首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The amount and form of natural genetic variation for recombination were studied in six lines for which second chromosomes were extracted from a natural population of Drosophila melanogaster. Multiply marked second, X and third chromosomes were used to score recombination. Recombination in the second chromosomes varied in both amount and distribution. These second chromosomes caused variation in the amount and distribution of crossing over in the X chromosome and also caused variation in the amount, but not the distribution, of crossing over in the third chromosome. The total amount of crossing over on a chromosome varied by 12-14%. One small region varied twofold; other regions varied by 16-38%. Lines with less crossing over on one chromosome generally had less crossing over on other chromosomes, the opposite of the standard interchromosomal effect. These results show that modifiers of recombination can affect more than one chromosome, and that the variation exists for fine-scale response to selection on recombination.  相似文献   

2.
Genetic differentiation between divergent populations is often greater in chromosome centres than peripheries. Commonly overlooked, this broadscale differentiation pattern is sometimes ascribed to heterogeneity in crossover rate and hence linked selection within chromosomes, but the underlying mechanisms remain incompletely understood. A literature survey across 46 organisms reveals that most eukaryotes indeed exhibit a reduced crossover rate in chromosome centres relative to the peripheries. Using simulations of populations diverging into ecologically different habitats through sorting of standing genetic variation, we demonstrate that such chromosome‐scale heterogeneity in crossover rate, combined with polygenic divergent selection, causes stronger hitchhiking and especially barriers to gene flow across chromosome centres. Without requiring selection on new mutations, this rapidly leads to elevated population differentiation in the low‐crossover centres relative to the high‐crossover peripheries of chromosomes (“Chromosome Centre‐Biased Differentiation”, CCBD). Using simulated and empirical data, we then show that strong CCBD between populations can provide evidence of polygenic adaptive divergence with a phase of gene flow. We further demonstrate that chromosome‐scale heterogeneity in crossover rate impacts analyses beyond that of population differentiation, including the inference of phylogenies and parallel adaptive evolution among populations, the detection of genetic loci under selection, and the interpretation of the strength of selection on genomic regions. Overall, our results call for a greater appreciation of chromosome‐scale heterogeneity in crossover rate in evolutionary genomics.  相似文献   

3.
A study was conducted on the chromosomes of a Rhamdia hilarii (Pisces, Pimelodidae) population. The results suggest that the basic chromosome number is 2n=58, with numerical variation up to a limit of 2n=63, due to the presence of supernumerary chromosomes which seem to be mitotically stable. These chromosomes are metacentrics and can be different in size. The C-banding pattern, showing heterochromatin especially in both telomeric regions, permits their identification in the karyotype. The NORs are located on secondary terminal constrictions on the short arm of a pair of subtelocentric chromosomes. However, there may be heteromorphism in the size of the secondary constrictions and, consequently, in the size of the NORs.  相似文献   

4.
Chapman NH  Thompson EA 《Genetics》2002,162(1):449-458
An isolated population is a group of individuals who are descended from a founding population who lived some time ago. If the founding individuals are assumed to be noninbred and unrelated, a chromosome sampled from the population can be represented as a mosaic of segments of the original ancestral types. A population in which chromosomes are made up of a few long segments will exhibit linkage disequilibrium due to founder effect over longer distances than a population in which the chromosomes are made up of many short segments. We study the length of intact ancestral segments by obtaining the expected number of junctions (points where DNA of two distinct ancestral types meet) in a chromosome. Assuming random mating, we study analytically the effects of population age, growth patterns, and internal structure on the expected number of junctions in a chromosome. We demonstrate that the type of growth a population has experienced can influence the expected number of junctions, as can population subdivision. These effects are substantial only when population sizes are very small. We also develop an approximation to the variance of the number of junctions and show that the variance is large.  相似文献   

5.
The aim of this study was to explore, by computer simulation, the mapping of QTLs in a realistic but complex situation of many (linked) QTLs with different effects, and to compare two QTL mapping methods. A novel method to dissect genetic variation on multiple chromosomes using molecular markers in backcross and F2 populations derived from inbred lines was suggested, and its properties tested using simulations. The rationale for this sequential testing method was to explicitly test for alternative genetic models. The method consists of a series of four basic statistical tests to decide whether variance was due to a single QTL, two QTLs, multiple QTLs, or polygenes, starting with a test to detect genetic variance associated with a particular chromosome. The method was able to distinguish between different QTL configurations, in that the probability to `detect' the correct model was high, varying from 0.75 to 1. For example, for a backcross population of 200 and an overall heritability of 50%, in 78% of replicates a polygenic model was detected when that was the underlying true model. To test the method for multiple chromosomes, QTLs were simulated on 10 chromosomes, following a geometric series of allele effects, assuming positive alleles were in coupling in the founder lines For these simulations, the sequential testing method was compared to the established Multiple QTL Mapping (MQM) method. For a backcross population of 400 individuals, power to detect genetic variance was low with both methods when the heritability was 0.40. For example, the power to detect genetic variation on a chromosome on which 6 QTLs explained 12.6% of the genetic variance, was less than 60% for both methods. For a large heritability (0.90), the power of MQM to detect genetic variance and to dissect QTL configurations was generally better, due to the simultaneous fitting of markers on all chromosomes. It is concluded that when testing different QTL configurations on a single chromosome using the sequential testing procedure, regions of other chromosomes which explain a significant amount of variation should be fitted in the model of analysis. This study reinforces the need for large experiments in plants and other species if the aim of a genome scan is to dissect quantitative genetic variation.  相似文献   

6.
Recent studies by various authors suggest that variation in gene regulation may be common in nature, and might be of great evolutionary consequence; but the ascertainment of variation in gene regulation has proven to be a difficult problem. In this study, we explore this problem by measuring alcohol dehydrogenase (ADH) activity in Drosophila melanogaster strains homozygous for various combinations of given second and third chromosomes sampled from a natural population. The structural locus (Adh) coding for ADH is on the second chromosome. The results show that: (1) there are genes, other than Adh, that affect the levels of ADH activity; (2) at least some of these "regulatory" genes are located on the third chromosome, and thus are not adjacent to the Adh locus; (3) variation exists in natural populations for such regulatory genes; (4) the effect of these regulatory genes varies as they interact with different second chromosomes; (5) third chromosomes with high-activity genes are either partially or completely dominant over chromosomes with low-activity genes; (6) the effects of the regulatory genes are pervasive throughout development; and (7) the third chromosome genes regulate the levels of ADH activity by affecting the number of ADH molecules in the flies. The results are consistent with the view that the evolution of regulatory genes may play an important role in adaptation.  相似文献   

7.
Methaphase chromosomes from karyotypically normal adult humans (three males, six females) and one male with a 13p - chromosome were stained by quinacrine and then by the Ag-AS silver staining method to reveal nucleolus organizer regions (NORs). Each person had a characteristic number of Ag-stained chromosomes per cell, always fewer than 10. Determination of the mean Ag-size of each chromosome showed that each of the 10 individuals had a unique distribution of Ag-stain. Within each individual, there was some variation from cell to cell in the number of acrocentric chromosomes that were Ag-stained; this was not random, and the same chromosomes (those that had at most a small amount of Ag-stain) tended to be unstained in every cell. Satellite associations were scored on the same cells. Chromosomes that had no Ag-stain were involved in satellite association less than 20% as often as those that had some Ag-stain. Chromosomes that had a small amount of Ag-stain were involved in association about 50% as often as those that had a large amount of stain. Regression analysis of the 50 (of a total of 100) acrocentric chromosomes which could be individually identified by quinacrine markers showed that the frequency with which a chromosome was involved in satellite association was strongly correlated with the amount of Ag-stained material in the NOR.  相似文献   

8.
Genomewide association studies have contributed immensely to our understanding of the genetic basis of complex traits. One major conclusion arising from these studies is that most traits are controlled by many loci of small effect, confirming the infinitesimal model of quantitative genetics. A popular approach to test for polygenic architecture involves so‐called “chromosome partitioning” where phenotypic variance explained by each chromosome is regressed on the size of the chromosome. First developed for humans, this has now been repeatedly used in other species, but there has been no evaluation of the suitability of this method in species that can differ in their genome characteristics such as number and size of chromosomes. Nor has the influence of sample size, heritability of the trait, effect size distribution of loci controlling the trait or the physical distribution of the causal loci in the genome been examined. Using simulated data, we show that these characteristics have major influence on the inferences of the genetic architecture of traits we can infer using chromosome partitioning analyses. In particular, small variation in chromosome size, small sample size, low heritability, a skewed effect size distribution and clustering of loci can lead to a loss of power and consequently altered inference from chromosome partitioning analyses. Future studies employing this approach need to consider and derive an appropriate null model for their study system, taking these parameters into consideration. Our simulation results can provide some guidelines on these matters, but further studies examining a broader parameter space are needed.  相似文献   

9.
In organisms with chromosomal sex determination, sex is determined by a set of dimorphic sex chromosomes that are thought to have evolved from a set of originally homologous chromosomes. The chromosome inherited only through the heterogametic sex (the Y chromosome in the case of male heterogamety) often exhibits loss of genetic activity for most of the genes carried on its homolog and is hence referred to as degenerate. The process by which the proto-Y chromosome loses its genetic activity has long been the subject of much speculation. We present a DNA sequence variation analysis of marker genes on the evolving sex chromosomes (neo-sex chromosomes) of Drosophila miranda. Due to its relatively recent origin, the neo-Y chromosome of this species is presumed to be still experiencing the forces responsible for the loss of its genetic activity. Indeed, several previous studies have confirmed the presence of some active loci on this chromosome. The genes on the neo-Y chromosome surveyed in the current study show generally lower levels of variation compared with their counterparts on the neo-X chromosome or an X-linked gene. This is in accord with a reduced effective population size of the neo-Y chromosome. Interestingly, the rate of replacement nucleotide substitutions for the neo-Y linked genes is significantly higher than that for the neo-X linked genes. This is not expected under a model where the faster evolution of the X chromosome is postulated to be the main force driving the degeneration of the Y chromosome.  相似文献   

10.
Summary The Chinese hedgehog has a diploid chromosome number of 48 in which there are eleven pairs of telo- or subtelocentric autosomes, twelve pairs of meta- or submetacentric autosomes, a metacentric X chromosome and a telocentric Y chromosome. The heterochromatin is almost completely distributed in five large distal segments of chromosomes nos. 9 to 12 and no. 18. There is no positive C-band in the centromeres of the chromosomes except for the X chromosome which has a small, weakly stained C-band in the centromere. In Chinese hedgehog cells 52.1% of SCEs are found at the junction between the euchromatin and the heterochromatin, 39.5% in the heterochromatin and 8.4% in the auchromatin. The SCE number per unit C-band is double the SCE number per unit euchromatin. The SCE rate in the heterochromatin or euchromatin regions is not proportional to their chromosome length and can be quite different between different pairs of the chromosomes. Our results indicate that there is a non-uniform distribution of the SCEs in the Chinese hedgehog cells.  相似文献   

11.
Dichroplus elongatus, a widespread South American phytophagous grasshopper, exhibits polymorphisms for supernumerary chromosomes and segments (SS) in natural populations in Argentina. In this paper we review the available information on B chromosome polymorphism in D. elongatus related to geographic distribution, patterns of chromosome variation and influence on sperm formation. In D. elongatus the different forms of supernumerary variants are not independent. The proportion of B-carrying individuals (B prevalence) is negatively correlated with SS10 and positively with SS6 frequencies. The analysis of population structure considering the different supernumerary variants would suggest that the patterns of chromosome variation can not be explained only by random factors. Geographic distribution was analyzed scoring the prevalence of B chromosomes in 13 natural populations collected in three different biogeographical provinces from Northwest (Las Yungas province) and East (Espinal and Pampeana provinces) of Argentina. The detected heterogeneity may be explained by significant differentiation between Northwest and East regions and among populations within Las Yungas and Pampeana provinces. Correlation analysis suggested that B chromosome prevalence is associated with maximum temperature and with latitude. Additional information about the nature of the patterns of B chromosome variation was obtained comparing them with those obtained at the mitochondrial DNA level. The hierarchical analysis of molecular differentiation revealed discrepancy with respect to chromosome differentiation and also suggested that the pattern of B chromosomes may not be explained by historical factors. We also discussed the probable influence on fertility of carriers considering the production of abnormal sperm formation (macro and microspermatids) in relation to the number of Bs per follicle.  相似文献   

12.
Ohmi Ohnishi 《Genetics》1977,87(3):529-545
Polygenic mutations affecting viability were accumulated on the second chromosome of Drosophila melanogaster by treating flies with EMS in successive generations. The treated chromosomes were later made homozygous and tested for their effects on viability by comparison of the frequency of such homozygotes with that of other genotypes in the same culture. The treated wild-type chromosomes were kept heterozygous in Pm/+ males by mating individual males in successive generations to Cy/Pm females. The number of generations of accumulation was 1 to 30 generations, depending on the concentration of EMS. A similar experiment for spontaneous polygenic mutations was also conducted by accumulating mutations for 40 generations. The lower limit of the spontaneous mutation rate of viability polygenes is estimated to be 0.06 per second chromosome per generation, which is about 12 times as high as the spontaneous recessive lethal mutation rate, 0.005. EMS-induced polygenic mutations increase linearly with the number of treated generations and with the concentration of EMS. The minimum mutation rate of viability polygenes is about 0.017 per 10(-4)m, which is only slightly larger than the lethal rate of 0.013 per 10(-4) m. The maximum estimate of the viability reduction of a single mutant is about 6 to 10 percent of the normal viability. The data are consistent with a constant average effect per mutant at all concentrations, but this is about three times as high as that for spontaneous mutants. It is obvious that one can obtain only a lower limit for the mutation rate, since some mutants may have effects so near to zero that they cannot be detected. The possibility of measuring something other than the lower limit is discussed. The ratio of the load due to detrimental mutants to that caused by lethals, the D/L ratio, is about 0.2 to 0.3 for EMS-induced mutants, as compared to about 0.5 for spontaneous mutants. This is to be expected if EMS treatment produces a large fraction of small deletions and other chromosome rearrangements which are more likely to be lethal.  相似文献   

13.
Telomeres represent the repetitive sequences that cap chromosome ends and are essential for their protection. Telomere length is known to be highly heritable and is derived from a homeostatic balance between telomeric lengthening and shortening activities. Specific loci that form the genetic framework underlying telomere length homeostasis, however, are not well understood. To investigate the extent of natural variation of telomere length in Arabidopsis thaliana, we examined 229 worldwide accessions by terminal restriction fragment analysis. The results showed a wide range of telomere lengths that are specific to individual accessions. To identify loci that are responsible for this variation, we adopted a quantitative trait loci (QTL) mapping approach with multiple recombinant inbred line (RIL) populations. A doubled haploid RIL population was first produced using centromere-mediated genome elimination between accessions with long (Pro-0) and intermediate (Col-0) telomere lengths. Composite interval mapping analysis of this population along with two established RIL populations (Ler-2/Cvi-0 and Est-1/Col-0) revealed a number of shared and unique QTL. QTL detected in the Ler-2/Cvi-0 population were examined using near isogenic lines that confirmed causative regions on chromosomes 1 and 2. In conclusion, this work describes the extent of natural variation of telomere length in A. thaliana, identifies a network of QTL that influence telomere length homeostasis, examines telomere length dynamics in plants with hybrid backgrounds, and shows the effects of two identified regions on telomere length regulation.  相似文献   

14.
Knowledge of the underlying genetic architecture of quantitative traits could aid in understanding how they evolve. In wild populations, it is still largely unknown whether complex traits are polygenic or influenced by few loci with major effect, due to often small sample sizes and low resolution of marker panels. Here, we examine the genetic architecture of five adult body size traits in a free‐living population of Soay sheep on St Kilda using 37 037 polymorphic SNPs. Two traits (jaw and weight) show classical signs of a polygenic trait: the proportion of variance explained by a chromosome was proportional to its length, multiple chromosomes and genomic regions explained significant amounts of phenotypic variance, but no SNPs were associated with trait variance when using GWAS. In comparison, genetic variance for leg length traits (foreleg, hindleg and metacarpal) was disproportionately explained by two SNPs on chromosomes 16 (s23172.1) and 19 (s74894.1), which each explained >10% of the additive genetic variance. After controlling for environmental differences, females heterozygous for s74894.1 produced more lambs and recruits during their lifetime than females homozygous for the common allele conferring long legs. We also demonstrate that alleles conferring shorter legs have likely entered the population through a historic admixture event with the Dunface sheep. In summary, we show that different proxies for body size can have very different genetic architecture and that dense SNP helps in understanding both the mode of selection and the evolutionary history at loci underlying quantitative traits in natural populations.  相似文献   

15.
The small testis (Smt) mutant mouse is characterized by a small testis of one third to one half the size of a normal testis, and its spermatogenesis is mostly arrested at early stages of meiosis, although a small number of spermatocytes at the late prophase of meiosis and a few spermatids can sometimes be seen. We performed quantitative trait locus (QTL) analysis of these spermatogenic traits and testis weight using 221 F2 males obtained from a cross between Smt and MOM (Mus musculus molossinus) mice. At the genome-wide 5% level, we detected two QTLs affecting meiosis on chromosomes 4 and 13, and two QTLs for paired testis weight as a percentage of body weight on chromosomes 4 and X. In addition, we found several QTLs for degenerated germ cells and multinuclear giant cells on chromosomes 4, 7 and 13. Interestingly, for cell degeneration, the QTL on chromosome 13 interacted epistatically with the QTL on chromosome 4. These results reveal polygenic participation in the abnormal spermatogenesis and small testis size in the Smt mutant.  相似文献   

16.
In a large variety of genetic studies, probabilistic inferences are made based on information available in population databases. The accuracy of the estimates based on population samples are highly dependent on the number of chromosomes being analyzed as well as the correct representation of the reference population. For frequency calculations the size of a database is especially critical for haploid markers, and for countries with complex admixture histories it is important to assess possible substructure effects that can influence the coverage of the database. Aiming to establish a representative Brazilian population database for haplotypes based on 23 Y chromosome STRs, more than 2,500 Y chromosomes belonging to Brazilian, European and African populations were analyzed. No matter the differences in the colonization history of the five geopolitical regions that currently exist in Brazil, for the Y chromosome haplotypes of the 23 studied Y-STRs, a lack of genetic heterogeneity was found, together with a predominance of European male lineages in all regions of the country. Therefore, if we do not consider the diverse Native American or Afro-descendent isolates, which are spread through the country, a single Y chromosome haplotype frequency database will adequately represent the urban populations in Brazil. In comparison to the most commonly studied group of 17 Y-STRs, the 23 markers included in this work allowed a high discrimination capacity between haplotypes from non-related individuals within a population and also increased the capacity to discriminate between paternal relatives. Nevertheless, the expected haplotype mutation rate is still not enough to distinguish the Y chromosome profiles of paternally related individuals. Indeed, even for rapidly mutating Y-STRs, a very large number of markers will be necessary to differentiate male lineages from paternal relatives.  相似文献   

17.
Constitutive heterochromatin of chromosomes can be visualized utilizing a new differential staining technique which was originally developed by Gall and Pardue (1971). The method facilitates the more certain identification of specific chromosomes within and between cell populations of different origins. Marker chromosomes can be identified in established cell lines over many months of serial passage. Chromosomes of similar morphology within karyotypes of man and mouse can be distinguished in a number of instances. For example, the Y chromosomes of both mouse and man can now be easily detected. The hetero-chromatic staining method also permits discrimination between mouse and human chromosomes in somatic cell hybrids, thus facilitating the assignment of gene markers to chromosomes in somatic cell genetics systems. Instances of translocation of centric heterochromatin to other parts of chromosomes in established tissue culture cell lines are described. An instance of the inheritance of a polymorphic variation in autosomal heterochromatin in man is reported. It is postulated that polymorphisms in the centric heterochromatin may account largely for small heritable chromosome length variations previously described in human populations and termed minor chromosome variants.  相似文献   

18.
Allendorf FW  Knudsen KL  Blake GM 《Genetics》1982,100(3):497-504
Pinus ponderosa and P. resinosa population samples have mean frequencies of enzymatically inactive alleles of 0.0031 and 0.0028 at 29 and 27 enzyme loci, respectively. Such alleles are rare and are apparently maintained by selection-mutation balance. Ponderosa pine have much higher amounts of allozymic and polygenic phenotypic variation than red pine, yet both species have similar frequencies of null alleles. Thus, null alleles apparently do not contribute to polygenic variation, as has been suggested. The concordance between allozymic and polygenic variation adds support to the view that allozyme studies may be valuable in predicting the relative amount of polygenic variation in populations.  相似文献   

19.
G Hou  S M Le Blancq  Y E  H Zhu    M G Lee 《Nucleic acids research》1995,23(16):3310-3317
It has been shown previously that the rRNA encoding chromosomes in Giardia lamblia undergo frequent rearrangements with an estimated rate of approximately 1% per cell per division (Le Blancq et al., 1992, Nucleic Acids Res., 17, 4539-4545). Following these observations, we searched for highly recombinogenic regions in one of the frequently rearranged rRNA encoding chromosomes, that is chromosome 1, a small, 1.1 Mb chromosome. Chromosome 1 undergoes frequent rearrangements that result in size variation of 5-20%. We analyzed the structure of chromosome 1 in clonal lineages from the WB strain. The two ends of chromosome 1 comprise telomere repeat [TAGGG] arrays joined to a truncated rRNA gene and a sequence referred to as '4e', respectively. Comparison of the structure of four polymorphic versions of chromosome 1, resulting from independent rearrangement events in four cloned lines, located a single polymorphic region to the variable rDNA-telomere domain. Chromosome 1 is organized into two domains: a core region spanning approximately 850 kb that does not exhibit size heterogeneity among different chromosome 1 and a variable region that spans 185-450 kb and includes the telomeric rRNA genes, referred to as the variable rDNA-telomere domain. The core region contains a conserved region, spanning approximately 550 kb adjacent to the telomeric 4e sequence, which is only present in the 4e containing chromosomes and a 300 kb region of repetitive sequences that are also components of other chromosomes as well. Changes in the number of rDNA repeats accounted for some, but not all, of the size variation. Since there are four chromosomes that share the core region of chromosome 1, we suggest that the genome is tetraploid for this chromosome.  相似文献   

20.
We made a cytogenetic study of the fish Rhamdia quelen collected from the Bodoquena Plateau, an isolated national park region in Mato Grosso do Sul State, Brazil. The diploid number was 2n = 58, with 36 metacentric + 16 submetacentric + 6 subtelocentric chromosomes. We found one to three B chromosomes, which were metacentric and submetacentric and of medium size, showing both intra- and interindividual variation. The nucleolus organizer region (NOR) was located in the terminal region of the short arm of submetacentric pair 20. Staining with CMA3 fluorochrome revealed the NOR location, while there was no evidence of fluorescent staining with DAPI. C banding revealed heterochromatin mainly in the terminal regions of the chromosome arms, including the NOR pair. In addition, metacentric pair 2 showed three heterochromatic blocks in the terminal portions and in the pericentromeric region. The B chromosomes appeared euchromatic. The CB + CMA3 staining combination demonstrated only one chromosome pair with fluorescence, probably the NOR-bearing one, while CB + DAPI gave various fluorescent signals, including metacentric pair 2, indicating that these heterochromatic regions are AT-rich in this population of R. quelen. The R. quelen population in this isolated region of Brazil is chromosomally distinct from that of other populations that have been studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号