首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The tyrosine phosphatase CD45 dephosphorylates the negative regulatory tyrosine of the Src family kinase Lck and plays a positive role in TCR signaling. In this study we demonstrate a negative regulatory role for CD45 in CD44 signaling leading to actin rearrangement and cell spreading in activated thymocytes and T cells. In BW5147 T cells, CD44 ligation led to CD44 and Lck clustering, which generated a reduced tyrosine phosphorylation signal in CD45(+) T cells and a more sustained, robust tyrosine phosphorylation signal in CD45(-) T cells. This signal resulted in F-actin ring formation and round spreading in the CD45(+) cells and polarized, elongated cell spreading in CD45(-) cells. The enhanced signal in the CD45(-) cells was consistent with enhanced Lck Y394 phosphorylation compared with the CD45(+) cells where CD45 was recruited to the CD44 clusters. This enhanced Src family kinase-dependent activity in the CD45(-) cells led to PI3K and phospholipase C activation, both of which were required for elongated cell spreading. We conclude that CD45 induces the dephosphorylation of Lck at Y394, thereby preventing sustained Lck activation and propose that the amplitude of the Src family kinase-dependent signal regulates the outcome of CD44-mediated signaling to the actin cytoskeleton and T cell spreading.  相似文献   

2.
CD45 is a major membrane protein tyrosine phosphatase (PTP) expressed in T cells where it regulates the activity of Lck, a Src family kinase important for T cell receptor-mediated activation. PTPalpha is a more widely expressed transmembrane PTP that has been shown to regulate the Src family kinases, Src and Fyn, and is also present in T cells. Here, PTPalpha was phosphorylated at Tyr-789 in CD45(-) T cells but not in CD45(+) T cells suggesting that CD45 could regulate the phosphorylation of PTPalpha at this site. Furthermore, CD45 could directly dephosphorylate PTPalpha in vitro. Expression of PTPalpha and PTPalpha-Y789F in T cells revealed that the mutant had a reduced ability to decrease Fyn and Cbp phosphorylation, to regulate the kinase activity of Fyn, and to restore T cell receptor-induced signaling events when compared with PTPalpha. Conversely, this mutant had an increased ability to prevent Pyk2 phosphorylation and CD44-mediated cell spreading when compared with PTPalpha. These data demonstrate distinct activities of PTPalpha and PTPalpha-Y789F in T cells and identify CD45 as a regulator of PTPalpha phosphorylation at tyrosine 789 in T cells.  相似文献   

3.
The proline-rich tyrosine kinase 2, Pyk2, is a focal adhesion related kinase expressed in T cells that is tyrosine phosphorylated and activated by integrin, chemokine or T cell receptor stimulation. Ligation of the cell adhesion molecule CD44 also induces Pyk2 phosphorylation and T cell spreading, and this is negatively regulated by the protein tyrosine phosphatase CD45. Here, we identify the activation requirements for Pyk2 and demonstrate its requirement for CD44-mediated elongated T cell spreading. Upon CD44-mediated cell spreading, Pyk2 was recruited to CD44 clusters in both CD45+ and CD45 T cells, yet was more strongly phosphorylated in T cells lacking CD45. In these cells, Pyk2 phosphorylation was dependent on Src family kinase activity and required actin polymerisation, phosphatidylinositol-3 kinase and phospholipase C activity as well as extracellular calcium. Inhibition of any of these events prevented Pyk2 phosphorylation and T cell spreading. Transfection of a truncated form of Pyk2 lacking the kinase domain, PRNK, inhibited CD44-mediated cell spreading, demonstrating an important role for Pyk2. However, inhibition of microtubule turnover by Taxol prevented elongated T cell spreading but did not affect Pyk2 phosphorylation, indicating that microtubule reorganisation is downstream, or independent, of Pyk2 phosphorylation. Together this demonstrates that multiple factors are required for CD44-induced Pyk2 activation, which plays a critical role in CD44-mediated elongated T cell spreading.  相似文献   

4.
CD45 is a protein tyrosine phosphatase expressed on all cells of hematopoietic origin that is known to regulate Src family kinases. In macrophages, the absence of CD45 has been linked to defects in adhesion, however the molecular mechanisms involved remain poorly defined. In this study, we show that bone marrow derived macrophages from CD45-deficient mice exhibit abnormal cell morphology and defective motility. These defects are accompanied by substantially decreased levels of the cytoskeletal-associated protein paxillin, without affecting the levels of other proteins. Degradation of paxillin in CD45-deficient macrophages is calpain-mediated, as treatment with a calpain inhibitor restores paxillin levels in these cells and enhances cell spreading. Inhibition of the tyrosine kinases proline-rich tyrosine kinase (Pyk2) and focal adhesion kinase (FAK), kinases that are capable of mediating tyrosine phosphorylation of paxillin, also restored paxillin levels, indicating a role for these kinases in the CD45-dependent regulation of paxillin. These data demonstrate that CD45 functions to regulate Pyk2/FAK activity, likely through the activity of Src family kinases, which in turn regulates the levels of paxillin to modulate macrophage adhesion and migration.  相似文献   

5.
M Sieh  J B Bolen    A Weiss 《The EMBO journal》1993,12(1):315-321
CD45 is a tyrosine phosphatase expressed in all hematopoietic cells which is important for signal transduction through the T cell antigen receptor (TCR). Studies using CD45-deficient cells have revealed that Lck, a tyrosine kinase thought to be essential for TCR signaling, is hyperphosphorylated on Y505 in the absence of CD45. This site of tyrosine phosphorylation negatively regulates the function of the Src family of kinases. Here we provide evidence that CD45 can modulate the binding of the Lck to an 11 amino acid tyrosine phosphorylated peptide containing the carboxy-terminus of Lck (lckP). Significantly, CD45 did not influence the binding of Fyn, PLC gamma 1, GAP and Vav to the same phosphopeptide. Lck protein which bound the peptide was dephosphorylated on Y505 and consisted of only 5-10% of the total cellular Lck. Interestingly, there was a marked increase in binding 15-30 min after CD4 or TCR cross-linking. Taken together, our data suggest that CD45 specifically modulates the conformation of Lck in a manner consistent with the intramolecular model of regulation of Src-like kinases.  相似文献   

6.
D H Chu  H Spits  J F Peyron  R B Rowley  J B Bolen    A Weiss 《The EMBO journal》1996,15(22):6251-6261
The protein tyrosine phosphatase CD45 is a critical component of the T cell antigen receptor (TCR) signaling pathway, acting as a positive regulator of Src family protein tyrosine kinases (PTKs) such as Lck. Most CD45-deficient human and murine T cell lines are unable to signal through their TCRs. However, there is a CD45-deficient cell line that can signal through its TCR. We have studied this cell line to identify a TCR signaling pathway that is independent of CD45 regulation. In the course of these experiments, we found that the Syk PTK, but not the ZAP-70 PTK, is able to mediate TCR signaling independently of CD45 and of Lck. For this function, Syk requires functional kinase and SH2 domains, as well as intact phosphorylation sites in the regulatory loop of its kinase domain. Thus, differential expression of Syk is likely to explain the paradoxical phenotypes of different CD45-deficient T cells. Finally, these results suggest differences in activation requirements between two closely related PTK family members, Syk and ZAP-70. The differential activities of these two kinases suggest that they may play distinct, rather than completely redundant, roles in lymphocyte signaling.  相似文献   

7.
Protein tyrosine kinases are critical for the function of CD28 in T cells. We examined whether the tyrosine kinases Pyk2 and Fak (members of the focal adhesion kinase family) are involved in CD28 signaling. We found that ligating CD28 in Jurkat T cells rapidly increases the tyrosine phosphorylation of Pyk2 but not of Fak. Paxillin, a substrate for Pyk2 and Fak, was not tyrosine-phosphorylated after CD28 ligation. CD28-induced tyrosine phosphorylation of Pyk2 was markedly reduced in the absence of external Ca2+. Previous studies have shown that the T cell antigen receptor (TCR) induces tyrosine phosphorylation of Pyk2. In this report, the concurrent ligation of CD28 and TCR increased tyrosine phosphorylation of Pyk2; however, the extent of phosphorylation by both receptors was equivalent to the sum of that induced by each receptor alone. The Syk/Zap inhibitor piceatannol blocked CD28, and TCR induced tyrosine phosphorylation of Pyk2, suggesting that Syk/Zap is involved in Pyk2 phosphorylation. In contrast, the phosphatidylinositol 3-kinase inhibitor wortmannin blocked TCR- but not CD28-induced phosphorylation of Pyk2, suggesting that CD28 and TCR activate distinct pathways to induce tyrosine phosphorylation of Pyk2. Notably, depleting phorbol 12-myristate 13-acetate-sensitive protein kinase C did not block CD28- and CD3-induced tyrosine phosphorylation of Pyk2. These data provide evidence for the involvement of Pyk2 in the CD28 signaling cascade and suggest that neither Fak nor paxillin is involved in the signaling pathways of CD28.  相似文献   

8.
Activating, DAP12-coupled members of the Ly-49 family of NK cell receptors help control viral infections in mice. However, the kinases and/or phosphatases mediating tyrosine phosphorylation of Ly-49D-associated DAP12 have not been elucidated. In this study, we show for the first time that Src family tyrosine kinases are physically and functionally associated with Ly-49D/DAP12 signaling in murine NK cells. Specifically, we demonstrate the following: 1) inhibition of Src family kinases suppresses DAP12 phosphorylation and downstream DAP12 signals; 2) both Fyn and Lck are capable of phosphorylating DAP12; and 3) both kinases coimmunoprecipitate with the Ly-49D/DAP12 complex in NK cells. Although we detect enhanced phosphorylation of Fyn upon Ly-49D cross-linking in NK cells, Ly-49D-mediated events in both Fyn-/- and Fyn/Lck-/- mice appear normal, reinforcing the theme of redundancy in the ability of Src family kinases to initiate activation events. In contrast to disruption of specific Src family enzymes, Ly-49D/DAP12-mediated calcium mobilization and cytokine production by CD45 null NK cells are defective. Although others have ascribed the effects of CD45 mutation solely on the suppression of Src family activity, we demonstrate in this study that DAP12 is hyperphosphorylated in CD45 null NK cells, resulting in uncoordinated tyrosine-mediated signaling upon Ly-49D ligation. Therefore, although our data are consistent with a Src kinase activity proximally within DAP12 signaling, DAP12 also appears to be a substrate of CD45, suggesting a more complex role for this phosphatase than has been reported previously.  相似文献   

9.
The T cell receptor (TCR)-CD3 complex and the costimulatory molecule CD28 are critical for T cell function. Both receptors utilize protein tyrosine kinases (PTKs) for the phosphorylation of various signaling molecules, a process that is critical for the function of both receptors. The PTKs of the focal adhesion family, Pyk2 and Fak, have been implicated in the signaling of TCR and CD28. We show here evidence for the regulation of TCR- and CD28-induced tyrosine phosphorylation of the focal adhesion PTKs by protein kinase C (PKC). Thus, treating Jurkat T cells with the PKC activator phorbol 12-myristate 13-acetate (PMA) rapidly and strongly reversed receptor-induced tyrosine phosphorylation of the focal adhesion PTKs. In contrast, PMA did not affect TCR-induced tyrosine phosphorylation of CD3zeta or the PTKs Fyn and Zap-70. However, PMA induced a strong and rapid dephosphorylation of the linker molecule for activation of T cells. PMA failed to induce the dephosphorylation of proteins in PKC-depleted cells or in cells pretreated with the PKC inhibitor Ro-31-8220, confirming the role of PKC in mediating the PMA effect on receptor-induced protein tyrosine phosphorylation. The involvement of protein tyrosine phosphatases (PTPases) in mediating the dephosphorylation of the focal adhesion PTKs was confirmed by the failure of PMA to dephosphorylate Pyk2 in cells pretreated with the PTPase inhibitor orthovanadate. These results implicate PKC in the regulation of receptor-induced tyrosine phosphorylation of the focal adhesion PTKs in T cells. The data also suggest a role for PTPases in the PKC action.  相似文献   

10.
Lysates from the Jurkat T lymphocyte cell line were immunoblotted with anti-Pyk2, and two major forms of Pyk2 were identified. When lysates from the p56(Lck) negative (J.CaM1/Rep3) and CD45 negative Jurkat cell line derivatives were immunoblotted with anti-Pyk2, only the lower mobility form of Pyk2 was predominant. Transfection of J.CaM1 cells with p56(Lck) restored expression of the multiple forms of Pyk2. Using RT-PCR, we found that both species of the alternatively spliced mRNA for Pyk2 were present in all of the lines regardless of their ability to express CD45 or p56(Lck) protein. When p56(Lck) immunoprecipitates were immunoblotted with anti-Pyk2, only the higher mobility form of Pyk2 immunoprecipitated with p56(Lck). These data demonstrate that certain members of the Src family of kinases interact preferentially with the different isoforms of Pyk2 and may have a role in the regulation of the Pyk2 protein in lymphocytes.  相似文献   

11.
CD45-dependent dephosphorylation of the negative regulatory C-terminal tyrosine of the Src family kinase Lck, promotes efficient TCR signal transduction. However, despite the role of CD45 in positively regulating Lck activity, the distinct phenotypes of CD45 and Lck/Fyn-deficient mice suggest that the role of CD45 in promoting Lck activity may be differentially regulated during thymocyte development. In this study, we have found that the C-terminal tyrosine of Lck (Y505) is markedly hyperphosphorylated in total thymocytes from CD45-deficient mice compared with control animals. In contrast, regulation of the Lck Y505 phosphorylation in purified, double-negative thymocytes is relatively unaffected in CD45-deficient cells. These changes in the role of CD45 in regulating Lck phosphorylation during thymocyte development correlate with changes in coreceptor expression and the presence of coreceptor-associated Lck. Biochemical analysis of coreceptor-associated and nonassociated Lck in thymocytes, and in cell lines varying in CD4 and CD45 expression, indicate that CD45-dependent regulation of Lck Y505 phosphorylation is most evident within the fraction of Lck that is coreceptor associated. In contrast, Lck Y505 phosphorylation that is not coreceptor associated is less affected by the absence of CD45. These data define distinct pools of Lck that are differentially regulated by CD45 during T cell development.  相似文献   

12.
CD45 is a transmembrane, two-domain protein-tyrosine phosphatase expressed exclusively in nucleated hematopoietic cells. The Src family kinase, Lck, is a major CD45 substrate in T cells and CD45 dephosphorylation of Lck is important for both T cell development and activation. However, how the substrate specificity of phosphatases such as CD45 is achieved is not well understood. Analysis of the interaction between the cytoplasmic domain of CD45 and its substrate, Lck, revealed that the active, membrane-proximal phosphatase domain of CD45 (CD45-D1) bound to the phosphorylated Lck kinase domain, the SH2 domain, and the unique N-terminal region of Lck. The second, inactive phosphatase domain (CD45-D2) bound only to the kinase domain of Lck. CD45-D2 was unable to bind phosphotyrosine, and its interaction with the kinase domain of Lck was independent of tyrosine phosphorylation. The binding of CD45-D2 was localized to subdomain X (SD10) of Lck. CD45-D2 bound similarly to Src family kinases but bound Csk to a lesser extent and did not bind significantly to the less related kinase, Erk1. CD45 dephosphorylated Lck and Src at similar rates but dephosphorylated Csk and Erk1 at lower rates. Replacement of Erk1 SD10 with that of Lck resulted in the binding of CD45-D2 and the conversion of Erk1 to a more efficient CD45 substrate. This demonstrates a role for CD45-D2 in binding substrate and identifies the SD10 region in Lck as a novel site involved in substrate recognition.  相似文献   

13.
The function of the second protein tyrosine phosphatase domain (D2) in two-domain protein tyrosine phosphatases (PTP) is not well understood. In CD45, D2 can interact with the catalytic domain (D1) and stabilize its activity. Although D2 itself has no detectable catalytic activity, it can bind substrate and may influence the substrate specificity of CD45. To further explore the function of D2 in T cells, a full-length construct of CD45 lacking the D1 catalytic domain (CD45RABC-D2) was expressed in CD45+ and CD45- Jurkat T cells. In CD45- Jurkat T cells, CD45RABC-D2 associated with Lck but, unlike its active counterpart CD45RABC, did not restore the induction of tyrosine phosphorylation or CD69 expression upon T cell receptor (TCR) stimulation. Expression of CD45RABC-D2 in CD45+ Jurkat T cells resulted in its association with Lck, increased the phosphorylation state of Lck, and reduced T cell activation. TCR-induced tyrosine phosphorylation was delayed, and although MAPK phosphorylation and CD69 expression were not significantly affected, the calcium signal and IL2 production were severely reduced. This indicates that the non-catalytic domains of CD45 can interact with Lck in T cells. CD45RABC-D2 acts as a dominant negative resulting in an increase in Lck phosphorylation and a preferential loss of the calcium signaling pathway, but not the MAPK pathway, upon TCR signaling. This finding suggests that, in addition to their established roles in the initiation of TCR signaling, CD45 and Lck may also influence the type of TCR signal generated.  相似文献   

14.
The pattern recognition receptor CD36 initiates a signaling cascade that promotes microglial activation and recruitment to beta-amyloid deposits in the brain. In the present study we identify the focal adhesion-associated proteins p130Cas, Pyk2, and paxillin as novel members of the tyrosine kinase signaling pathway downstream of CD36 and show that assembly of this complex is essential for microglial migration. In primary microglia and macrophages exposed to beta-amyloid, the scaffolding protein p130Cas is rapidly tyrosine-phosphorylated and co-localizes with CD36 to membrane ruffles contemporaneous with F-actin polymerization. These beta-amyloid-stimulated events are not detected in CD36 null cells and are dependent on CD36 activation of Src family tyrosine kinases. Fyn, a Src kinase known to interact with CD36, co-precipitates with p130Cas and is an essential upstream intermediate in the signaling pathways leading to phosphorylation of the p130Cas substrate domain. Furthermore, the p130Cas-interacting kinase Pyk2 and the cytoskeletal adapter protein paxillin also demonstrate CD36-dependent phosphorylation, identifying these focal adhesion molecules as additional members of this beta-amyloid signaling cascade. Disruption of this p130Cas complex by small interfering RNA silencing inhibits p44/42 mitogen-activated protein kinase phosphorylation and microglial migration, illustrating the importance of this pathway in microglial activation and recruitment. Together, these data are the first to identify the signaling cascade that directly links CD36 to the actin cytoskeleton and, thus, implicates it in diverse processes such as cellular migration, adhesion, and phagocytosis.  相似文献   

15.
Integrin receptor signals are costimulatory for mitogenesis with the T-cell receptor during T-cell activation. A subset of integrin receptors can link to the adapter protein Shc and provide a mitogenic stimulus. Using a combination of genetic and pharmacological approaches, we show herein that integrin signaling to Shc in T cells requires the receptor tyrosine phosphatase CD45, the Src family kinase member Lck, and protein kinase C. Our results suggest a model in which integrin-dependent serine phosphorylation of Lck is the critical step that determines the efficiency of Shc tyrosine phosphorylation in T cells. Serine phosphorylation of Lck is dependent on PKC and is also linked to CD45 dephosphorylation. Mutants of Lck that cannot be phosphorylated on the critical serine residues do not signal efficiently to Shc and have greatly reduced kinase activity. This signaling from integrins to Lck may be an important step in the costimulation with the T-cell receptor during lymphocyte activation.  相似文献   

16.
The epidermal growth factor receptor (EGFR) and the non-receptor protein tyrosine kinases Src and Pyk2 have been implicated in linking a variety of G-protein-coupled receptors (GPCR) to the mitogen-activated protein (MAP) kinase signaling cascade. In this report we apply a genetic strategy using cells isolated from Src-, Pyk2-, or EGFR-deficient mice to explore the roles played by these protein tyrosine kinases in GPCR-induced activation of EGFR, Pyk2, and MAP kinase. We show that Src kinases are critical for activation of Pyk2 in response to GPCR-stimulation and that Pyk2 and Src are essential for GPCR-induced tyrosine phosphorylation of EGFR. By contrast, Pyk2, Src, and EGFR are dispensable for GPCR-induced activation of MAP kinase. Moreover, GPCR-induced MAP kinase activation is normal in fibroblasts deficient in both Src and Pyk2 (Src-/-Pyk2-/- cells) as well as in fibroblasts deficient in all three Src kinases expressed in these cells (Src-/-Yes-/-Fyn-/- cells). Finally, experiments are presented demonstrating that, upon stimulation of GPCR, activated Pyk2 forms a complex with Src, which in turn phosphorylates EGFR directly. These experiments reveal a role for Src kinases in Pyk2 activation and a role for Pyk2 and Src in tyrosine phosphorylation of EGFR following GPCR stimulation. In addition, EGFR, Src family kinases, and Pyk2 are not required for linking GPCRs with the MAP kinase signaling cascade.  相似文献   

17.
CD69 C-type lectin receptor represents a functional triggering molecule on activated NK cells, capable of directing their natural killing function. The receptor-proximal signaling pathways activated by CD69 cross-linking and involved in CD69-mediated cytotoxic activity are still poorly understood. Here we show that CD69 engagement leads to the rapid and selective activation of the tyrosine kinase Syk, but not of the closely related member of the same family, ZAP70, in IL-2-activated human NK cells. Our results indicate the requirement for Src family kinases in the CD69-triggered activation of Syk and suggest a role for Lck in this event. We also demonstrate that Syk and Src family tyrosine kinases control the CD69-triggered tyrosine phosphorylation and activation of phospholipase Cgamma2 and the Rho family-specific exchange factor Vav1 and are responsible for CD69-triggered cytotoxicity of activated NK cells. The same CD69-activated signaling pathways are also observed in an RBL transfectant clone, constitutively expressing the receptor. These data demonstrate for the first time that the CD69 receptor functionally couples to the activation of Src family tyrosine kinases, which, by inducing Syk activation, initiate downstream signaling pathways and regulate CD69-triggered functions on human NK cells.  相似文献   

18.
CD45 is a leukocyte specific transmembrane glycoprotein and a receptor-like protein tyrosine phosphatase (PTP). CD45 can be expressed as several alternatively spliced isoforms that differ in the extracellular domain. The isoforms are regulated in a cell type and activation state-dependent manner, yet their function has remained elusive. The Src family kinase members Lck and Lyn are key substrates for CD45 in T and B lymphocytes, respectively. CD45 lowers the threshold of antigen receptor signalling, which impacts T and B cell activation and development. CD45 also regulates antigen triggered Fc receptor signalling in mast cells and Toll-like receptor (TLR) signalling in dendritic cells, thus broadening the role of CD45 to other recognition receptors involved in adaptive and innate immunity. In addition, CD45 can affect immune cell adhesion and migration and can modulate cytokine production and signalling. Here we review what is known about the substrate specificity and regulation of CD45 and summarise its effect on immune cell signalling pathways, from its established role in T and B antigen receptor signalling to its emerging role regulating innate immune cell recognition and cytokine production.  相似文献   

19.
The Lck tyrosine kinase is involved in signaling by T cell surface receptors such as TCR/CD3, CD2, and CD28. As other downstream protein-tyrosine kinases are activated upon stimulation of these receptors, it is difficult to assign which tyrosine-phosphorylated proteins represent bona fide Lck substrates and which are phosphorylated by other tyrosine kinases. We have developed a system in which Lck can be activated independently of TCR/CD3. We have shown that activation of an epidermal growth factor receptor/Lck chimera leads to the specific phosphorylation of Ras GTPase-activating protein (RasGAP) and two RasGAP-associated proteins, p56(dok) and p62(dok). Activation of the chimeric protein correlates with an increase in cellular Ca(2+) in the absence of ZAP-70 and phospholipase Cgamma1 phosphorylation. Furthermore, we have found that p62(dok) co-immunoprecipitates with the activated epidermal growth factor receptor/LckF505 and that phosphorylated Dok proteins bind to the Src homology 2 domain of Lck in vitro. In addition, we have shown that activation via the CD2 but not the TCR/CD3 receptor leads to the phosphorylation of p56(dok) and p62(dok). Using JCaM1.6 cells, we have demonstrated that Lck is required for CD2-mediated phosphorylation of Dok proteins. We propose that phosphorylation and Src homology 2-mediated association of p56(dok) and p62(dok) with Lck play a selective function in accessory receptor signal transduction mechanisms.  相似文献   

20.
The ability of the Src family kinases Fyn and Lck to participate in signaling through the T cell receptor is critically dependent on their dual fatty acylation with myristate and palmitate. Here we identify a palmitate analog, 2-bromopalmitate, that effectively blocks Fyn fatty acylation in general and palmitoylation in particular. Treatment of COS-1 cells with 2-bromopalmitate blocked myristoylation and palmitoylation of Fyn and inhibited membrane binding and localization of Fyn to detergent-resistant membranes (DRMs). In Jurkat T cells, 2-bromopalmitate blocked localization of the endogenous palmitoylated proteins Fyn, Lck, and LAT to DRMs. This resulted in impaired signaling through the T cell receptor as evidenced by reductions in tyrosine phosphorylation, calcium release, and activation of mitogen-activated protein kinase. We also examined the ability of long chain polyunsaturated fatty acids (PUFAs) to inhibit protein fatty acylation. PUFAs have been reported to inhibit T cell signaling by excluding Src family kinases from DRMs. Here we show that the PUFAs arachidonic acid and eicosapentaenoic acid inhibit Fyn palmitoylation and consequently block Fyn localization to DRMs. We propose that inhibition of protein palmitoylation represents a novel mechanism by which PUFAs exert their immunosuppressive effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号