首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two forms of enzyme with ribonuclease H (RNase H) [EC 3.1.4.34] activities, have been partially purified from cultured plant cells, strain GD-2, derived from carrot root. One is an Mn2+-dependent RNase H, and the second is an Mg2+-dependent RNase H. These enzymes degrade RNA specifically in RNA-DNA hybrid structures. They were eluted at around 0.2 M and 0.4 M potassium chloride in phosphocellulose chromatography, and were further purified using blue Sepharose. Mg2+-dependent RNase H exhibits maximal activity at pH 9.0, and requires 10 to 15 mM Mg2+ for maximal activity, whereas the Mn2+-dependent enzyme is most active at pH 8.0, is maximally active at an Mn2+ concentration of 0.4 mM, and has some activity with Mg2+. Both enzymes require a sulfhydryl reagent for maximal activity. The enzymes liberate a mixture of oligonucleotides with 5'-phosphate and 3'-hydroxyl termini. The apparent molecular weight of the Mg2+-dependent RNase H was estimated to 18--20 X 10(4) and that of the Mn 2+- dependent RNase H was estimated to be 14 x 10(4) by gel filtration.  相似文献   

2.
3.
Mammalian tRNA 3'processing endoribonuclease (3'tRNase) removes 3'extra nucleotides after the discriminator from tRNA precursors. Here I examined how the length of a 3'trailer and the nucleotides on each side of the cleavage site affected 3'processing efficiency. I performed in vitro 3'processing reactions of pre-tRNAArgs with various 3'trailers or various discriminator nucleotides using 3'tRNase purified from mouse FM3A cells or pig liver. On the whole, the efficiency of pre- tRNAArg3'processing by mammalian 3'tRNase decreased as the 3'trailer became longer, except in the case of a 3'trailer composed of CC, CCA or CCA plus 1 or 2 nucleotides, which was not able to be removed at all. The distribution of 3'trailer lengths deduced from mammalian nuclear tRNA genomic sequences reflects this property of 3'tRNase. The cleavage efficiency of pre-tRNAArgs varied depending on the 5'end nucleotide of a 3'trailer in the order G approximately A > U > C. This effect of the 5'end nucleotide was independent of the discriminator nucleotides. The distribution of the 5'end nucleotides of mammalian pre-tRNA 3'trailers reflects this differential 3'processing efficiency.  相似文献   

4.
Transposon Tn10-mediated rearrangement was used to isolate a strain of Escherichia coli carrying a deletion in the rnd region which is known to encode the structural gene for the putative 3' tRNA processing nuclease, RNase D. Genetic analysis indicated that about 0.4-0.5 min of the chromosome in the 39.5-40.0 min region was deleted. The mutant strain was devoid of RNase D activity, but other RNase activities were unaffected. The viability of the mutant strain and its normal growth characteristics indicate that RNase D is not essential for E. coli survival. The normal plating efficiency in this mutant host of wild type T4 and a T4 psu1+-amber double mutant indicates that RNase D is also not required for T4 growth or psu1+-tRNA processing. The implications of these findings for the role of RNase D in bacterial and bacteriophage tRNA metabolism, and the possible involvement of alternative enzymes, are discussed.  相似文献   

5.
RNase PH is a Pi-dependent exoribonuclease that can act at the 3' terminus of tRNA precursors in vitro. To obtain information about the function of this enzyme in vivo, the Escherichia coli rph gene encoding RNase PH was interrupted with either a kanamycin resistance or a chloramphenicol resistance cassette and transferred to the chromosome of a variety of RNase-resistant strains. Inactivation of the chromosomal copy of rph eliminated RNase PH activity from extracts and also slowed the growth of many of the strains, particularly ones that already were deficient in RNase T or polynucleotide phosphorylase. Introduction of the rph mutation into a strain already lacking RNases I, II, D, BN, and T resulted in inviability. The rph mutation also had dramatic effects on tRNA metabolism. Using an in vivo suppressor assay we found that elimination of RNase PH greatly decreased the level of su3+ activity in cells deficient in certain of the other RNases. Moreover, in an in vitro tRNA processing system the defect caused by elimination of RNase PH was shown to be the accumulation of a precursor that contained 4-6 additional 3' nucleotides following the -CCA sequence. These data indicate that RNase PH can be an essential enzyme for the processing of tRNA precursors.  相似文献   

6.
7.
Transfer RNA is a substrate for RNase D in vivo   总被引:3,自引:0,他引:3  
RNase D is a 3'-exonuclease whose in vitro specificity has suggested a role in tRNA processing. However, since mutant Escherichia coli strains devoid of RNase D display a normal phenotype, it has not been possible to ascertain the enzyme's function or even to determine which RNA is its substrate in vivo. Here we show that transformation of strains devoid of tRNA nucleotidyltransferase with a multicopy plasmid carrying the rnd+ gene leads to extremely slow growth due to elevated levels of RNase D activity. Analysis of such a slow-growing strain revealed that less tRNA is present in the cell and that the tRNA that could be recovered is substantially damaged. These studies demonstrate that RNase D can act at the 3' terminus of tRNA in vivo, and they support the conclusion that RNase D participates in tRNA metabolism.  相似文献   

8.
A new method to determine oligo- and poly(ADP-ribosyl)ated enzymes and proteins in vitro has been developed. This method is based on the facts that in Mg2+-depleted condition automodification of poly(ADP-ribose)polymerase is minimized and exogenously added acceptor protein is oligo(ADP-ribosyl)ated predominantly, and in Mg2+-fortified conditions the exogenous acceptor can be poly(ADP-ribosyl)ated. When 13 proteins, including several enzymes, were subjected to this system, dimeric bovine seminal RNase and micrococcal nuclease were found to be oligo(ADP-ribosyl)ated under Mg2+-depleted conditions but their activity was unchanged. Under Mg2+-fortified conditions however, the RNase was deactivated concomitantly with its extensive poly(ADP-ribosyl)ation. When dimeric bovine seminal RNase was monomerized in advance by treatment with dithiothreitol and urea, the enzyme lost ADP-ribose-accepting ability in spite of a significant residual enzyme activity. As used here successfully, the Mg2+-depleted and Mg2+-fortified ADP-ribosylation and subsequent chromatographic analysis of various proteins and enzymes might be an useful method for proving their oligo- and poly(ADP-ribosyl)ation.  相似文献   

9.
The RNase P cleavage reaction was studied as a function of the number of base-pairs in the acceptor-stem and/or T-stem of a natural tRNA precursor, the tRNA(Tyr)Su3 precursor. Our data suggest that the location of the Escherichia coli RNase P cleavage site does not depend merely on the lengths of the acceptor-stem and T-stem as previously suggested. Surprisingly, we find that precursors with only four base-pairs in the acceptor-stem are cleaved by M1 RNA and by holoenzyme. Furthermore, we show that both disruption of base-pairing, and alteration of the nucleotide sequence (without disruption of base-pairing) proximal to the cleavage site result in aberrant cleavage. Thus, the identity of the nucleotides near the cleavage site is important for recognition of the cleavage site rather than base-pairing. The important nucleotides are those at positions -2, -1, +1, +72, +73 and +74. We propose that the nucleotide at position +1 functions as a guiding nucleotide. These results raise the possibility that Mg2+ binding near the cleavage site is dependent on the identity of the nucleotides at these positions. In addition, we show that disruption of base-pairing in the acceptor-stem affects both Michaelis-Menten constants, Km and kcat.  相似文献   

10.
Purification and characterization of Escherichia coli RNase T   总被引:7,自引:0,他引:7  
RNase T, a nuclease thought to be involved in end-turnover of tRNA, has been purified about 4,000-fold from extracts of Escherichia coli. At this stage of purification, the enzyme was judged to be at least 95% pure based on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The native molecular weight of RNase T determined from gel filtration and sedimentation analyses is about 50,000, whereas the monomer molecular weight determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis is 25,000, suggesting that the protein is an alpha 2 dimer. Purified RNase T is extremely sensitive to inactivation by oxidation, sulfhydryl group reagents, and temperature. The ribonuclease activity against tRNA-C-C-[14C]A is optimal at pH 8-9 in the presence of 2-5 mM MgCl2 and ionic strengths of less than 50mM. Although RNase T is highly specific for intact tRNA-C-C-A as a substrate and can hydrolyze all species in a mixed population of tRNA, it is inhibited by other RNAs, such as poly(A), rRNA, 5 S RNA, and tRNA-C-C. RNase T is an exoribonuclease which initiates attack at a free 3' terminus of tRNA and releases AMP; aminoacyl-tRNA is not a substrate. The role of RNase T in the end-turnover of tRNA and its possible involvement in other aspects of RNA metabolism are discussed.  相似文献   

11.
Sun W  Li G  Nicholson AW 《Biochemistry》2004,43(41):13054-13062
The ribonuclease III superfamily represents a structurally distinct group of double-strand-specific endonucleases with essential roles in RNA maturation, RNA decay, and gene silencing. Bacterial RNase III orthologs exhibit the simplest structures, with an N-terminal nuclease domain and a C-terminal double-stranded RNA-binding domain (dsRBD), and are active as homodimers. The nuclease domain contains conserved acidic amino acids, which in Escherichia coli RNase III are E38, E41, D45, E65, E100, D114, and E117. On the basis of a previously reported crystal structure of the nuclease domain of Aquifex aeolicus RNase III, the E41, D114, and E117 side chains of E. coli RNase III are expected to be coordinated to a divalent metal ion (Mg(2+) or Mn(2+)). It is shown here that the RNase III[E41A] and RNase III[D114A] mutants exhibit catalytic activities in vitro in 10 mM Mg(2+) buffer that are comparable to that of the wild-type enzyme. However, at 1 mM Mg(2+), the activities are significantly lower, which suggests a weakened affinity for metal. While RNase III[E41A] and RNase III[D114A] have K(Mg) values that are approximately 2.8-fold larger than the K(Mg) of RNase III (0.46 mM), the RNase III[E41A/D114A] double mutant has a K(Mg) of 39 mM, suggesting a redundant function for the two side chains. RNase III[E38A], RNase III[E65A], and RNase III[E100A] also require higher Mg(2+) concentrations for optimal activity, with RNase III[E100A] exhibiting the largest K(Mg). RNase III[D45A], RNase III[D45E], and RNase III[D45N] exhibit negligible activities, regardless of the Mg(2+) concentration, indicating a stringent functional requirement for an aspartate side chain. RNase III[D45E] activity is partially rescued by Mn(2+). The potential functions of the conserved acidic residues are discussed in the context of the crystallographic data and proposed catalytic mechanisms.  相似文献   

12.
A synthetic tRNA precursor analog containing the structural elements of Escherichia coli tRNA(Phe) was characterized as a substrate for E. coli ribonuclease P and for M1 RNA, the catalytic RNA subunit. Processing of the synthetic precursor exhibited a Mg2+ dependence quite similar to that of natural tRNA precursors such as E. coli tRNA(Tyr) precursor. It was found that Sr2+, Ca2+, and Ba2+ ions promoted processing of the dimeric precursor at Mg2+ concentrations otherwise insufficient to support processing; very similar behavior was noted for E. coli tRNA(Tyr). As noted previously for natural tRNA precursors, the absence of the 3'-terminal CA sequence in the synthetic precursor diminished the facility of processing of this substrate by RNase P and M1 RNA. A study of the Mg2+ dependence of processing of the synthetic tRNA dimeric substrate radiolabeled between C75 and A76 provided unequivocal evidence for an alteration in the actual site of processing by E. coli RNase P as a function of Mg2+ concentration. This property was subsequently demonstrated to obtain (Carter, B. J., Vold, B.S., and Hecht, S. M. (1990) J. Biol. Chem. 265, 7100-7103) for a mutant Bacillus subtilis tRNAHis precursor containing a potential A-C base pair at the end of the acceptor stem.  相似文献   

13.
Purification and characterization of RNase P from Clostridium sporogenes   总被引:1,自引:0,他引:1  
RNase P is a multi-subunit enzyme responsible for the accurate processing of the 5' terminus of all tRNAs. The RNA subunit from Clostridium sporogenes has been partially purified and characterized. The RNA is approximately 400 nucleotides long and makes a precise endonucleolytic cleavage at the mature 5' terminus of tRNA. The RNA requires moderate concentrations of Mg2+ (20 mM) and relatively high concentrations of NH4Cl (800 mM) for optimal activity. Mn2+ effectively substitutes for Mg2+ at 2 mM. Zn2+, Ni2+, Ca2+, and Co2+ are ineffective at stimulating activity. Monovalent ions are, in general, more effective the greater the ionic radius (NH+4 greater than Cs greater than Rb greater than K greater than Na). In contrast to the activity of Bacillus subtilis, C. sporogenes RNase P RNA is significant more active in (NH4)2SO4 than in NH4Cl.  相似文献   

14.
Escherichia coli RNase R, a 3' --> 5' exoribonuclease homologous to RNase II, was overexpressed and purified to near homogeneity in its native untagged form by a rapid procedure. The purified enzyme was free of nucleic acid. It migrated upon gel filtration chromatography as a monomer with an apparent molecular mass of approximately 95 kDa, in close agreement with its expected size based on the sequence of the rnr gene. RNase R was most active at pH 7.5-9.5 in the presence of 0.1-0.5 mm Mg(2+) and 50-500 mm KCl. The enzyme shares many catalytic properties with RNase II. Both enzymes are nonspecific processive ribonucleases that release 5'-nucleotide monophosphates and leave a short undigested oligonucleotide core. However, whereas RNase R shortens RNA processively to di- and trinucleotides, RNase II becomes more distributive when the length of the substrate reaches approximately 10 nucleotides, and it leaves an undigested core of 3-5 nucleotides. Both enzymes work on substrates with a 3'-phosphate group. RNase R and RNase II are most active on synthetic homopolymers such as poly(A), but their substrate specificities differ. RNase II is more active on poly(A), whereas RNase R is much more active on rRNAs. Neither RNase R nor RNase II can degrade a complete RNA-RNA or DNA-RNA hybrid or one with a 4-nucleotide 3'-RNA overhang. RNase R differs from RNase II in that it cannot digest DNA oligomers and is not inhibited by such molecules, suggesting that it does not bind DNA. Although the in vivo function of RNase R is not known, its ability to digest certain natural RNAs may explain why it is maintained in E. coli together with RNase II.  相似文献   

15.
One of the essential maturation steps to yield functional tRNA molecules is the removal of 3'-trailer sequences by RNase Z. After RNase Z cleavage the tRNA nucleotidyl transferase adds the CCA sequence to the tRNA 3'-terminus, thereby generating the mature tRNA. Here we investigated whether a terminal CCA triplet as 3'-trailer or embedded in a longer 3'-trailer influences cleavage site selection by RNase Z using three activities: a recombinant plant RNase Z, a recombinant archaeal RNase Z and an RNase Z active wheat extract. A trailer of only the CCA trinucleotide is left intact by the wheat extract RNase Z but is removed by the recombinant plant and archaeal enzymes. Thus the CCA triplet is not recognized by the RNase Z enzyme itself, but rather requires cofactors still present in the extract. In addition, we investigated the influence of acceptor stem length on cleavage by RNase Z using variants of wild-type tRNATyr. While the wild type and the variant with 8 base pairs in the acceptor stem were processed efficiently by all three activities, variants with shorter and longer acceptor stems were poor substrates or were not cleaved at all.  相似文献   

16.
In contrast to Escherichia coli, where all tRNAs have the CCA motif encoded by their genes, two classes of tRNA precursors exist in the Gram-positive bacterium Bacillus subtilis. Previous evidence had shown that ribonuclease Z (RNase Z) was responsible for the endonucleolytic maturation of the 3' end of those tRNAs lacking an encoded CCA motif, accounting for about one-third of its tRNAs. This suggested that a second pathway of tRNA maturation must exist for those precursors with an encoded CCA motif. In this paper, we examine the potential role of the four known exoribonucleases of B.subtilis, PNPase, RNase R, RNase PH and YhaM, in this alternative pathway. In the absence of RNase PH, precursors of CCA-containing tRNAs accumulate that are a few nucleotides longer than the mature tRNA species observed in wild-type strains or in the other single exonuclease mutants. Thus, RNase PH plays an important role in removing the last few nucleotides of the tRNA precursor in vivo. The presence of three or four exonuclease mutations in a single strain results in CCA-containing tRNA precursors of increasing size, suggesting that, as in E.coli, the exonucleolytic pathway consists of multiple redundant enzymes. Assays of purified RNase PH using in vitro-synthesized tRNA precursor substrates suggest that RNase PH is sensitive to the presence of a CCA motif. The division of labor between the endonucleolytic and exonucleolytic pathways observed in vivo can be explained by the inhibition of RNase Z by the CCA motif in CCA-containing tRNA precursors and by the inhibition of exonucleases by stable secondary structure in the 3' extensions of the majority of CCA-less tRNAs.  相似文献   

17.
Elongation factor Tu (EF-Tu) from Escherichia coli carrying the mutation G222D is unable to hydrolyze GTP on the ribosome and to sustain polypeptide synthesis at near physiological Mg2+ concentration, although the interactions with guanine nucleotides and aminoacyl-tRNA are not changed significantly. GTPase and polypeptide synthesis activities are restored by increasing the Mg2+ concentration. Here we report a pre-steady-state kinetic study of the binding of the ternary complexes of wild-type and mutant EF-Tu with Phe-tRNA(Phe) and GTP to the A site of poly(U)-programed ribosomes. The kinetic parameters of initial binding to the ribosome and subsequent codon-anticodon interaction are similar for mutant and wild-type EF-Tu, independent of the Mg2+ concentration, suggesting that the initial interaction with the ribosome is not affected by the mutation. Codon recognition following initial binding is also not affected by the mutation. The main effect of the G222D mutation is the inhibition, at low Mg2+ concentration, of codon-induced structural transitions of the tRNA and, in particular, their transmission to EF-Tu that precedes GTP hydrolysis and the subsequent steps of A-site binding. Increasing the Mg2+ concentration to 10 mM restores the complete reaction sequence of A-site binding at close to wild-type rates. The inhibition of the structural transitions is probably due to the interference of the negative charge introduced by the mutation with negative charges either of the 3' terminus of the tRNA, bound in the vicinity of the mutated amino acid in domain 2 of EF-Tu, or of the ribosome. Increasing the Mg2+ concentration appears to overcome the inhibition by screening the negative charges.  相似文献   

18.
Two RNases H, Mg2+- and Mn2+-dependent RNases H, are present in extracts of chick embryo. These RNases H can be separated by phosphocellulose column chromatography. Mg2+-dependent RNase H was purified over 900-fold and Mn2+-dependent RNase H over 1,700-fold from chick embryo extracts. The molecular weight of the purified Mg2+-dependent RNase H was about 40,000 and of the Mn2+-dependent RNase H about 120,000, when estimated by gel filtration. Mg2+-dependent RNase H exhibits maximal activity at pH 9.5, and requires 15 to 20 mM Mg2+ for maximal activity, whereas Mn2+-dependent RNase H is most active at pH 8.5, and is maximally active at the concentration of 0.4 mM Mn2+, and has some activity with Mg2+. Both enzymes require a sulfhydryl reagent for maximal activity. Mn2+-dependent RNase H was inhibited by o-phenanthroline, pyrophosphate, and those polyamines tested, whereas Mg2+-dependent enzyme was not, although it was inhibited by NaF. Both RNases H liberate a mixture of oligonucleotides with 5'-phosphate and 3'-hydroxyl termini endonucleolytically.  相似文献   

19.
20.
We have detected by nucleotide analog interference mapping (NAIM) purine N7 functional groups in Escherichia coli RNase P RNA that are important for tRNA binding under moderate salt conditions (0.1 M Mg2+, 0.1 M NH4+). The majority of identified positions represent highly or universally conserved nucleotides. Our assay system allowed us, for the first time, to identify c7-deaza interference effects at two G residues (G292, G306). Several c7-deazaadenine interference effects (A62, A65, A136, A249, A334, A351) have also been identified in other studies performed at very different salt concentrations, either selecting for substrate binding in the presence of 0.025 M Ca2+ and 1 M NH4+ or self-cleavage of a ptRNA-RNase P RNA conjugate in the presence of 3 M NH4+ or Na+. This indicates that these N7 functional groups play a key role in the structural organization of ribozyme-substrate and -product complexes. We further observed that a c7-deaza modification at A76 of tRNA interferes with tRNA binding to and ptRNA processing by E. coli RNase P RNA. This finding combined with the strong c7-deaza interference at G292 of RNase P RNA supports a model in which substrate and product binding to E. coli RNase P RNA involves the formation of intermolecular base triples (A258-G292-C75 and G291-G259-A76).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号