evidence supporting a causal role for oxidatively damaged DNA in neurodegeneration during the natural aging process and in neurodegenerative diseases such as Parkinson and Alzheimer. The presence of redox-active catecholamine neurotransmitters coupled with the localization of catalytic copper to DNA suggests a plausible role for these agents in the induction of oxidatively generated DNA damage. In this study we have investigated the role of Cu(II)-catalyzed oxidation of several catecholamine neurotransmitters and related neurotoxins in inducing oxidatively generated DNA damage. Autoxidation of all catechol neurotransmitters and related congeners tested resulted in the formation of nearly a dozen oxidation DNA products resulting in a decomposition pattern that was essentially identical for all agents tested. The presence of Cu(II), and to a lesser extent Fe(III), had no effect on the decomposition pattern but substantially enhanced the DNA product levels by up to 75-fold, with dopamine producing the highest levels of unidentified oxidation DNA products (383±46 adducts/10(6) nucleotides), nearly 3-fold greater than 8-oxo-7,8-dihydro-2'-deoxyguanosine (122±19 adducts/10(6) nucleotides) under the same conditions. The addition of sodium azide, 2,2,6,6-tetramethyl-4-piperidone, tiron, catalase, bathocuproine, or methional to the dopamine/Cu(II) reaction mixture resulted in a substantial decrease (>90%) in oxidation DNA product levels, indicating a role for singlet oxygen, superoxide, H(2)O(2), Cu(I), and Cu(I)OOH in their formation. Whereas the addition of N-tert-butyl-α-phenylnitrone significantly decreased (67%) dopamine-mediated oxidatively damaged DNA, three other hydroxyl radical scavengers, ascorbic acid, sodium benzoate, and mannitol, had little to no effect on these oxidation DNA product levels, suggesting that free hydroxyl radicals may have limited involvement in this dopamine/Cu(II)-mediated oxidatively generated DNA damage. These studies suggest a possible contributory role of oxidatively generated DNA damage by dopamine and related catechol neurotransmitters/neurotoxins in neurodegeneration and cell death. We also found that a naturally occurring broad-spectrum antioxidant, ellagic acid, was substantially effective (nearly 50% inhibition) at low doses (1μM) at preventing this dopamine/Cu(II)-mediated oxidatively generated DNA damage. Because dietary ellagic acid has been found to reduce oxidative stress in rat brains, a neuroprotective role of this polyphenol is plausible.  相似文献   

9.
Oxidative deamination by hydrogen peroxide in the presence of metals   总被引:1,自引:0,他引:1  
Various amines, including lysine residue of bovine serum albumin, were oxidatively deaminated to form the corresponding aldehydes by a H 2 O 2 /Cu 2+ oxidation system at physiological pH and temperature. The resulting aldehydes were measured by high-performance liquid chromatography. We investigated the effects of metal ions, pH, inhibitors, and O 2 on the oxidative deamination of benzylamine by H 2 O 2 . The formation of benzaldehyde was the greatest with Cu 2+ , and catalysis occurred with Co 2+ , VO 2+ , and Fe 3+ . The reaction was greatly accelerated as the pH value rose and was markedly inhibited by EDTA and catalase. Dimethyl sulfoxide and thiourea, which are hydroxyl radical scavengers, were also effective in inhibiting the generation of benzaldehyde, indicating that the reaction is a hydroxyl radical-mediated reaction. Superoxide dismutase greatly stimulated the reaction, probably due to the formation of hydroxyl radicals. O 2 was not required in the oxidation, and instead slightly inhibited the reaction. We also examined several oxidation systems. Ascorbic acid/O 2 /Cu 2+ and hemoglobin/H 2 O 2 systems also converted benzylamine to benzaldehyde. The proposed mechanism of the oxidative deamination by H 2 O 2 /Cu 2+ system is discussed.  相似文献   

10.
Hemoglobin and myoglobin are inducers of low-density lipoprotein oxidation in the presence of H(2)O(2). The reaction of these hemoproteins with H(2)O(2) result in a mixture of protein products known as hemichromes. The oxygen-binding hemoproteins function as peroxidases but as compared to classic heme-peroxidases have a much lower activity on small sized and a higher one on large sized substrates. A heme-globin covalent adduct, a component identified in myoglobin-hemichrome, was reported to be the cause of myoglobin peroxidase activity on low-density lipoprotein. In this study, we analyzed the function of hemoglobin-hemichrome in low-density lipoprotein oxidation. Oxidation of lipids was analyzed by formation of conjugated diene and malondialdehyde; and oxidation of Apo-B protein was analyzed by development of bityrosine fluorescence and covalently cross-linked protein. Hemoglobin-hemichrome has indeed triggered oxidation of both lipids and protein, but unlike myoglobin, hemichrome has required the presence of H(2)O(2). In correlation to this, we found that unlike myoglobin, hemichrome formed by hemoglobin/H(2)O(2) does not contain a globin-heme covalent adduct. Nevertheless, hemoglobin-hemichrome remains oxidatively active towards LDL, indicating that other components of the oxidatively denatured hemoglobin should be considered responsible for its hazardous activity in vascular pathology.  相似文献   

11.
The effects of cysteine as an antioxidant nutrient on change in protein modification and myofibrillar proteolysis in chick myotubes by induction of oxidative stress by H(2)O(2) treatment were investigated. Myotubes were treated for 1 h with H(2)O(2) (1 mM). After this treatment, the H(2)O(2) was removed and the cells were cultured in cysteine (0.1 and 1 mM) containing serum-free medium for 24 h. Protein carbonyl content as an index of protein modification and N(tau)-methylhistidine release as an index of myofibrillar proteolysis were increased at 24 h after H(2)O(2) treatment, and the increment was reduced by cysteine. Calpain, proteasome and cathepsin (B+L and D) activities were increased at 24 h after H(2)O(2) treatment, and the increment was also reduced by cysteine. These results indicate that cysteine suppresses protein modification by oxidative stress, resulting in a decrease of protease acitivities, finally resulting in a decrease in myofibrillar proteolysis in chick myotubes.  相似文献   

12.
Oxidants have been shown to play a major role in ageing and ageing-related neurodegenerative diseases. In the present study, we investigated the effect of ageing on oxidative damage to lipids and proteins in brain homogenate, mitochondria and synaptosomes of adult (6-month-old), old (15-month-old), and senescent (26-month-old) Wistar rats. There was a significant increase in thiobarbituric acid-reactive substances and conjugated dienes in homogenates, which indicate increased lipid peroxidation (LPO). Oxidative modifications of homogenate proteins were demonstrated by a loss of sulfhydryl content, accumulation of dityrosines and formation of protein conjugates with LPO-end products. Increase in protein conjugates with LPO-end products and a decrease in SH groups were observed also in mitochondria and synaptosomes, but dityrosine content was elevated only in synaptosomes. Protein surface hydrophobicity, measured by fluorescent probe 1-anilino-8-naphthalenesulfonate (ANS), was increased only in homogenate. These results suggest that besides mitochondria and synaptosomes other cellular compartments are oxidatively modified during brain ageing.  相似文献   

13.
Dopamine (DA) is an unstable neurotransmitter that readily oxidizes to the DA quinone and forms reactive oxygen species, such as superoxide and hydrogen peroxide. The oxidized dopamine also forms thiol conjugates with sulfhydryl groups on cysteine, glutathione, and proteins. In the present study, we determined the redox potential of the protein-bound DA and established a novel mechanism for the oxidative modification of the protein, in which the DA-cysteine adduct generated in the DA-modified protein causes oxidative modification of the DA-bound protein in the presence of Cu2+. Exposure of a sulfhydryl enzyme, glyceraldehyde-3-phosphate dehydrogenase, to DA resulted in a significant loss of sulfhydryl groups and the formation of the DA-cysteine adduct. When the DA-modified protein was incubated with Cu2+, we observed aggregation and degradation of the DA-bound protein and concomitant formation of a protein carbonyl, a marker of an oxidatively modified protein. Furthermore, we analyzed the carbonyl products generated during the Cu2+-catalyzed oxidation of the DA-modified protein and revealed the production of glutamic and aminoadipic semialdehydes, consisting of the protein carbonyls generated. The cysteinyl-DA residue generated in the DA-modified protein was suggested to represent a redox-active adduct, based on the observations that the cysteinyl-DA adduct, 5-S-cysteinyldopamine, produced by the reaction of cysteine with DA, gave rise to the oxidative modification of bovine serum albumin in the presence of Cu2+. These data suggest that the DA-modified protein may be involved in redox alteration under oxidative stress, whereby DA covalently binds to cysteine residues, generating the redox-active cysteinyl-DA adduct that causes the metal-catalyzed oxidation of protein.  相似文献   

14.
Human lens proteins become progressively modified by tryptophan-derived UV filter compounds in an age-dependent manner. One of these compounds, kynurenine, undergoes deamination at physiological pH, and the product binds covalently to nucleophilic residues in proteins via a Michael addition. Here we demonstrate that after covalent attachment of kynurenine, lens proteins become susceptible to photo-oxidation by wavelengths of light that penetrate the cornea. H2O2 and protein-bound peroxides were found to accumulate in a time-dependent manner after exposure to UV light (lambda > 305-385 nm), with shorter-wavelength light giving more peroxides. Peroxide formation was accompanied by increases in the levels of the protein-bound tyrosine oxidation products dityrosine and 3,4-dihydroxyphenylalanine, species known to be elevated in human cataract lens proteins. Experiments using D2O, which enhances the lifetime of singlet oxygen, and azide, a potent scavenger of this species, are consistent with oxidation being mediated by singlet oxygen. These findings provide a mechanistic explanation for UV light-mediated protein oxidation in cataract lenses, and also rationalize the occurrence of age-related cataract in the nuclear region of the lens, as modification of lens proteins by UV filters occurs primarily in this region.  相似文献   

15.
Erythrocytes and reticulocytes are shown to undergo rapid rates of protein degradation following exposure to oxidative stress. Experiments with ATP depletion revealed that, unlike the proteolysis of many other abnormal proteins, the degradation of oxidatively modified proteins is an ATP-independent process. Ion exchange chromatography (DEAE Sepharose CL-6B), ammonium sulfate precipitation, gel filtration chromatography (Sephacryl S-300 or Sepharose CL-6B), and a second ion exchange step were used to resolve the activity responsible for degrading oxidatively modified proteins from (dialyzed) cell-free extracts of erythrocytes and reticulocytes. Gel filtration studies revealed that some 70-80% of the activity in erythrocytes, and some 60-70% of the activity in reticulocytes, is expressed by a 670 kDa proteinase complex that is not stimulated by ATP (in fact, ATP is slightly inhibitory). This proteinase complex is inhibited by sulfhydryl reagents, serine reagents, and transition metal chelators, and has a pH optimum of 7.8. We propose the trivial name "macroxyproteinase" or "M.O.P." (abbreviated from Macro-Oxy-Proteinase) for the complex because of its large size, substrate preference (oxidatively modified proteins), and inhibitor profile (which indicates multiple catalytic sites). Electrophoresis studies of the 670 kDa M.O.P. complex revealed the presence of 8 distinct polypeptide subunits with the following apparent molecular sizes: 21.5, 25.3, 26.2, 28.1, 30.0, 31.9, 33.3, and 35.7 kDa. The large molecular size of the M.O.P. complex, its ATP- and ubiquitin-independence, its inhibitor profile, its distinctive subunit banding pattern in denaturing electrophoresis gels, its pH optimum, and its proteolytic profile with fluorogenic peptide substrates all indicate that M.O.P. is identical to 600-700 kDa neutral/alkaline proteinase complexes that have been isolated from a wide variety of eucaryotic cells and tissues, but for which no function has previously been clear. We propose that macroxyproteinase is responsible for catalyzing most of the selective degradation of oxidatively denatured proteins in red blood cells. We further suggest that M.O.P. may perform the same function in other eucaryotic cells and tissues.  相似文献   

16.
Insulin, ribonuclease, papain and collagen solutions saturated with nitrogen, N2O or air were irradiated with doses of 10 to 640 Gy of gamma rays. Protein solutions were also oxidized enzymatically in a system of horse-radish peroxidase: hydrogen peroxide. Column chromatography (Sephadex G-75 or Sephacryl S-200) of treated protein solutions revealed that they contain protein molecular aggregates. Nitrogen saturation of solution before irradiation was most favourable for radiation-induced aggregation of proteins. Fluorescence analysis of protein solutions resulted in detection of dityrosyl structures in irradiated as well as in enzymatically oxidized proteins. Concentration of dityrosine in proteins studied was determined fluorimetrically in their hydrolysates separated on BioGel P-2 column. In irradiated proteins, dityrosine was present almost exclusively in their aggregated forms. In proteins oxidized enzymatically, dityrosine was also present in fractions containing apparently unchanged protein. Mechanisms which could account for differences in the yield of dityrosine formation in radiolysis and in enzymatic oxidation of proteins are suggested.  相似文献   

17.
Chronic ethanol consumption is associated with increased protein oxidation and decreased proteolysis in the liver. We tested the hypothesis that even single-dose treatment with ethanol or bromotrichloromethane causes increased protein oxidation and a distinct proteolytic response in cultured hepatocytes. HepG2 cells were treated for 30 min with ethanol, H(2)O(2) and bromotrichloromethane at various nontoxic concentrations. Protein degradation was measured in living cells using [35S]-methionine labeling. Protein oxidation, and 20S proteasome activity were measured in cell lysates. Oxidized proteins increased immediately after ethanol, H(2)O(2), and bromotrichloromethane exposure, but a further significant increase 24-h after exposure was observed only following ethanol and bromotrichloromethane treatment. All three reagents caused a significant increase of the overall intracellular proteolysis at rather low concentrations, which could be suppressed by the proteasome inhibitor lactacystin. A decline of proteolysis observed at higher-subtoxic-concentrations was not related to decreased proteasome activity. Preincubation with ketoconazole or 4-methylpyrazole completely prevented the ethanol- and bromotrichloromethane-induced but not the H(2)O(2)-induced protein oxidation and proteolysis, suggesting strongly an enzyme-mediated generation of reactive oxygen species. In conclusion single-dose exposure with ethanol or haloalkanes causes increased protein oxidation followed by an increased proteasome-dependent protein degradation in human liver cells.  相似文献   

18.
Hydrogen peroxide (H2O2), arachidonic acid (AA), and U-44069, a thromboxane analogue, all induced vaso- and bronchoconstriction in the isolated perfused rat lung. The role of protein sulfhydryl modifications in these processes was investigated. The thiol oxidizing agent diamide inhibited both vaso- and bronchoconstriction induced by H2O2, AA, or U-44069. Diamide had only a marginal effect on glutathione and protein thiol levels and no effect on lung mechanics. The diamide inhibition was reversible, and H2O2-induced vaso- and bronchoconstriction was almost maximal after 10 min of perfusion with buffer. The recovery was more rapid if dithiothreitol, a thiol reducing agent, was used in the buffer. H2O2- and AA-induced vaso- and bronchoconstriction is caused by thromboxane release. Diamide did not influence H2O2- or AA-dependent thromboxane formation, indicating that neither AA release nor AA metabolism to thromboxane is sensitive to thiol oxidation. Thus our results indicate that the site of diamide-induced thiol oxidation is the thromboxane receptor or its signal transduction.  相似文献   

19.
The purpose of this study was to test the hypothesis whether Mito-carboxy proxyl (Mito-CP), a mitochondria-targeted nitroxide, inhibits peroxide-induced oxidative stress and apoptosis in bovine aortic endothelial cells (BAEC). Glucose/glucose oxidase (Glu/GO)-induced oxidative stress was monitored by dichlorodihydrofluorescein oxidation catalyzed by intracellular H(2)O(2) and transferrin receptor-mediated iron transported into cells. Pretreatment of BAECs with Mito-CP significantly diminished H(2)O(2)- and lipid peroxide-induced intracellular formation of dichlorofluorescene and protein oxidation. Electron paramagnetic resonance (EPR) studies confirmed the selective accumulation of Mito-CP into the mitochondria. Mito-CP inhibited the cytochrome c release and caspase-3 activation in cells treated with peroxides. Mito-CP inhibited both H(2)O(2)- and lipid peroxide-induced inactivation of complex I and aconitase, overexpression of transferrin receptor (TfR), and mitochondrial uptake of (55)Fe, while restoring the mitochondrial membrane potential and proteasomal activity. In contrast, the "untargeted" carboxy proxyl (CP) nitroxide probe did not protect the cells from peroxide-induced oxidative stress and apoptosis. However, both CP and Mito-CP inhibited superoxide-induced cytochrome c reduction to the same extent in a xanthine/xanthine oxidase system. We conclude that selective uptake of Mito-CP into the mitochondria is responsible for inhibiting peroxide-mediated Tf-Fe uptake and apoptosis and restoration of the proteasomal function.  相似文献   

20.
The present study investigates the reactivity of bovine serum albumin (BSA) radicals towards different biomolecules (urate, linoleic acid, and a polypeptide, poly(Glu-Ala-Tyr)). The BSA radical was formed at room temperature through a direct protein-to-protein radical transfer from H(2)O(2)-activated immobilized horseradish peroxidase (im-HRP). Subsequently, each of the three different biomolecules was separately added to the BSA radicals, after removal of im-HRP by centrifugation. Electron spin resonance (ESR) spectroscopy showed that all three biomolecules quenched the BSA radicals. Subsequent analysis showed a decrease in the concentration of urate upon reaction with the BSA radical, while the BSA radical in the presence of poly(Glu-Ala-Tyr) resulted in increased formation of the characteristic protein oxidation product, dityrosine. Reaction between the BSA radical and a linoleic acid oil-in-water emulsion resulted in additional formation of lipid hydroperoxides and conjugated dienes. The results clearly show that protein radicals have to be considered as dynamic species during oxidative processes in biological systems and that protein radicals should not be considered as end-products, but rather as reactive intermediates during oxidative processes in biological systems hereby supporting recent data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号