首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The impact of three different soil DNA extraction methods on bacterial diversity was evaluated using PCR-based 16S ribosomal DNA analysis. DNA extracted directly from three soils showing contrasting physicochemical properties was subjected to amplified ribosomal DNA restriction analysis and ribosomal intergenic spacer analysis (RISA). The obtained RISA patterns revealed clearly that both the phylotype abundance and the composition of the indigenous bacterial community are dependent on the DNA recovery method used. In addition, this effect was also shown in the context of an experimental study aiming to estimate the impact on soil biodiversity of the application of farmyard manure or sewage sludge onto a monoculture of maize for 15 years.  相似文献   

2.
The short term impact of 50 μM Hg(II) on soil bacterial community structure was evaluated in different microenvironments of a silt loam soil in order to determine the contribution of bacteria located in these microenvironments to the overall bacterial response to mercury spiking. Microenvironments and associated bacteria, designated as bacterial pools, were obtained by successive soil washes to separate the outer fraction, containing loosely associated bacteria, and the inner fraction, containing bacteria retained into aggregates, followed by a physical fractionation of the inner fraction to separate aggregates according to their size (size fractions). Indirect enumerations of viable heterotrophic (VH) and resistant (Hg(R)) bacteria were performed before and 30 days after mercury spiking. A ribosomal intergenic spacer analysis (RISA), combined with multivariate analysis, was used to compare modifications at the community level in the unfractionated soil and in the microenvironments. The spatial heterogeneity of the mercury impact was revealed by a higher increase of Hg(R) numbers in the outer fraction and in the coarse size fractions. Furthermore, shifts in RISA patterns of total community DNA indicated changes in the composition of the dominant bacterial populations in response to Hg(II) stress in the outer and in the clay size fractions. The heterogeneity of metal impact on indigenous bacteria, observed at a microscale level, is related to both the physical and chemical characteristics of the soil microenvironments governing mercury bioavailability and to the bacterial composition present before spiking.  相似文献   

3.
Adaptation to nickel of bacterial communities of two extreme neocaledonian soils (an ultramafic soil and an acidic soil) was investigated by nickel spiking and compared with adaptation in a non-neocaledonian soil used as reference. Soil microcosms were amended with nickel chloride (NiCl2), and bacterial community structure was analysed with the ribosomal intergenic spacer analysis (RISA) technique. Then, bacterial populations that respond to nickel stress were identified by cloning and sequencing. In the ultramafic soil, a shift occurred on day zero on the assay profiles and consisted of the emergence of a bacterial group closely related to the Ralstonia/Oxalobacter/Burkholderia group. It is hypothesized that NiCl2 had a physico-chemical impact on soil structure. Fourteen days after nickel spiking, another shift occurred in the two soils that concerned a bacterial group belonging to the Actinomycete group. Only a few changes occurred in the bacterial community structure of the neocaledonian soils compared with those of the reference soil, which is more affected by nickel spiking. These results suggest that neocaledonian soil bacteria are particularly well adapted to nickel.  相似文献   

4.
A method was developed for enriching bacterial cells from soybean stems which was recalcitrant for a culture-independent analysis of bacterial community due to the interference with plant DNA. Stem homogenates were fractionated by a series of differential centrifugations followed by a Nycodenz density gradient centrifugation. The efficiency of bacterial cell enrichment was assessed by ribosomal intergenic spacer analysis (RISA). The intensity and the number of bacterial amplicons of RISA were markedly increased in the DNA extracted from the enriched bacterial cells compared to that in the DNA directly extracted from soybean stems. The phylogenetic diversity of the enriched bacterial cells was evaluated by analyzing a clone library of 16S rRNA gene in comparison with those of the culturable fractions of the enriched and non-enriched stem-associated bacteria, endophytic bacteria, and epiphytic bacteria. The results indicated that the method was able to enrich both endophytic and epiphytic bacteria from soybean stems, and was useful to assess the bacterial diversity based on a 16S rRNA gene clone library. When the sequence data from all clones (1,332 sequences) were combined, 72 operational taxonomic units were affiliated with Proteobacteria (Alpha-, Beta-, and Gammaproteobacteria), Actinobacteria, Firmicutes, and Bacteroidetes, which also provided the most comprehensive set of data on the bacterial diversity in the aerial parts of soybeans.  相似文献   

5.
Cultivation independent analyses of soil microbial community structures are frequently used to describe microbiological soil characteristics. This approach is based on direct extraction of total soil DNA followed by PCR amplification of selected marker genes and subsequent genetic fingerprint analyses. Semi-automated genetic fingerprinting techniques such as terminal restriction fragment length polymorphism (T-RFLP) and ribosomal intergenic spacer analysis (RISA) yield high-resolution patterns of highly diverse soil microbial communities and hold great potential for use in routine soil quality monitoring, when rapid high throughput screening for differences or changes is more important than phylogenetic identification of organisms affected. Our objective was to perform profound statistical analysis to evaluate the cultivation independent approach and the consistency of results from T-RFLP and RISA. As a model system, we used two different heavy metal treated soils from an open top chamber experiment. Bacterial T-RFLP and RISA profiles of 16S rDNA were converted into numeric data matrices in order to allow for detailed statistical analyses with cluster analysis, Mantel test statistics, Monte Carlo permutation tests and ANOVA. Analyses revealed that soil DNA-contents were significantly correlated with soil microbial biomass in our system. T-RFLP and RISA yielded highly consistent and correlating results and both allowed to distinguish the four treatments with equal significance. While RISA represents a fast and general fingerprinting method of moderate cost and labor intensity, T-RFLP is technically more demanding but offers the advantage of phylogenetic identification of detected soil microorganisms. Therefore, selection of either of these methods should be based on the specific research question under investigation.  相似文献   

6.
To unravel the existence of dominant bacterial population in the paddy fields of Eastern Uttar Pradesh, India and their relation to the prevailing soil physicochemistry using multivariate statistical analyses, a cumulative culture-independent 16S rRNA based Polymerase chain reaction-Denaturing gradient gel electrophoresis (PCR-DGGE) and a 16S-23S ribosomal intergenic spacer analysis (RISA) have been performed. Detrended correspondence analysis (DCA) and principal component analysis (PCA) biplot analyses were used to assess the relation between soil bacterial population and its physicochemistry. DCA analysis exhibited a strong dependence of bacterial existence on the soil physicochemical variables, such as organic matter, total nitrogen, inorganic nutrients, temperatures, and moisture status. Soil dehydrogenase activity (DHA) was assessed to check the metabolic activity of all soil samples which showed a range of 0.012–0.050 nmol TPF g?1 min?1 with significant variation (p < 0.01). Out of 96 bands excised, 45 different phylotypes were obtained using both techniques which elucidated the abundance of Cyanobacteria over other soil bacterial population. Scytonema sp., Leptolyngbya sp. and different uncultured cyanobacterial species were the major genera found. Profiling data obtained through PCR-DGGE and RISA were used in alpha diversity and rarefaction curve analysis suggested site 6 (Chandauli) as the most diversity rich site. Thus extensive dataset of weighted and unweighted variables generated through DGGE and RISA coupled with metabolic functioning of soil and multivariate analyses provided an excellent opportunity to map the soil microbial structure in paddy fields and their regulation with existing soil environment.  相似文献   

7.
Maintenance of soil functioning following erosion of microbial diversity   总被引:3,自引:0,他引:3  
The paradigm that soil microbial communities, being very diverse, have high functional redundancy levels, so that erosion of microbial diversity is less important for ecosystem functioning than erosion of plant or animal diversity, is often taken for granted. However, this has only been demonstrated for decomposition/respiration functions, performed by a large proportion of the total microbial community, but not for specialized microbial groups. Here, we determined the impact of a decrease in soil microbial diversity on soil ecosystem processes using a removal approach, in which less abundant species were removed preferentially. This was achieved by inoculation of sterile soil microcosms with serial dilutions of a suspension obtained from the same non-sterile soil and subsequent incubation, to enable recovery of community size. The sensitivity to diversity erosion was evaluated for three microbial functional groups with known contrasting taxonomic diversities (ammonia oxidizers < denitrifiers < heterotrophs). Diversity erosion within each functional group was characterized using molecular fingerprinting techniques: ribosomal intergenic spacer analysis (RISA) for the eubacterial community, denaturing gradient gel electrophoresis (DGGE) analysis of nirK genes for denitrifiers, and DGGE analysis of 16S rRNA genes for betaproteobacterial ammonia oxidizers. In addition, we simulated the impact of the removal approach by dilution on the number of soil bacterial species remaining in the inoculum using values of abundance distribution of bacterial species reported in the literature. The reduction of the diversity of the functional groups observed from genetic fingerprints did not impair the associated functioning of these groups, i.e. carbon mineralization, denitrification and nitrification. This was remarkable, because the amplitude of diversity erosion generated by the dilution approach was huge (level of bacterial species loss was estimated to be around 99.99% for the highest dilution). Our results demonstrate that the vast diversity of the soil microbiota makes soil ecosystem functioning largely insensitive to biodiversity erosion even for functions performed by specialized groups.  相似文献   

8.
Microorganisms associated with the stems and roots of nonnodulated (Nod(-)), wild-type nodulated (Nod(+)), and hypernodulated (Nod(++)) soybeans [Glycine max (L.) Merril] were analyzed by ribosomal intergenic transcribed spacer analysis (RISA) and automated RISA (ARISA). RISA of stem samples detected no bands specific to the nodulation phenotype, whereas RISA of root samples revealed differential bands for the nodulation phenotypes. Pseudomonas fluorescens was exclusively associated with Nod(+) soybean roots. Fusarium solani was stably associated with nodulated (Nod(+) and Nod(++)) roots and less abundant in Nod(-) soybeans, whereas the abundance of basidiomycetes was just the opposite. The phylogenetic analyses suggested that these basidiomycetous fungi might represent a root-associated group in the Auriculariales. Principal-component analysis of the ARISA results showed that there was no clear relationship between nodulation phenotype and bacterial community structure in the stem. In contrast, both the bacterial and fungal community structures in the roots were related to nodulation phenotype. The principal-component analysis further suggested that bacterial community structure in roots could be classified into three groups according to the nodulation phenotype (Nod(-), Nod(+), or Nod(++)). The analysis of root samples indicated that the microbial community in Nod(-) soybeans was more similar to that in Nod(++) soybeans than to that in Nod(+) soybeans.  相似文献   

9.
Two major emerging bands (a 350-bp band and a 650-bp band) within the RISA (ribosomal intergenic spacer analysis) profile of a soil bacterial community spiked with Hg(II) were selected for further identification of the populations involved in the response of the community to the added metal. The bands were cut out from polyacrylamide gels, cloned, characterized by restriction analysis, and sequenced for phylogenetic affiliation of dominant clones. The sequences were the intergenic spacer between the rrs and rrl genes and the first 130 nucleotides of the rrl gene. Comparison of sequences derived from the 350-bp band to The GenBank database permitted us to identify the bacteria as being mostly close relatives to low G+C firmicutes (Clostridium-like genera), while the 650-bp band permitted us to identify the bacteria as being mostly close relatives to beta-proteobacteria (Ralstonia-like genera). Oligonucleotide probes specific for the identified dominant bacteria were designed and hybridized with the RISA profiles derived from the control and spiked communities. These studies confirmed the contribution of these populations to the community response to the metal. Hybridization of the RISA profiles from subcommunities (bacterial pools associated with different soil microenvironments) also permitted to characterize the distribution and the dynamics of these populations at a microscale level following mercury spiking.  相似文献   

10.
To address the link between soil microbial community composition and soil processes, we investigated the microbial communities in forest floors of two forest types that differ substantially in nitrogen availability. Cedar-hemlock (CH) and hemlock-amabilis fir (HA) forests are both common on northern Vancouver Island, B.C., occurring adjacently across the landscape. CH forest floors have low nitrogen availability and HA high nitrogen availability. Total microbial biomass was assessed using chloroform fumigation-extraction and community composition was assessed using several cultivation-independent approaches: denaturing gradient gel electrophoresis (DGGE) of the bacterial communities, ribosomal intergenic spacer analysis (RISA) of the bacterial and fungal communities, and phospholipid fatty acid (PLFA) profiles of the whole microbial community. We did not detect differences in the bacterial communities of each forest type using DGGE and RISA, but differences in the fungal communities were detected using RISA. PLFA analysis detected subtle differences in overall composition of the microbial community between the forest types, as well as in particular groups of organisms. Fungal PLFAs were more abundant in the nitrogen-poor CH forests. Bacteria were proportionally more abundant in HA forests than CH in the lower humus layer, and Gram-positive bacteria were proportionally more abundant in HA forests irrespective of layer. Bacterial and fungal communities were distinct in the F, upper humus, and lower humus layers of the forest floor and total biomass decreased in deeper layers. These results indicate that there are distinct patterns in forest floor microbial community composition at the landscape scale, which may be important for understanding nutrient availability to forest vegetation.  相似文献   

11.
Bacterioplankton dynamics at Helgoland Roads (54 degrees 11.3'N, 7 degrees 54.0'E) in the North Sea over the winter-spring transition were investigated. The bacterial community was analyzed and correlated with phytoplankton community data and abiotic parameters. The community structure was analyzed by ribosomal intergenic spacer analysis (RISA) and by denaturing gradient gel electrophoresis (DGGE) of 16S rRNA genes followed by DNA sequence analysis. The linkage of abiotic and biotic environmental factors and bacterial community as well as phylotypes (sequenced DGGE bands) was analyzed by the ordination technique of canonical correspondence analysis (CCA). Generally, an influence of temperature and phytoplankton on the bacterial community during the sampling period was observed. Additionally, multivariate analysis by factors revealed an influence on specific bacterial phylotypes of these factors. Overall, results indicate that changes in the bacterial community were caused not only by abiotic factors but also by the phytoplankton community.  相似文献   

12.
DNA fingerprinting analysis such as amplified ribosomal DNA restriction analysis (ARDRA), repetitive extragenic palindromic PCR (rep-PCR), ribosomal intergenic spacer analysis (RISA), and denaturing gradient gel electrophoresis (DGGE) are frequently used in various fields of microbiology. The major difficulty in DNA fingerprinting data analysis is the alignment of multiple peak sets. We report here an R program for a clustering-based peak alignment algorithm, and its application to analyze various DNA fingerprinting data, such as ARDRA, rep-PCR, RISA, and DGGE data. The results obtained by our clustering algorithm and by BioNumerics software showed high similarity. Since several R packages have been established to statistically analyze various biological data, the distance matrix obtained by our R program can be used for subsequent statistical analyses, some of which were not previously performed but are useful in DNA fingerprinting studies.  相似文献   

13.
采用基于PCR扩增的核糖体间隔区分析(RISA)、变性梯度凝胶电泳(DGGE)和双向电泳(2D-PAGE)3种分子生态学技术对大豆根际土壤细菌多样性比对分析.结果表明:2D-PAGE技术得到的土壤细菌多样性(基因点)最丰富,其次为DGGE技术(基因片段),RISA技术(基因片段)最低.RISA技术得到的条带数最少,但结...  相似文献   

14.
Two major emerging bands (a 350-bp band and a 650-bp band) within the RISA (ribosomal intergenic spacer analysis) profile of a soil bacterial community spiked with Hg(II) were selected for further identification of the populations involved in the response of the community to the added metal. The bands were cut out from polyacrylamide gels, cloned, characterized by restriction analysis, and sequenced for phylogenetic affiliation of dominant clones. The sequences were the intergenic spacer between the rrs and rrl genes and the first 130 nucleotides of the rrl gene. Comparison of sequences derived from the 350-bp band to The GenBank database permitted us to identify the bacteria as being mostly close relatives to low G+C firmicutes (Clostridium-like genera), while the 650-bp band permitted us to identify the bacteria as being mostly close relatives to β-proteobacteria (Ralstonia-like genera). Oligonucleotide probes specific for the identified dominant bacteria were designed and hybridized with the RISA profiles derived from the control and spiked communities. These studies confirmed the contribution of these populations to the community response to the metal. Hybridization of the RISA profiles from subcommunities (bacterial pools associated with different soil microenvironments) also permitted to characterize the distribution and the dynamics of these populations at a microscale level following mercury spiking.  相似文献   

15.
Forefields of two receding glaciers were sampled along either a 150 or 200 m long transect at identical spatial intervals for assessment of soil microbial activity and community diversity trends. The forefields belonged to the Dammaglacier (forefield area is 157 ha, 2000 m above sea level) and Rotfirnglacier (100 ha, 2200 m) and at the time of sampling were receding at an estimated rate of 8 and 10 m yr(-1) over the past 5 years, respectively. Direct counting of bacteria (DAPI staining), assessment of dehydrogenase activity (DH), and fluorescein diacetate hydrolysis activity (FDA) were performed to estimate bacteria number and soil microbial activity. Along the Dammaglacier forefield (from youngest to oldest soil), bacteria number (8.21 x 10(7) to 1.49 x 10(9) cells g(-1) soil), DH activity (0 to 61 mg TTC reduced g(-1) soil h(-1)), and FDA activity (0 to 100 mg fluorescein produced g-1 soil h-1) increased, suggesting the development of microbial populations increasing in number and activity. The Rotfirn forefield exhibited similar trends per gram of soil in bacteria number (1.13 x 10(8) to 5.93 x 10(9) cells), DH activity (0 to 36 mg TTC reduced), and FDA activity (2 to 70 mg fluorescein produced), but with more variability among samples than the Damma forefield samples. Molecular assessment of bacterial diversity included denaturing gradient gel electrophoresis (DGGE) and ribosomal intergenic spacer analysis (RISA) of soil DNA. DGGE and RISA revealed that the composition and succession of bacterial populations were different in both forefields. Comparison of Shannon diversity index values indicated that all populations sampled from the Damma forefield were significantly different (p < 0.05). Conversely, similar populations existed in the Rotfirn forefield succession. Overall, the results indicate that diverse bacterial assemblages increasing in number and activity characterize these glacier forefield soils with both forefield successions exhibiting differing modes of bacterial community establishment.  相似文献   

16.
Accessing the soil metagenome for studies of microbial diversity   总被引:1,自引:0,他引:1  
Soil microbial communities contain the highest level of prokaryotic diversity of any environment, and metagenomic approaches involving the extraction of DNA from soil can improve our access to these communities. Most analyses of soil biodiversity and function assume that the DNA extracted represents the microbial community in the soil, but subsequent interpretations are limited by the DNA recovered from the soil. Unfortunately, extraction methods do not provide a uniform and unbiased subsample of metagenomic DNA, and as a consequence, accurate species distributions cannot be determined. Moreover, any bias will propagate errors in estimations of overall microbial diversity and may exclude some microbial classes from study and exploitation. To improve metagenomic approaches, investigate DNA extraction biases, and provide tools for assessing the relative abundances of different groups, we explored the biodiversity of the accessible community DNA by fractioning the metagenomic DNA as a function of (i) vertical soil sampling, (ii) density gradients (cell separation), (iii) cell lysis stringency, and (iv) DNA fragment size distribution. Each fraction had a unique genetic diversity, with different predominant and rare species (based on ribosomal intergenic spacer analysis [RISA] fingerprinting and phylochips). All fractions contributed to the number of bacterial groups uncovered in the metagenome, thus increasing the DNA pool for further applications. Indeed, we were able to access a more genetically diverse proportion of the metagenome (a gain of more than 80% compared to the best single extraction method), limit the predominance of a few genomes, and increase the species richness per sequencing effort. This work stresses the difference between extracted DNA pools and the currently inaccessible complete soil metagenome.  相似文献   

17.
Separation of bacterial cells from soil is a key step in the construction of metagenomic BAC libraries with large DNA inserts. Our results showed that when combined with sodium pyro-phosphate and homogenization for soil dispersion, sucrose density gradient centrifugation (SDGC) was more effective at separating bacteria from soil than was low speed centrifugation (LSC). More than 70% of the cells, along with some soil colloids, were recovered with one round of centrifugation. A solution of 0.8% NaCl was used to resuspend these cell and soil pellets for purification with nycodenz density gradient centrifugation (NDGC). After purification, more than 30% of the bacterial cells in the primary soil were extracted. This procedure effectively removed soil contamination and yielded sufficient cells for high molecular weight (HMW) DNA isolation. Ribosomal intergenic spacer analysis (RISA) showed that the microbial community structure of the extracted cells was similar to that of the primary soil, suggesting that this extraction procedure did not significantly change the the soil bacteria community structure. HMW DNA was isolated from bacterial cells extracted from red soil for metagenomic BAC library construction. This library contained DNA inserts of more than 200 Mb with an average size of 75 kb.  相似文献   

18.
The genetic structures of total bacterial and pseudomonad communities were characterized in rhizosphere soil and rhizoplane+root tissues of tobacco wild type and a ferritin overexpressor transgenic line (P6) by a cultivation-independent method using directly extracted DNA at the end of three consecutive plant cultures. The structure of total bacterial communities was characterized by automated ribosomal intergenic spacer analysis (A-RISA), and that of pseudomonad communities was characterized by PCR-restriction fragment length polymorphism (PCR-RFLP) from DNA amplified with specific primers. The structure of total bacterial communities was significantly modified in the rhizosphere soil by the overaccumulation of iron in the tobacco transgenic P6 line at the first culture, to a lesser extent at the second culture, and not at all at the third culture. No significant difference was recorded between the total communities associated with the roots (rhizoplane+root tissues) of the two plant genotypes in any of the cultures. In contrast, the difference in pseudomonad structure between the two plant genotypes increased with successive culture at the root level, but was not detected at a significant level in the rhizosphere soil. The impact of iron overaccumulation by the tobacco transgenic P6 line on pseudomonads supports previous findings on the importance of iron competition among fluorescent pseudomonads.  相似文献   

19.
The objective of this study was to explore the long-term effects of different organic and inorganic fertilizers on activity and composition of the denitrifying and total bacterial communities in arable soil. Soil from the following six treatments was analyzed in an experimental field site established in 1956: cattle manure, sewage sludge, Ca(NO3)2, (NH4)2SO4, and unfertilized and unfertilized bare fallow. All plots but the fallow were planted with corn. The activity was measured in terms of potential denitrification rate and basal soil respiration. The nosZ and narG genes were used as functional markers of the denitrifying community, and the composition was analyzed using denaturing gradient gel electrophoresis of nosZ and restriction fragment length polymorphism of narG, together with cloning and sequencing. A fingerprint of the total bacterial community was assessed by ribosomal intergenic spacer region analysis (RISA). The potential denitrification rates were higher in plots treated with organic fertilizer than in those with only mineral fertilizer. The basal soil respiration rates were positively correlated to soil carbon content, and the highest rates were found in the plots with the addition of sewage sludge. Fingerprints of the nosZ and narG genes, as well as the RISA, showed significant differences in the corresponding communities in the plots treated with (NH4)2SO4 and sewage sludge, which exhibited the lowest pH. In contrast, similar patterns were observed among the other four treatments, unfertilized plots with and without crops and the plots treated with Ca(NO3)2 or with manure. This study shows that the addition of different fertilizers affects both the activity and the composition of the denitrifying communities in arable soil on a long-term basis. However, the treatments in which the denitrifying and bacterial community composition differed the most did not correspond to treatments with the most different activities, showing that potential activity was uncoupled to community composition.  相似文献   

20.
Molecular diversity of rumen bacteria belonging to the species Selenomonas ruminantium was evaluated by biochemical and PCR analyses targeted at the 16S rRNA operon and lactate dehydrogenase gene. While extremely variable in metabolic characteristics, two different RISA (ribosomal intergenic spacer analysis), and five lactate dehydrogenase gene RFLP profiles were observed among the twelve strains studied. The strains showed very limited variability ARDRA ( amplified ribosomal DNA restriction analysis) when two different profiles were observed only. 16S rDNA sequence comparisons indicate complex genetic structure within S.ruminantium population.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号