首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Proteins inserted into the cell surface by exocytosis are thought to be retrieved by compensatory endocytosis, suggesting that retrieval requires granule proteins. In sea urchin eggs, calcium influx through P-type calcium channels is required for retrieval, and the large size of sea urchin secretory granules permits the direct observation of retrieval. Here we demonstrate that retrieval is limited to sites of prior exocytosis. We tested whether channel distribution can account for the localization of retrieval at exocytotic sites. We find that P-channels reside on secretory granules before fertilization, and are translocated to the egg surface by exocytosis. Our study provides strong evidence that the transitory insertion of P-type calcium channels in the surface membrane plays an obligatory role in the mechanism coupling exocytosis and compensatory endocytosis.  相似文献   

2.
Micromolar calcium ion concentrations stimulate exocytosis in a reconstituted system made by recombining in the plasma membrane and cortical secretory granules of the sea urchin egg. The isolated cortical granules are unaffected by calcium concentrations up to 1 mM, nor do granule aggregates undergo any mutual fusion at this concentration. Both isolated plasma membrane and cortical granules can be pretreated with 1 mM Ca before reconstitution without affecting the subsequent exocytosis of the reconstituted system in response to micromolar calcium concentrations. On reconstitution, aggregated cortical granules will fuse with one another in response to micromolar calcium provided that one of their number is in contact with the plasma membrane. If exocytosis involves the generation of lipid fusogens, then these results suggest that the calcium-stimulated production of a fusogen can occur only when contiguity exists between cortical granules and plasma membrane. They also suggest that a substance involved in exocytosis can diffuse and cause piggy-back fusion of secretory granules that are in contact with the plasma membrane. Our results are also consistent with a scheme in which calcium ions cause a reversible, allosteric activation of an exocytotic protein.  相似文献   

3.
We study exocytosis in the planar isolated cortex of the egg of the sea urchin Lytechinus pictus. Solutions bathing the exocytotic apparatus need not contain appreciable amounts of ions: fusion follows addition of submicromolar calcium to solutions containing only nonelectrolyte. We examine the effects of altering the granule membrane permeability to small molecules with ionophores and digitonin. Introducing holes in the secretory granule membrane to the extent of allowing free passage of small molecules does not cause secretion in vitro. We add the amphipathic compound digitonin at 12 to 15 microM concentrations and demonstrate that the granule membrane can become permeable to lucifer yellow, yet that granules remain intact. Granules still undergo exocytosis after digitonin treatment at such concentrations upon subsequent addition of calcium. Higher concentrations of digitonin lead to granule content swelling and vesicle bursting. We conclude that cortical granule hydration during exocytosis is not mediated by small ionic channels.  相似文献   

4.
M Whitaker  M Aitchison 《FEBS letters》1985,182(1):119-124
Micromolar calcium ions stimulate both exocytosis and polyphosphoinositide hydrolysis in sea urchin egg plasma membrane in vitro. Strontium and barium ions also stimulate both processes equally. Magnesium ions reduce the calcium sensitivity of both. Neomycin, a drug which prevents phosphoinositide hydrolysis, inhibits exocytosis in vitro. We suggest that hydrolysis of plasma membrane phosphoinositides may be an essential step in the fusion of the secretory granule and plasma membranes.  相似文献   

5.
The swelling of the secretory granule matrix which follows fusion has been proposed as the driving force for the rapid expansion of the fusion pore necessary for exocytosis. To test this hypothesis, we have combined simultaneous measurements of secretory granule swelling using videomicroscopy with patch clamp measurements of the time course of the exocytotic fusion pore in mast cells from the beige mouse. We show that isotonic acidic histamine solutions are able to inhibit swelling of the secretory granule matrix both in purified secretory granules lysed by electroporation and in intact cells stimulated to exocytose by guanine nucleotides. In contrast to the inhibitory effects on granule swelling, the rate of expansion of the exocytotic fusion pore is unaffected. Therefore, as the rate of granule swelling was more than 20 times slower under these conditions, swelling of the secretory granule matrix due to water entry through the fusion pore cannot be the force responsible for the characteristic rapid expansion of the exocytotic fusion pore. We suggest that tension in the secretory granule membrane, which has recently been demonstrated in fused secretory granules, might be the force that drives the irreversible expansion of the fusion pore.  相似文献   

6.
The fluorescent probe merocyanine 540 was used to examine the organization of the lipids in the external leaflet of the plasma membrane after fertilization of sea urchin eggs. These lipids in unfertilized eggs are closely packed, as evidenced by their inability to bind the dye, whereas in fertilized eggs and cells of embryos up to at least the gastrula stage, the membrane becomes more loosely organized, and stains with bright ring fluorescence. Induction of late fertilization events with ammonia failed to induce this change in staining behavior. Sperm components are not required to induce this alteration since parthenogenetically activated eggs stained. However, treatment of eggs with procaine, which specifically inhibits the early event of cortical granule fusion, was effective in suppressing staining. These results indicate that cortical granule fusion after fertilization results in a change in the organization of the lipids of the plasma membrane of sea urchin eggs.  相似文献   

7.
Patch clamp studies of single intact secretory granules.   总被引:1,自引:0,他引:1       下载免费PDF全文
The membrane of secretory granules is involved in the molecular events that cause exocytotic fusion. Several of the proteins that have been purified from the membrane of secretory granules form ion channels when they are reconstituted in lipid bilayers and, therefore, have been thought to form part of the molecular structure of the exocytotic fusion pore. We have used the patch clamp technique to study ion conductances in single isolated secretory granules from beige mouse mast cells. We found that the membrane of the intact granule had a conductance of < 50 pS. No abrupt changes in current corresponding to the opening and closing of ion channels were observed, even under conditions where exocytotic fusion occurred. However, mechanical tension or a large voltage pulse caused the breakdown of the granule membrane resulting in the abrupt opening of a pore with an ion conductance of about 1 nS that fluctuated rapidly and could expand to an immeasurably large conductance or close completely. Surprisingly, the behavior of these pores resembled the pattern of conductance changes of exocytotic fusion pores observed in degranulating beige mast cells. This similarity supports the view that the earliest fusion pore is formed upon the breakdown of a bilayer such as that formed during hemifusion.  相似文献   

8.
We have investigated the consequences of having multiple fusion complexes on exocytotic granules, and have identified a new principle for interpreting the calcium dependence of calcium-triggered exocytosis. Strikingly different physiological responses to calcium are expected when active fusion complexes are distributed between granules in a deterministic or probabilistic manner. We have modeled these differences, and compared them with the calcium dependence of sea urchin egg cortical granule exocytosis. From the calcium dependence of cortical granule exocytosis, and from the exposure time and concentration dependence of N-ethylmaleimide inhibition, we determined that cortical granules do have spare active fusion complexes that are randomly distributed as a Poisson process among the population of granules. At high calcium concentrations, docking sites have on average nine active fusion complexes.  相似文献   

9.
We have investigated the role of protein phosphorylation in the control of exocytosis in sea urchin eggs by treating eggs with a thio-analogue of ATP. ATP gamma S (adenosine 5'-O-3-thiotriphosphate) is a compound which can be used as a phosphoryl donor by protein kinases, leading to irreversible protein thiophosphorylation (Gratecos, D., and E.H. Fischer. 1974. Biochem. Biophys. Res. Commun. 58:960-967). Microinjection of ATP gamma S inhibits cortical granule exocytosis, but has no effect on the sperm-egg signal transduction mechanisms which normally cause exocytosis by generating an increase in [Ca2+]i. ATP gamma S requires cytosolic factors for its inhibition of cortical granule exocytosis: it does not affect exocytosis when applied directly to the isolated exocytotic apparatus. Our data suggest that ATP gamma S irreversibly inhibits exocytosis via thiophosphorylation of proteins associated with the egg cortex. We have identified two thiophosphorylated proteins (33 and 27 kD) that are associated with the isolated exocytotic apparatus. They may mediate the inhibition of exocytosis by ATP gamma S. In addition, we show that okadaic acid, an inhibitor of phosphoprotein phosphatases, prevents cortical granule exocytosis at fertilization without affecting calcium mobilization. Like ATP gamma S, okadaic acid has no effect on exocytosis in vitro. Our results suggest that an inhibitory phosphoprotein can obstruct calcium-stimulated exocytosis in sea urchin eggs; on the other hand, they do not readily support the idea that a protein phosphatase is an essential component of the mechanism controlling exocytosis.  相似文献   

10.
infrastructurel techniques have shown that an early event in the exocytotic fusion of a secretory vesicle is the formation of a narrow, water-filled pore spanning both the vesicle and plasma membranes and connecting the lumen of the secretory vesicle to the extracellular environment. Smaller precursors of the exocytotic fusion pore have been detected using electrophysio-logical techniques, which reveal a dynamic fusion pore that quickly expands to the size of the pores seen with electron microscopy. While it is clear that in the latter stages of expansion, when the size of the fusion pore is several orders of magnitude bigger than any known macromolecule, the fusion pore must be mainly made of lipids, the structure of the smaller precursors is unknown. Patch-clamp measurements of the activity of individual fusion pores in mast cells have shown that the fusion pore has some unusual and unexpected properties, namely that there is a large flux of lipid through the pore and the rate of pore closure has a discontinuous temperature dependency, suggesting a purely lipidic fusion pore. Moreover, comparisons of experimental data with theoretical fusion pores and with breakdown pores support the view that the fusion pore is initially a pore through a single bilayer, as would be expected for membrane fusion proceeding through a hemifusion mechanism. Based on these observations we present a model where the fusion pore is initially a pore through a single bilayer. Fusion pore formation is regulated by a macromolecular scaffold of proteins that is responsible for bringing the plasma membrane into a highly curved dimple very close to a tense secretory granule membrane, creating the architecture where the strongly attractive hydrophobic force causes the membranes to form a ‘hemifusion’ intermediate. Membrane fusion is completed by the formation of an aqueous pore after rupture of the shared bilayer. We also propose that the microenvironment of the interface when the pore first opens, dominated by the charged groups on the secretory vesicle matrix and phospholipids, will greatly influence the release of secretory products.  相似文献   

11.
Regulated secretion is mediated by SNAREs (soluble NSF attachment receptors) and their regulators and effectors, which include the SM (sec1/munc18) family of proteins. Homologs of the SNAREs have been identified in sea urchins, associated with cortical granule exocytosis at fertilization, with membranes of the cleavage furrow, and in secretory cells later in development. To contribute to the understanding of regulated secretion in sea urchins we have cloned the single SM protein homolog from two species of sea urchin, Lytechinus variegatus and Strongylocentrotus purpuratus. In oocytes and eggs, we find that it localizes to the plasma membrane and the cortical region of the egg, consistent with a role in one of the steps leading to cortical granule exocytosis. The protein is also expressed throughout development, enriched in membranes of the cleavage furrow in early embryos, and in cells of the gut in advanced embryos. Furthermore, we find that sec1/munc18 co-localizes with its cognate binding partner syntaxin. Finally, our biochemical analysis shows that the protein associates with rab3 in high molecular weight complexes, suggesting that the exocytotic machinery functions as a multi-protein subunit to mediate regulated secretion in sea urchins. These results will be instrumental in the future to functionally test the SNARE regulators associated with multiple membrane fusion events.  相似文献   

12.
Release of neurotransmitters and hormones occurs by calcium-regulated exocytosis, a process that shares many similarities in neurons and neuroendocrine cells. Exocytosis is confined to specific regions in the plasma membrane, where actin remodelling, lipid modifications and protein-protein interactions take place to mediate vesicle/granule docking, priming and fusion. The spatial and temporal coordination of the various players to form a "fast and furious" machinery for secretion remain poorly understood. ARF and Rho GTPases play a central role in coupling actin dynamics to membrane trafficking events in eukaryotic cells. Here, we review the role of Rho and ARF GTPases in supplying actin and lipid structures required for synaptic vesicle and secretory granule exocytosis. Their possible functional interplay may provide the molecular cues for efficient and localized exocytotic fusion.  相似文献   

13.
A graded response to calcium is the defining feature of calcium-regulated exocytosis. That is, there exist calcium concentrations that elicit submaximal exocytotic responses in which only a fraction of the available population of secretory vesicles fuse. The role of calcium-dependent inactivation in defining the calcium sensitivity of sea urchin egg secretory vesicle exocytosis in vitro was examined. The cessation of fusion in the continued presence of calcium was not due to calcium-dependent inactivation. Rather, the calcium sensitivity of individual vesicles within a population of exocytotic vesicles is heterogeneous. Any specific calcium concentration above threshold triggered subpopulations of vesicles to fuse and the size of the subpopulations was dependent upon the magnitude of the calcium stimulus. The existence of multiple, stable subpopulations of vesicles is consistent with a fusion process that requires the action of an even greater number of calcium ions than the numbers suggested by models based on the assumption of a homogeneous vesicle population.  相似文献   

14.
In sea urchin eggs fertilization is accompanied by cortical granule exocytosis, a secretory event thought to be initiated by release of intracellularly sequestered calcium. We have examined the effect of two drugs on this process: chlortetracycline (CTC), a known chelator of intracellular calcium, and 8-(N,N-diethylamino)octyl-3,4,5-trimethoxybenzoate (TMB-8), an antagonist of intracellular calcium release in both skeletal and smooth muscle. Preincubation of eggs for 10 min with either CTC or TMB-8 blocked sperm entry, inhibited the burst of 45Ca2+ efflux normally seen postinsemination, and prevented fertilization envelope elevation. Half-maximal inhibition occurred with 200 microM CTC and 60 microM TMB-8. Electron microscopy confirmed that cortical granule exocytosis had been blocked, although inhibition was not due to a direct effect on exocytosis. CTC and TMB-8 had no effect on Ca2+-stimulated granule fusion in isolated egg cortices. Rather, these drugs block the early events in egg activation: sperm incorporation and triggering of exocytosis. These two effects appear to be independent since addition of either drug just before insemination permits sperm entry but inhibits calcium release and cortical granule exocytosis.  相似文献   

15.
《The Journal of cell biology》1995,131(5):1183-1192
At fertilization in sea urchin eggs, elevated cytosolic Ca2+ leads to the exocytosis of 15,000-18,000 1.3-microns-diam cortical secretory granules to form the fertilization envelope. Cortical granule exocytosis more than doubles the surface area of the egg. It is thought that much of the added membrane is retrieved by subsequent endocytosis. We have investigated how this is achieved by activating eggs in the presence of aqueous- and lipid-phase fluorescent dyes. We find rapid endocytosis of membrane into 1.5-microns-diam vesicles starting immediately after cortical granule exocytosis and persisting over the following 15 min. The magnitude of this membrane retrieval can compensate for the changes in the plasma membrane of the egg caused by exocytosis. This membrane retrieval is not stimulated by PMA treatment which activates the endocytosis of clathrin-coated vesicles. When eggs are treated with short wave-length ultraviolet light, cortical granule exocytosis still occurs, but granule cores fail to disperse. After egg activation, large vesicles containing semi-intact cortical granule protein cores are observed. These data together with experiments using sequential pulses of fluid-phase markers support the hypothesis that the bulk of membrane retrieval immediately after cortical granule exocytosis is achieved through direct retrieval into large endocytotic structures.  相似文献   

16.
Exocytosis of cortical granules was observed in sea urchin eggs, either quick-frozen or chemically fixed after exposure to sperm. Fertilization produced a wave of exocytosis that began within 20 s and swept across the egg surface in the following 30 s. The front of this wave was marked by fusion of single granules at well-separated sites. Toward the rear of the wave, granule fusion became so abundant that the egg surface left with confluent patches of granule membrane. The resulting redundancy of the egg surface was accommodated by elaboration of characteristic branching microvilli, and by an intense burst of coated vesicle formation at approximately 2 min after insemination. Freeze-fracture replicas of eggs fixed with glutaraldehyde and soaked in glycerol before freezing displayed forms of granule membrane interaction with the plasma membrane which looked like what other investigators have considered to be intermediates in exocytosis. These were small disks of membrane contact or membrane fusion, which often occurred in multiple sites on one granule and also between adjacent granules. However, such membrane interactions were never found in eggs that were quick-frozen fixation, or in eggs fixed and frozen without exposure to glycerol. Glycerination of fixed material appeared to be the important variable; more concentrated glycerol produced a greater abundance of such "intermediates." Thus, these structures may be artifacts produced by dehydrating chemically fixed membranes, and may not be directly relevant to the mechanism by which membranes naturally fuse.  相似文献   

17.
In most species, cortical granule exocytosis is characteristic of egg activation by sperm. It is a Ca(2+)-mediated event which results in elevation of the vitelline coat to block permanently the polyspermy at fertilization. We examined the effect of mastoparan, an activator of G-proteins, on the sea urchin egg activation. Mastoparan was able to induce, in a concentration-dependent manner, the egg cortical granule exocytosis; mastoparan-17, an inactive analogue of mastoparan, had no effect. Mastoparan, but not sperm, induced cortical granule exocytosis in eggs preloaded with BAPTA, a Ca(2+) chelator. In isolated egg cortical lawns, which are vitelline layers and membrane fragments with endogenously docked cortical granules, mastoparan induced cortical granule fusion in a Ca(2+)-independent manner. By contrast, mastoparan-17 did not trigger fusion. We conclude that in sea urchin eggs mastoparan stimulates exocytosis at a Ca(2+)-independent late site of the signaling pathway that culminates in cortical granule discharge.  相似文献   

18.
Summary We study exocytosis in the planar isolated cortex of the egg of the sea urchinLytechinus pictus. Solutins bathing the exocytotic apparatus need not contain appreciable amounts of ions: fusion follows addition of submicromolar calcium to solutions containing only nonelectrolyte. We examine the effects of altering the granule membrane permeability to small molecules with ionophores and digitonin. Introducing holes in the secretory granule membrane to the extent of allowing free passage of small molecules does not cause seretion in vitro. We add the amphipathic compound digitonin at 12 to 15 M concentrations and demonstrate that the granule membrane can become permeable to lucifer yellow, yet that granules remain intact. Granules still undergo exocytosis after digitonin treatment at such concentrations upon subsequent addition of calcium. Higher concentrations of digitonin lead to granule content swelling and vesicle bursting. We conclude that cortical granule hydration during exocytosis is not mediated by small ionic channels.  相似文献   

19.
Cortical granules are stimulus-dependent secretory vesicles found in the egg cortex of most vertebrates and many invertebrates. Upon fertilization, an increase in intracellular calcium levels triggers cortical granules to exocytose enzymes and structural proteins that permanently modify the extracellular surface of the egg to prevent polyspermy. Synaptotagmin is postulated to be a calcium sensor important for stimulus-dependent secretion and to test this hypothesis for cortical granule exocytosis, we identified the ortholog in two sea urchin species that is present selectively on cortical granules. Characterization by RT-PCR, in-situ RNA hybridization, Western blot and immunolocalization shows that synaptotagmin I is expressed in a manner consistent with it having a role during cortical granule secretion. We specifically tested synaptotagmin function during cortical granule exocytosis using a microinjected antibody raised against the entire cytoplasmic domain of sea urchin synaptotagmin I. The results show that synaptotagmin I is essential for normal cortical granule dynamics at fertilization in the sea urchin egg. Identification of this same protein in other developmental stages also shown here will be important for interpreting stimulus-dependent secretory events for signaling throughout embryogenesis.  相似文献   

20.
We studied calcium-triggered fusion of sea urchin egg secretory granules to test whether membrane bound fusion proteins are required in both fusing membranes. Using both light scattering assays and video microscopy, we found that native granules fused to granules that had been inactivated with either trypsin or N-ethylmaleimide. Granules also fused with liposomes prepared from lipids extracted from egg cortices and with liposomes made from synthetic phospholipids and cholesterol. Granule-liposome fusion required no cytoplasmic proteins and was inhibited by N-ethylmaleimide. Thus, membrane fusion of exocytotic granules can be promoted by proteins residing on only one of the two membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号